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Introduction Time Series Analysis
Goal: Understanding temporal patterns of data (or real world events)

Common tasks:

● Trend Analysis: Extrapolate patterns over time (typically descriptive).
 

● Forecasting: Predicting a future event (predictive). 
(contrasts with “cross-sectional” prediction -- predicting a different group)



Introduction to Causal Inference (Revisited)

X causes Y          as opposed to         X is associated with Y

Changing X will change the distribution of Y. 

X causes Y                Y causes X
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Introduction to Causal Inference (Revisited)

X causes Y          as opposed to         X is associated with Y

Changing X will change the distribution of Y. 

X causes Y                Y causes X

Counterfactual Model:   Exposed or Not Exposed:     X = 1 or 0

Causal Odds Ratio: 



Autocorrelation
“(a.k.a. Serial correlation).”

Quantifying the strength of a temporal pattern in serial data. 

Requirements:

● Assume regular measurement (hourly, daily, monthly...etc..)
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Moving Average
Based on error;   (a “smoothing” technique). 

Q: Best estimator of random data (i.e. white noise)? 

A: The mean

Simple Moving Average



Moving Average Model
In a regression model (ARMA or ARIMA), we consider error terms 
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Moving Average Model
In a regression model (ARMA or ARIMA), we consider error terms 

Notation: 

attributed to “shocks” -- independent, from a normal distribution



ARMA Models
AutoRegressive (AR) Moving Average (MA) Model

ARMA(p, q):

ARMA(1, 1): 

example: Y is sales; error may be effect from coupon or advertising
(credit: Ben Lambert)



ARIMA
I = Integrated

Makes a time series stationary:

● Removes trends (“detrending”)
● Makes “mean reverting” = tendency to always revert back to the mean over 

the long run. 
● Removes changes in variance



Time-series Applications
● ARMA

○ Economic indicators
○ System performance
○ Trend analysis

(often situations where there is a general trend and random “shocks”)

● Univariate Models in General
○ Anomaly Detection
○ Forecasting 
○ Season Trends
○ Signal Processing

● Integration as predictors within multivariate models

statsmodels.tsa.arima_model


