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Finding Similar “Items”
?

(http://blog.soton.ac.uk/hive/2012/05/10/r
ecommendation-system-of-hive/)

(http://www.datacommunitydc.org/blog/20
13/08/entity-resolution-for-big-data)



Finding Similar “Items”: What we will cover

● Shingling

● Minhashing

● Locality-sensitive hashing

● Distance Metrics



Document Similarity

Challenge: How to represent the document in a way that can 
be efficiently encoded and compared?



Shingles

Goal: Convert documents to sets
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k-shingles (aka “character n-grams”) 
- sequence of k characters

E.g. k=2 doc=”abcdabd”
singles(doc, 2) = {ab, bc, cd, da, bd}

● Similar documents have many common shingles
● Changing words or order has minimal effect.
● In practice use 5 < k < 10

Shingles

Goal: Convert documents to sets

Large enough that any given shingle 
appearing a document is highly unlikely  
         (e.g.  < .1% chance) 

Can hash large shingles to smaller 
         (e.g. 9-shingles into 4 bytes)

Can also use words (aka n-grams).



Shingles

Problem: Even if hashing, sets of shingles are large 
(e.g. 4 bytes => 4x the size of the document). 



Minhashing

Goal: Convert sets to shorter ids, signatures



Goal: Convert sets to shorter ids, signatures

Characteristic Matrix, X:
….

(Leskovec at al., 2014; http://www.mmds.org/)

often very sparse! (lots of zeros)

Minhashing - Background

Jaccard Similarity:

S1 S2

http://www.mmds.org/


Characteristic Matrix:

S
1

S
2

ab 1 1

bc 0 1

de 1 0

ah 1 1

ha 0 0

ed 1 1

ca 0 1

Minhashing - Background

Jaccard Similarity:



Characteristic Matrix:

S
1

S
2

ab 1 1 * *

bc 0 1 *

de 1 0 *

ah 1 1 **

ha 0 0

ed 1 1 **

ca 0 1 *

Minhashing - Background

Jaccard Similarity:



Characteristic Matrix:

Jaccard Similarity:
S

1
S

2

ab 1 1 * *

bc 0 1 *

de 1 0 *

ah 1 1 **

ha 0 0

ed 1 1 **

ca 0 1 *

sim(S
1, 

S
2
) =

 
3 / 6   

# both have / # at least one has

Minhashing - Background



Shingles

Problem: Even if hashing, sets of shingles are large 
(e.g. 4 bytes => 4x the size of the document). 



Minhashing
Characteristic Matrix: X

S
1

S
2

S
3

S
4

ab 1 0 1 0

bc 1 0 0 1

de 0 1 0 1

ah 0 1 0 1

ha 0 1 0 1

ed 1 0 1 0

ca 1 0 1 0

(Leskovec at al., 2014; http://www.mmds.org/)

Idea: We don’t need to 
actually shuffle we can 
just use hash functions.

Approximate Approach: 
1) Instead of keeping whole characteristic 
matrix, just keep first row where 1 is 
encountered. 
2) Shuffle and repeat to get a “signature” 
for each set. 

http://www.mmds.org/


Minhashing
Characteristic Matrix:

S
1

S
2

S
3

S
4

ab 1 0 1 0

bc 1 0 0 1

de 0 1 0 1

ah 0 1 0 1

ha 0 1 0 1

ed 1 0 1 0

ca 1 0 1 0

(Leskovec at al., 2014; http://www.mmds.org/)

Minhash function: h
● Based on permutation of rows in 

the characteristic matrix, h maps 
sets to first row where set appears.
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Minhashing
Characteristic Matrix:

S
1

S
2

S
3

S
4

ab 1 0 1 0

bc 1 0 0 1

de 0 1 0 1

ah 0 1 0 1

ha 0 1 0 1

ed 1 0 1 0

ca 1 0 1 0

(Leskovec at al., 2014; http://www.mmds.org/)

Minhash function: h
● Based on permutation of rows in the 

characteristic matrix, h maps sets to first row 
where set appears.

permuted
order

1 ha

2 ed

3 ab

4 bc

5 ca

6 ah

7 de
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Minhashing
Characteristic Matrix:

S
1
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2
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3
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4

ab 1 0 1 0

bc 1 0 0 1

de 0 1 0 1
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ha 0 1 0 1
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Minhash function: h
● Based on permutation of rows in the 

characteristic matrix, h maps sets to first row 
where set appears.

