Distributed TensorFlow

Stony Brook University CSE545, Fall 2017

Goals

- Understand TensorFlow as a workflow system.
- Know the key components of TensorFlow.
- Understand the key concepts of *distributed* TensorFlow.
- Do basic analysis in distributed TensorFlow.

Will not know but will be easier to pick up

- How deep learning works
- What is a CNN
- What is an RNN (or LSTM, GRU)

Like Spark, but uses *tensors* instead of *RDDs*.

Like Spark, but uses *tensors* instead of *RDDs*.

Like Spark, but uses *tensors* instead of *RDDs*.

A 2-d tensor is just a matrix. 1-d: vector 0-d: a constant / scalar

Note: Linguistic ambiguity: Dimensions of a Tensor =/= Dimensions of a Matrix

(i.stack.imgur.com)

Like Spark, but uses *tensors* instead of *RDDs*.

Example: Image definitions from assignment 2:

image[row][column][rgbx]

Like Spark, but uses *tensors* instead of *RDDs*.

Technically, less abstract than *RDDs* which could hold tensors as well as many other data structures (dictionaries/HashMaps, Trees, ...etc...).

Then, what is valuable about TensorFlow?

Efficient, high-level built-in **linear algebra** and **machine learning** *operations* (i.e. transformations).

enables complex models, like deep learning

Then, what is valuable about TensorFlow?

Efficient, high-level built-in **linear algebra** and **machine learning** *operations*.

enables complex models, like deep learning

TensorFlow

Efficient, high-level built-in **linear algebra** and **machine learning** *operations*.

```
import tensorflow as tf
```

```
b = tf.Variable(tf.zeros([100]))
                                                    # 100-d vector, init to zeroes
W = tf.Variable(tf.random_uniform([784,100],-1,1)) # 784x100 matrix w/rnd vals
x = tf.placeholder(name="x")
                                                    # Placeholder for input
relu = tf.nn.relu(tf.matmul(W, x) + b)
                                                    # Relu(Wx+b)
C = [...]
                                                    # Cost computed as a function
                                                    # of Relu
s = tf.Session()
for step in xrange(0, 10):
  input = ... construct 100-D input array ...
                                                    # Create 100-d vector for input
  result = s.run(C, feed_dict={x: input})
                                                    # Fetch cost, feeding x=input
  print step, result
```

(Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., ... & Ghemawat, S. (2016). Tensorflow: Large-scale machine learning on heterogeneous distributed systems. *arXiv preprint arXiv:1603.04467*.)

Tensor**Flow**

Operations on tensors are often conceptualized as graphs:

```
import tensorflow as tf
```

```
b = tf.Variable(tf.zeros([100]))
W = tf.Variable(tf.random_uniform([784,100],-1,1))
x = tf.placeholder(name="x")
relu = tf.nn.relu(tf.matmul(W, x) + b)
C = [...]
s = tf.Session()
for step in xrange(0, 10):
    input = ...construct 100-D input array ...
    result = s.run(C, feed_dict={x: input})
    print step, result
```


(Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., ... & Ghemawat, S. (2016). Tensorflow: Large-scale machine learning on heterogeneous distributed systems. *arXiv preprint arXiv:1603.04467*.)

Tensor**Flow**

Operations on tensors are often conceptualized as graphs:

A simpler example:

d=b+c e=c+2 a=d*e

(Adventures in Machine Learning. *Python TensorFlow Tutorial*, 2017)

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., ... & Ghemawat, S. (2016). Tensorflow: Large-scale machine learning on heterogeneous distributed systems. *arXiv preprint arXiv:1603.04467*.

Ingredients of a TensorFlow

tensors variables -* persistent mutable tensors *constants -* constant *placeholders -* from data * technically, operations that work with tensors.

operations an abstract computation (e.g. matrix multiply, add) executed by device *kernels*

session

defines the environment in which operations *run*. (like a Spark context)

devices

graph

the specific devices (cpus or gpus) on which to run the session.

Ingredients of a TensorFlow

* technically, operations that work with tensors.

tensors variables* - persistent mutable tensors *constants* - constant *placeholders* - from data

tf.Variable(initial_value, name)

- tf.constant(value, type, name)
- tf.placeholder(type, shape, name)

session defines the environment in which operations *run*. (like a Spark context)

devices

graph

the specific devices (cpus or gpus) on which to run the session.

