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Introduction Time Series Analysis

Goal: Understanding temporal patterns of data (or real world events)

Common tasks:

e Trend Analysis: Extrapolate patterns over time (typically descriptive).

e Forecasting: Predicting a future event (predictive).
(contrasts with “cross-sectional” prediction -- predicting a different group)



Introduction to Causal Inference (Revisited)

X causes Y as opposed to X Is associated with Y

Changing X will change the distribution of Y.

X causes Y I7 i Y causes X
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Introduction to Causal Inference (Revisited)

X causes Y as opposed to X Is associated with Y

Changing X will change the distribution of Y.

X causes Y I7 i Y causes X

Y =1X =1) - P(Y = 1|X =0)

Counterfgctual Model Exposed or Not Exposed: X=1o0r0
Cp it X =1 (P£C1=1))
P(C,=0)
(chg—l))
Causal Odds Ratio: P(Co=0)



Autocorrelation

“(a.k.a. Serial correlation).”

Quantifying the strength of a temporal pattern in serial data.

Requirements:

e Assume regular measurement (hourly, daily, monthly...etc..)



Autocorrelation

Quantifying the strength of a temporal pattern in serial data.
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Autocorrelation

Quantifying the strength of a temporal pattern in serial data.
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Autocorrelation
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Quantifying the strength of a temporal pattern in serial data.
Q: HOW?

A: Correlate with a copy of self, shifted slightly.

Y = [3: 4, 4, 5, 6, 7, 7, 8]
correlate(Y[0:7], Y[1:8]) #lag=1

correlate(Y[0:-2], Y[2:8]) #lag=2



Autocorrelation

Quantifying the strength of a temporal pattern in serial data.

Q: HOW?

A: Correlate with a copy of self, shifted slightly.

Y = [3: 4, 4, 5, 6, 7, 7, 8]

correlate(Y[0:7], Y[1:8]) #lag=1

correlate(Y[0:-2], Y[2:8]) #lag=2
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Autoregressive Model

AR Models: Yi=fYio1, Y0, Y5, ..., Y, &)

Linear AR model: Y: = Bo+ B51Yio1 + Yo+ ...+ 8. Y, + €

Notation: AR(1): }? = Bo+ 1Y
AR(2): Yy = 8o + B1Yi1 + B2 o
AR(3): Yy = By + B1Yio1 + BoYio + B3Y;_3



Autoregressive Model

AR Models: Yi=f(Yio1,Y 0, Y3, ... Y, &)
Linear AR model: Y: = Bo+51Yio1+5Ye o+ ...+ 8.Yi ), + &

AR(1): Yf = [ + B1Yi-1
AR(2): Yy = 6o+ B1Yi1 + BoYio
AR(3): Yi = By + 1Yo+ BoYio + B33

Notation:

AR(0): Y; = 5



Moving Average

Based on error; (a “smoothing” technique).
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Moving Average

Based on error; (a “smoothing” technique).
Q: Best estimator of random data (i.e. white noise)?

A: The mean

VMA _ Yi+Yi 1 +Yio+...+Y,
A

p+1




Moving Average

Based on error; (a “smoothing” technique).
Q: Best estimator of random data (i.e. white noise)?

A: The mean
Yi+Yi i +Yio+..+Y,

G::) Y, MA = =

Simple Moving Average




Moving Average Model

In a regression model (ARMA or ARIMA), we consider error terms

Y = fle -1, 62, 63, ...
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Moving Average Model

In a regression model (ARMA or ARIMA), we consider error terms

Y = fle -1, 62, 63, ...

attributed to “shocks” -- independent, from a normal distribution

MA(L): Yi=p+ e + 606
Notation: MA(2): Y = i+ € + 01611 + boer_s



ARMA Models

AutoRegressive (AR) Moving Average (MA) Model

ARMA(p, q): Yi=Bo+BYia+BYi o+ ...+ BY ,+
€ + 916}_1 + QQEE_Q + ...+ 8gEf_q

ARMA(1, 1) Yi=051Yi 1+ e+ 06

example: Y is sales; error may be effect from coupon or advertising
(credit: Ben Lambert)



ARIMA

| = Integrated
Makes a time series stationary:

e Removes trends (“detrending”)

e Makes “mean reverting” = tendency to always revert back to the mean over
the long run.

e Removes changes in variance



Time-series Applications

e ARMA

o Economic indicators

o System performance

o Trend analysis

(often situations where there is a general trend and random “shocks”)

e Univariate Models in General

o Anomaly Detection

o Forecasting

o Season Trends

o Signal Processing

e Integration as predictors within multivariate models

statsmodels.tsa.arima_model