h(S1) = ed  #permuted row 2
h(S2) = ha  #permuted row 1
h(S3) = 

3

4

7

6

1

2

5

permuted
order
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4 bc

5 ca

6 ah

7 de
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Minhash function: h
● Based on permutation of rows in the 

characteristic matrix, h maps sets to first row 
where set appears.

h(S1) = ed  #permuted row 2
h(S2) = ha  #permuted row 1
h(S3) = ed  #permuted row 2
h(S4) = 

3

4
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6

1

2

5

permuted
order

1 ha

2 ed

3 ab

4 bc

5 ca

6 ah

7 de

http://www.mmds.org/


Minhashing
Characteristic Matrix:

S
1

S
2

S
3

S
4

ab 1 0 1 0

bc 1 0 0 1

de 0 1 0 1

ah 0 1 0 1

ha 0 1 0 1

ed 1 0 1 0

ca 1 0 1 0

(Leskovec at al., 2014; http://www.mmds.org/)

Minhash function: h
● Based on permutation of rows in the 

characteristic matrix, h maps sets to first row 
where set appears.

h(S1) = ed  #permuted row 2
h(S2) = ha  #permuted row 1
h(S3) = ed  #permuted row 2
h(S4) = ha  #permuted row 1

3

4

7

6

1

2

5

permuted
order

1 ha

2 ed

3 ab

4 bc

5 ca

6 ah

7 de

http://www.mmds.org/


Minhashing
Characteristic Matrix:

S
1

S
2

S
3

S
4

ab 1 0 1 0

bc 1 0 0 1

de 0 1 0 1

ah 0 1 0 1

ha 0 1 0 1

ed 1 0 1 0
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Minhash function: h
● Based on permutation of rows in the 

characteristic matrix, h maps sets to rows.

Signature matrix: M
● Record first row where each set 

had a 1 in the given permutation

h
1
(S1) = ed  #permuted row 

2
h

1
(S2) = ha  #permuted row 

1
h

1
(S3) = ed  #permuted row 

2
h

1
(S4) = ha  #permuted row 

1

3

4
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6

1

2
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S
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S
4

h
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2 1 2 1
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Minhashing
Characteristic Matrix:

(Leskovec at al., 2014; http://www.mmds.org/)

Minhash function: h
● Based on permutation of rows in the 

characteristic matrix, h maps sets to rows.

Signature matrix: M
● Record first row where each set had a 1 in 

the given permutation
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Minhashing
Characteristic Matrix:

(Leskovec at al., 2014; http://www.mmds.org/)

Minhash function: h
● Based on permutation of rows in the 

characteristic matrix, h maps sets to rows.

Signature matrix: M
● Record first row where each set had a 1 in 

the given permutation

S
1

S
2

S
3

S
4

h
1

2 1 2 1

h
2

2 1 4 1

4
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5

3

4
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S
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S
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ha 0 1 0 1

ed 1 0 1 0

ca 1 0 1 0
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Minhashing
Characteristic Matrix:

(Leskovec at al., 2014; http://www.mmds.org/)

Minhash function: h
● Based on permutation of rows in the 

characteristic matrix, h maps sets to rows.

Signature matrix: M
● Record first row where each set had a 1 in 

the given permutation

S
1

S
2

S
3

S
4

h
1

2 1 2 1

h
2

2 1 4 1

h
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4
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5

3
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S
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S
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Characteristic Matrix:

(Leskovec at al., 2014; http://www.mmds.org/)

Minhash function: h
● Based on permutation of rows in the 

characteristic matrix, h maps sets to rows.

Signature matrix: M
● Record first row where each set had a 1 in 

the given permutation

S
1

S
2

S
3

S
4

h
1

2 1 2 1

h
2

2 1 4 1

h
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1 2 1 2

4

2
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6

7

5

3

4

7

6
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2
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S
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S
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S
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Characteristic Matrix: X

(Leskovec at al., 2014; http://www.mmds.org/)

Minhash function: h
● Based on permutation of rows in the 

characteristic matrix, h maps sets to rows.

Signature matrix: M
● Record first row where each set had a 1 in 

the given permutation
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S
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S
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S
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h
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h
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h
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...
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Minhashing
Characteristic Matrix:

(Leskovec at al., 2014; http://www.mmds.org/)

Minhash function: h
● Based on permutation of rows in the 

characteristic matrix, h maps sets to rows.