Operations

tensors variables* - persistent mutable tensors *constants* - constant *placeholders* - from data

operations an abstract computation (e.g. matrix multiply, add) executed by device *kernels*

Category	Examples
Element-wise mathematical operations	Add, Sub, Mul, Div, Exp, Log, Greater, Less, Equal,
Array operations	Concat, Slice, Split, Constant, Rank, Shape, Shuffle,
Matrix operations	MatMul, MatrixInverse, MatrixDeterminant,
Stateful operations	Variable, Assign, AssignAdd,
Neural-net building blocks	SoftMax, Sigmoid, ReLU, Convolution2D, MaxPool,
Checkpointing operations	Save, Restore
Queue and synchronization operations	Enqueue, Dequeue, MutexAcquire, MutexRelease,
Control flow operations	Merge, Switch, Enter, Leave, NextIteration

Sessions

Places operations on devices variables - persistent

• Stores the values of variables (when not distributed) add)

graph

Carries out execution: eval() or run()

session

defines the environment in which operations *run*. (like a Spark context)

devices

the specific devices (cpus or gpus) on which to run the session.

Ingredients of a TensorFlow

tensors variables -* persistent mutable tensors *constants -* constant *placeholders -* from data * technically, operations that work with tensors.

operations an abstract computation (e.g. matrix multiply, add) executed by device *kernels*

session

defines the environment in which operations *run*. (like a Spark context)

devices

graph

the specific devices (cpus or gpus) on which to run the session.

Demo

Ridge Regression (L2 Penalized linear regression, $\lambda ||\beta||_2^2$)

$$\hat{\beta}^{ridge} = \arg\min_{\beta} \{\sum_{i=1}^{N} (y_i - \sum_{j=1}^{m} x_{ij}\beta_j)^2 + \lambda \sum_{j=1}^{m} \beta_j^2 \}$$

Matrix Solution:
$$\hat{\beta}^{ridge} = (X^TX + \lambda I)^{-1}X^Ty$$

Demo

Ridge Regression (L2 Penalized linear regression, $\lambda ||\beta||_2^2$)

$$\hat{\beta}^{ridge} = \arg\min_{\beta} \{\sum_{i=1}^{N} (y_i - \sum_{j=1}^{m} x_{ij}\beta_j)^2 + \lambda \sum_{j=1}^{m} \beta_j^2 \}$$

Gradient descent needs to solve.

(Mirrors many parameter optimization problems.)

Matrix Solution:
$$\hat{\beta}^{ridge} = (X^TX + \lambda I)^{-1}X^Ty$$

Gradients

Ridge Regression (L2 Penalized linear regression, $\lambda ||\beta||_2^2$)

$$\hat{\beta}^{ridge} = \arg \min_{\beta} \left\{ \sum_{i=1}^{N} (y_i - \sum_{j=1}^{m} x_{ij}\beta_j)^2 + \lambda \sum_{j=1}^{m} \beta_j^2 \right\}$$
Gradient descent needs to solve.
(Mirrors many parameter optimization problems.)

TensorFlow has built-in ability to derive gradients given a cost function.

Gradients

Ridge Regression (L2 Penalized linear regression, $\lambda ||\beta||_2^2$)

$$\hat{\beta}^{ridge} = \arg \min_{\beta} \left\{ \sum_{i=1}^{N} (y_i - \sum_{j=1}^{m} x_{ij}\beta_j)^2 + \lambda \sum_{j=1}^{m} \beta_j^2 \right\}$$
Gradient descent needs to solve.
(Mirrors many parameter optimization problems.)

TensorFlow has built-in ability to derive gradients given a cost function.

tf.gradients(cost, [params])

Gradients

TensorFlow has built-in ability to derive gradients given a cost function.

tf.gradients(cost, [params])

Distributed TensorFlow

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., ... & Kudlur, M. (2016, November). TensorFlow: A System for Large-Scale Machine Learning. In *OSDI* (Vol. 16, pp. 265-283).

Batches/second

Distributed TensorFlow

The layered TensorFlow architecture.

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., ... & Kudlur, M. (2016, November). TensorFlow: A System for Large-Scale Machine Learning. In *OSDI* (Vol. 16, pp. 265-283).

Distributed TensorFlow: Full Pipeline

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., ... & Kudlur, M. (2016, November). TensorFlow: A System for Large-Scale Machine Learning. In *OSDI* (Vol. 16, pp. 265-283).

Local Distribution

Multiple devices on single machine

Local Distribution

Multiple devices on single machine

Multiple devices on multiple machines

Multiple devices on multiple machines

Machine A

(Geron, 2017: HOML: p.324)

Machine B

Summary

- TF is a workflow system, where records are always tensors
 operations applied to tensors (as either Variables, constants, or placeholder)
- Optimized for numerical / linear algebra
 - automatically finds gradients
 - \circ $\,$ custom kernels for given devices
- "Easily" distributes
 - Within a single machine (local: many devices))
 - Across a cluster (many machines and devices)
 - Jobs broken up as parameter servers / workers makes coordination of data efficient