Signature matrix: M
● Record first row where each set had a 1 in 

the given permutation

S
1

S
2

S
3

S
4

h
1

2 1 2 1

h
2

2 1 4 1

h
3

1 2 1 2

...

...

4

2

1

3

6

7

5

3

4

7

6

1

2

5

S
1

S
2

S
3

S
4

ab 1 0 1 0

bc 1 0 0 1

de 0 1 0 1

ah 0 1 0 1

ha 0 1 0 1

ed 1 0 1 0

ca 1 0 1 0

Property of signature matrix:
The probability for any h

i
 (i.e. any row), that 

h
i
(S

1
) = h

i
(S

2
) is the same as Sim(S1, S2)
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Minhashing
Characteristic Matrix:

(Leskovec at al., 2014; http://www.mmds.org/)

Minhash function: h
● Based on permutation of rows in the 

characteristic matrix, h maps sets to rows.

Signature matrix: M
● Record first row where each set had a 1 in 

the given permutation
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S
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S
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h
1

2 1 2 1

h
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S
1

S
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S
3

S
4

ab 1 0 1 0

bc 1 0 0 1

de 0 1 0 1

ah 0 1 0 1

ha 0 1 0 1

ed 1 0 1 0

ca 1 0 1 0

Property of signature matrix:
The probability for any h

i
 (i.e. any row), that 

h
i
(S

1
) = h

i
(S

2
) is the same as Sim(S1, S2)

Thus, similarity of signatures S1, S2 is the fraction of   
minhash functions (i.e. rows) in which they agree.
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Minhashing
Characteristic Matrix:

(Leskovec at al., 2014; http://www.mmds.org/)

Minhash function: h
● Based on permutation of rows in the 

characteristic matrix, h maps sets to rows.

Signature matrix: M
● Record first row where each set had a 1 in 

the given permutation
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Property of signature matrix:
The probability for any h

i
 (i.e. any row), that 

h
i
(S

1
) = h

i
(S

2
) is the same as Sim(S1, S2)

Thus, similarity of signatures S1, S2 is the fraction of   
minhash functions (i.e. rows) in which they agree.

Estimate with a random sample of 
permutations (i.e. ~100)
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Minhashing
Characteristic Matrix:

(Leskovec at al., 2014; http://www.mmds.org/)

Minhash function: h
● Based on permutation of rows in the 

characteristic matrix, h maps sets to rows.

Signature matrix: M
● Record first row where each set had a 1 in 

the given permutation
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S
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S
4

h
1
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h
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2 1 4 1

h
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S
1

S
2

S
3

S
4

ab 1 0 1 0

bc 1 0 0 1

de 0 1 0 1

ah 0 1 0 1

ha 0 1 0 1

ed 1 0 1 0

ca 1 0 1 0

Property of signature matrix:
The probability for any h

i
 (i.e. any row), that 

h
i
(S

1
) = h

i
(S

2
) is the same as Sim(S1, S2)

Thus, similarity of signatures S1, S2 is the fraction of   
minhash functions (i.e. rows) in which they agree.

Estimate with a random sample of 
permutations (i.e. ~100)

Estimated Sim(S1, S3) =
agree / all =  2/3
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Minhashing
Characteristic Matrix:

(Leskovec at al., 2014; http://www.mmds.org/)

Minhash function: h
● Based on permutation of rows in the 

characteristic matrix, h maps sets to rows.

Signature matrix: M
● Record first row where each set had a 1 in 

the given permutation

S
1
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2
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3

S
4

h
1

2 1 2 1

h
2

2 1 4 1

h
3

1 2 1 2
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5

3

4

7

6

1

2
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S
1

S
2

S
3

S
4

ab 1 0 1 0

bc 1 0 0 1

de 0 1 0 1

ah 0 1 0 1

ha 0 1 0 1

ed 1 0 1 0

ca 1 0 1 0

Property of signature matrix:
The probability for any h

i
 (i.e. any row), that 

h
i
(S

1
) = h

i
(S

2
) is the same as Sim(S1, S2)

Thus, similarity of signatures S1, S2 is the fraction of   
minhash functions (i.e. rows) in which they agree.

Estimated Sim(S1, S3) =
agree / all =  2/3

Real Sim(S1, S3) =
Type a / (a + b + c) = 3/4
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Minhashing
Characteristic Matrix:

(Leskovec at al., 2014; http://www.mmds.org/)

Minhash function: h
● Based on permutation of rows in the 

characteristic matrix, h maps sets to rows.

Signature matrix: M
● Record first row where each set had a 1 in 

the given permutation
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S
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S
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S
4

h
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2 1 2 1

h
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2 1 4 1

h
3

1 2 1 2
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1

S
2

S
3

S
4

ab 1 0 1 0

bc 1 0 0 1

de 0 1 0 1

ah 0 1 0 1

ha 0 1 0 1

ed 1 0 1 0

ca 1 0 1 0

Property of signature matrix:
The probability for any h

i
 (i.e. any row), that 

h
i
(S

1
) = h

i
(S

2
) is the same as Sim(S1, S2)

Thus, similarity of signatures S1, S2 is the fraction of   
minhash functions (i.e. rows) in which they agree.

Estimated Sim(S1, S3) =
agree / all =  2/3

Real Sim(S1, S3) =
Type a / (a + b + c) = 3/4

Try Sim(S2, S4) and
Sim(S1, S2)
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(random disk seeks = slow!)

Solution: Use “random” hash functions. 
● Setup:

○ Pick ~100 hash functions, hashes
○ Store M[i][s] = a potential minimum h

i
(r)    

#initialized to infinity (num hashs x num sets)



Minhashing
Solution: Use “random” hash functions. 
● Setup:

○ Pick ~100 hash functions, hashes
○ Store M[i][s] = a potential minimum h

i
(r)    

#initialized to infinity (num hashs x num sets)
● Algorithm: 
for r in rows of cm: #cm is characteristic matrix

  compute h
i
(r) for all i in hashes #precompute 100 values

  for each set s in row r:

    if cm[r][s] == 1:

      for i in hashes: #check which hash produces smallest value

        if h
i
(r) < M[i][s]: M[i][s] = h

i
(r)



Minhashing
Solution: Use “random” hash functions. 
● Setup:

○ Pick ~100 hash functions, hashes
○ Store M[i][s] = a potential minimum h

i
(r)    

#initialized to infinity (num hashs x num sets)
● Algorithm: 
for r in rows of cm: #cm is characteristic matrix

  compute h
i
(r) for all i in hashes #precompute 100 values

  for each set s in row r:

    if cm[r][s] == 1:

      for i in hashes: #check which hash produces smallest value

        if h
i
(r) < M[i][s]: M[i][s] = h

i
(r)

Known as “efficient minhashing”.



Minhashing

What hash functions to use?

Start with 2 decent hash functions

e.g. h
a
(x) = ascii(string) % large_prime_number

h
b
(x) = (3*ascii(string) + 16) % large_prime_number

Add together multiplying the second times i:

 h
i
(x) = h

a
(x) + i*h

b
(x)

e.g. h
5
(x) = h

a
(x) + 5*h

b
(x)

https://www.eecs.harvard.edu/~michaelm/postscripts/rsa2008.pdf
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Problem: Even if hashing, sets of shingles are large (e.g. 4 
bytes => 4x the size of the document). 



Minhashing

Problem: Even if hashing, sets of shingles are large (e.g. 4 
bytes => 4x the size of the document). 

New Problem: Even if the size of signatures are small, it can 
be computationally expensive to find similar pairs.

E.g. 1m documents; 1,000,000 choose 2 = 500,000,000,000 pairs



Locality-Sensitive Hashing

Goal: find pairs of minhashes likely to be similar (in order to 
then test more precisely for similarity).
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Locality-Sensitive Hashing

Goal: find pairs of minhashes likely to be similar (in order to 
then test more precisely for similarity).

Candidate pairs: pairs of elements to be evaluated for similarity.

Approach: Hash multiple times over subsets of data: similar 
items are likely in the same bucket once.

Approach from MinHash: Hash columns of signature matrix

Candidate pairs end up in the same bucket. 
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Locality-Sensitive Hashing

(Leskovec at al., 2014; http://www.mmds.org/)

Criteria for being 
candidate pair:

● They end up in same 
bucket for at least 1 
band. 

Step 1: Add bands
Step 2: Hash columns 

within bands

http://www.mmds.org/


Locality-Sensitive Hashing

(Leskovec at al., 2014; http://www.mmds.org/)

Simplification: 
There are enough buckets 
compared to rows per band that 
columns must be identical in 
order to hash to the same 
bucket.

Thus, we only need to check if 
identical within a band. 

Step 1: Add bands
Step 2: Hash columns 

within bands

http://www.mmds.org/


Document Similarity Pipeline

Shingling Minhashing
Locality-
sensitive 
hashing
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Realistic Example: Probabilities of agreement

● 100,000 documents
● 100 random permutations/hash functions/rows

=> if 4byte integers then 40Mb to hold signature matrix
=> still 100k choose 2 is a lot (~5billion)

● 20 bands of 5 rows
● Want 80% Jaccard Similarity ; for any row p(S1 == S2) = .8

P(S1==S2 | b): probability S1 and S2 agree within a given band
= 0.85 = .328   =>    P(S1!=S2 | b) = 1-.328 = .672

P(S1!=S2): probability S1 and S2 do not agree in any band
=.67220 = .00035

What if wanting 40% Jaccard Similarity? 
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Pipeline gives us a way to find near-neighbors in high-dimensional space based 
on Jaccard Distance (1 - Jaccard Sim).

Typical properties of a
distance metric, d:

d(x, x) = 0

d(x, y) = d(y, x)

d(x, y) ≤ d(x,z) + d(z,y)
(http://rosalind.info/glossary/euclidean-distance/)
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Locality Sensitive Hashing - Theory

LSH Can be generalized to many distance metrics by 
converting output to a probability and providing a lower bound 
on probability of being similar.  

E.g. for euclidean distance: 

● Choose random lines (analogous to hash functions in 
minhashing)

● Project the two points onto each line; match if two points 
within an interval



Link Analysis
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Explore directory



The Web , circa 1998

Match keywords, language (information retrieval)
Explore directory

Easy to game with
“term spam”

Time-consuming;
Not open-ended



Enter PageRank

...
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PageRank

Innovation 1: What pages would a “random Web surfer” end up at?

Innovation 2: Not just own terms but what terms are used by citations?

View 1: Flow Model:

in-links (citations) as votes

but, citations from important pages should count more. 

=> Use recursion to figure out if each page is important. 
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How to compute?

Each page (j) has an importance (i.e. rank, r
j
)

(nj is |out-links|)

PageRank

View 1: Flow Model: Solve
A B

C D
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 after 2nd iteration:  M(M·r) = M2·r = [15/48, 11/48, …]
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“Transition Matrix”, M
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initialize: r[0] = [1/N, …, 1/N],
r[-1]=[0,...,0]
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Innovation: What pages would a “random Web surfer” end up at?
 To start: N=4 nodes, so r = [¼, ¼, ¼, ¼,]
 after 1st iteration: M·r = [3/8, 5/24, 5/24, 5/24]
 after 2nd iteration:  M(M·r) = M2·r = [15/48, 11/48, …]



A B

C D

to \ from A B C D

A 0 1/2 1 0

B 1/3 0 0 1/2

C 1/3 0 0 1/2

D 1/3 1/2 0 0

“Transition Matrix”, M

Power iteration algorithm

initialize: r[0] = [1/N, …, 1/N],
r[-1]=[0,...,0]

while (err_norm(r[t],r[t-1])>min_err):
r[t+1] = M·r[t]
t+=1

solution = r[t]

err_norm(v1, v2) = |v1 - v2| #L1 norm

Innovation: What pages would a “random Web surfer” end up at?
 To start: N=4 nodes, so r = [¼, ¼, ¼, ¼,]
 after 1st iteration: M·r = [3/8, 5/24, 5/24, 5/24]
 after 2nd iteration:  M(M·r) = M2·r = [15/48, 11/48, …]



Power iteration algorithm

initialize: r[0] = [1/N, …, 1/N],
r[-1]=[0,...,0]

while (err_norm(r[t],r[t-1])>min_err):
r[t+1] = M·r[t]
t+=1

solution = r[t]

err_norm(v1, v2) = |v1 - v2| #L1 norm

As err_norm gets smaller we are moving toward: r = M·r

View 3: Eigenvectors:



Power iteration algorithm

initialize: r[0] = [1/N, …, 1/N],
r[-1]=[0,...,0]

while (err_norm(r[t],r[t-1])>min_err):
r[t+1] = M·r[t]
t+=1

solution = r[t]

err_norm(v1, v2) = |v1 - v2| #L1 norm

As err_norm gets smaller we are moving toward: r = M·r

View 3: Eigenvectors:
We are actually just finding the eigenvector of M. 

x is an 
eigenvector of ᵣ if: 

A·x = ᵣ·x

finds the...



Power iteration algorithm

initialize: r[0] = [1/N, …, 1/N],
r[-1]=[0,...,0]

while (err_norm(r[t],r[t-1])>min_err):
r[t+1] = M·r[t]
t+=1

solution = r[t]

err_norm(v1, v2) = |v1 - v2| #L1 norm

As err_norm gets smaller we are moving toward: r = M·r

View 3: Eigenvectors:
We are actually just finding the eigenvector of M. 

x is an 
eigenvector of ᵣ if: 

A·x = ᵣ·x

A = 1 
since columns of M sum to 1.

thus, 1r=Mr 

finds the...
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Suppose: p(t+1) = p(t), then p(t) is a stationary distribution 
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View 4: Markov Process - Problems for vanilla PI 

aka 1st order Markov Process
● Rich probabilistic theory. One finding:

○ Stationary distributions have a unique distribution if:

Also known as being stochastic, irreducible, and aperiodic.

to \ from A B C D

A 0 0 1 0

B 1/3 0 0 1

C 1/3 0 0 0

D 1/3 1 0 0

What would r 
converge to?

A B

C D

                             same node doesn’t repeat at regular intervals
columns sum to 1 non-zero chance of going to any other node
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The “Google” PageRank Formulation
Add teleportation:At each step, two choices
1. Follow a random link (probability, ᶔ = ~.85)
2. Teleport to a random node (probability, 1-ᶔ)

A B

C D

to \ from A B C D

A 0 0+.15*¼ 1 0+.15*¼

B ⅓ 0+.15*¼ 0 .85*1+.15*¼

C ⅓ 0+.15*¼ 0 0+.15*¼

D ⅓ .85*1
+.15*¼

0 0+.15*¼



Goals: 
No “dead-ends”
No “spider traps”

The “Google” PageRank Formulation
Add teleportation:At each step, two choices
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The “Google” PageRank Formulation
Add teleportation:At each step, two choices
1. Follow a random link (probability, ᶔ = ~.85)
2. Teleport to a random node (probability, 1-ᶔ)
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Goals: 
No “dead-ends”
No “spider traps”

The “Google” PageRank Formulation
Add teleportation:At each step, two choices
1. Follow a random link (probability, ᶔ = ~.85)
2. Teleport to a random node (probability, 1-ᶔ)

to \ from A B C D

A 0 .85*¼+.15*¼ 1 0

B ⅓ .85*¼+.15*¼ 0 1

C ⅓ .85*¼+.15*¼ 0 0

D ⅓ .85*¼+.15*¼ 0 0
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Goals: 
No “dead-ends”
No “spider traps”

The “Google” PageRank Formulation
Add teleportation:At each step, two choices
1. Follow a random link (probability, ᶔ = ~.85)
2. Teleport to a random node (probability, 1-ᶔ)
      (Teleport from a dead-end has probability 1)

to \ from A B C D

A 0+.15*¼ 1*¼ 85*1+.15*¼ 0+.15*¼

B .85*⅓+.15*¼ 1*¼ 0+.15*¼ .85*1+.15*¼

C .85*⅓+.15*¼ 1*¼ 0+.15*¼ 0+.15*¼

D .85*⅓+.15*¼ 1*¼ 0+.15*¼ 0+.15*¼

A B

C D



Teleportation, as Flow Model: 
Goals: 
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Teleportation, as Flow Model: 
Goals: 
No “dead-ends”
No “spider traps”

to \ from A B C D

A 0+.15*¼ 1*¼ 85*1+.15*¼ 0+.15*¼

B .85*⅓+.15*¼ 1*¼ 0+.15*¼ .85*1+.15*¼

C .85*⅓+.15*¼ 1*¼ 0+.15*¼ 0+.15*¼

D .85*⅓+.15*¼ 1*¼ 0+.15*¼ 0+.15*¼

(Brin and Page, 1998)

Teleportation, 
as Matrix Model: 

To apply: 
run power 
iterations over M’
instead of M.



Teleportation, as Flow Model: 
Goals: 
No “dead-ends”
No “spider traps”

to \ from A B C D

A 0+.15*¼ 1*¼ 85*1+.15*¼ 0+.15*¼

B .85*⅓+.15*¼ 1*¼ 0+.15*¼ .85*1+.15*¼

C .85*⅓+.15*¼ 1*¼ 0+.15*¼ 0+.15*¼

D .85*⅓+.15*¼ 1*¼ 0+.15*¼ 0+.15*¼

(Brin and Page, 1998)

Teleportation, 
as Matrix Model: 

Steps:
1. Compute M

2. Add 1/N to all 
dead-ends.

3. Convert M to M’

4. Run Power 
Iterations.


