Similarity \& Link Analysis

Stony Brook University CSE545, Fall 2016

Finding Similar "Items"

(http://www.datacommunitydc.org/blog/20 13/08/entity-resolution-for-big-data)

Finding Similar "Items": What we will cover

- Shingling
- Minhashing
- Locality-sensitive hashing
- Distance Metrics

Document Similarity

Challenge: How to represent the document in a way that can be efficiently encoded and compared?

Shingles

Goal: Convert documents to sets

Shingles

Goal: Convert documents to sets

步

k-shingles (aka "character n-grams")
 - sequence of k characters

E.g. $k=2$ doc="abcdabd"
singles(doc, 2) $=\{a b, b c, c d, d a, b d\}$

Shingles

Goal: Convert documents to sets

k-shingles (aka "character n-grams")
 - sequence of k characters

E.g. $k=2$ doc="abcdabd"
singles(doc, 2) $=\{a b, b c, c d, d a, b d\}$

- Similar documents have many common shingles
- Changing words or order has minimal effect.
- In practice use $5<\mathrm{k}<10$

Shingles

Goal: Convert documents to sets

Large enough that any given shingle appearing a document is highly unlikely (e.g. < .1\% chance)

Can hash large shingles to smaller (e.g. 9-shingles into 4 bytes)

Can also use words (aka n-grams).

- In practice use $5<k<10$

Shingles

Problem: Even if hashing, sets of shingles are large (e.g. 4 bytes $=>4 x$ the size of the document).

Minhashing

Goal: Convert sets to shorter ids, signatures

Minhashing - Background

Goal: Convert sets to shorter ids, signatures

Characteristic Matrix, X :

Element	S_{1}	S_{2}	S_{3}	S_{4}
a	1	0	0	1
b	0	0	1	0
c	0	1	0	1
d	1	0	1	1
e	0	0	1	0

(Leskovec at al., 2014; http://www.mmds.org/)
often very sparse! (lots of zeros)

Jaccard Similarity:

$$
\operatorname{sim}\left(S_{1}, S_{2}\right)=\frac{S_{1} \cap S_{2}}{S_{1} \cup S_{2}}
$$

Minhashing - Background

Characteristic Matrix:

	S_{1}	S_{2}
ab	1	1
bc	0	1
de	1	0
ah	1	1
ha	0	0
ed	1	1
ca	0	1

Jaccard Similarity:

$$
\operatorname{sim}\left(S_{1}, S_{2}\right)=\frac{S_{1} \cap S_{2}}{S_{1} \cup S_{2}}
$$

Minhashing - Background

Characteristic Matrix:

	S_{1}	S_{2}	
ab	1	1	$* *$
bc	0	1	$*$
de	1	0	$*$
ah	1	1	$* *$
ha	0	0	
ed	1	1	$* *$
ca	0	1	$*$

Jaccard Similarity:

$$
\operatorname{sim}\left(S_{1}, S_{2}\right)=\frac{S_{1} \cap S_{2}}{S_{1} \cup S_{2}}
$$

Minhashing - Background

Characteristic Matrix:

	S_{1}	S_{2}	
ab	1	1	$* *$
bc	0	1	$*$
de	1	0	$*$
ah	1	1	$* *$
ha	0	0	
ed	1	1	$* *$
ca	0	1	$*$

Jaccard Similarity:

$$
\operatorname{sim}\left(S_{1}, S_{2}\right)=\frac{S_{1} \cap S_{2}}{S_{1} \cup S_{2}}
$$

$\operatorname{sim}\left(S_{1} S_{2}\right)=3 / 6$
\# both have / \# at least one has

Shingles

Problem: Even if hashing, sets of shingles are large (e.g. 4 bytes => $4 x$ the size of the document).

Approximate Approach:

Minhashing

Characteristic Matrix: X

	S_{1}	S_{2}	S_{3}	S_{4}
ab	1	0	1	0
bc	1	0	0	1
de	0	1	0	1
ah	0	1	0	1
ha	0	1	0	1
ed	1	0	1	0
ca	1	0	1	0

1) Instead of keeping whole characteristic matrix, just keep first row where 1 is encountered.
2) Shuffle and repeat to get a "signature" for each set.

Minhashing

Characteristic Matrix:

	S_{1}	S_{2}	S_{3}	S_{4}
ab	1	0	1	0
bc	1	0	0	1
de	0	1	0	1
ah	0	1	0	1
ha	0	1	0	1
ed	1	0	1	0
ca	1	0	1	0

Minhash function: h

- Based on permutation of rows in the characteristic matrix, h maps sets to first row where set appears.

Minhashing

Characteristic Matrix:

	S_{1}	S_{2}	S_{3}	S_{4}
ab	1	0	1	0
bc	1	0	0	1
de	0	1	0	1
ah	0	1	0	1
ha	0	1	0	1
ed	1	0	1	0
ca	1	0	1	0

Minhash function: h

- Based on permutation of rows in the characteristic matrix, h maps sets to first row where set appears.

permuted order
1 ha
2 ed
3 ab
4 bc
5 ca
6 ah
7 de

Minhashing

Characteristic Matrix:

		S_{1}	S_{2}	S_{3}	S_{4}
3	ab	1	0	1	0
4	bc	1	0	0	1
7	de	0	1	0	1
6	ah	0	1	0	1
1	ha	0	1	0	1
2	ed	1	0	1	0
5	ca	1	0	1	0

Minhash function: h

- Based on permutation of rows in the characteristic matrix, h maps sets to first row where set appears.

permuted order
1 ha
2 ed
3 ab
4 bc
5 ca
6 ah
7 de

Minhashing

Characteristic Matrix:

		S_{1}	S_{2}	S_{3}	S_{4}	permuted order
3	ab	1	0	1	0	1 ha
4	bc	1	0	0	1	2 ed
7	de	0	1	0	1	3 ab
6	ah	0	1	0	1	4 bc
1	ha	0	1	0	1	5 ca
2	ed	1	0	1	0	6 ah
5	ca	1	0	1	0	7 de

(Leskovec at al., 2014; http://www.mmds.org/)
$h\left(\mathrm{~S}_{1}\right)=$ ed \#permuted row 2 $h\left(S_{2}\right)$ = ha \#permuted row 1

$$
h\left(\mathrm{~S}_{3}\right)=
$$

Minhashing

Characteristic Matrix:

		S_{1}	S_{2}	S_{3}	S_{4}	permuted order
3	ab	1	0	1	0	1 ha
4	bc	1	0	0	1	2 ed
7	de	0	1	0	1	3 ab
6	ah	0	1	0	1	4 bc
1	ha	0	1	0	1	5 ca
2	ed	1	0	1	0	6 ah
5	ca	1	0	1	0	7 de

(Leskovec at al., 2014; http://www.mmds.org/)

Minhash function: h

- Based on permutation of rows in the characteristic matrix, h maps sets to first row where set appears.
$h\left(\mathrm{~S}_{1}\right)=$ ed \#permuted row 2 $h\left(\mathrm{~S}_{2}\right)=$ ha \#permuted row 1
$h\left(S_{3}\right)=$ ed \#permuted row 2
$h\left(\mathrm{~S}_{4}\right)=$

Minhashing

Characteristic Matrix:

		S_{1}	S_{2}	S_{3}	S_{4}	permuted order
3	ab	1	0	1	0	1 ha
4	bc	1	0	0	1	2 ed
7	de	0	1	0	1	3 ab
6	ah	0	1	0	1	4 bc
1	ha	0	1	0	1	5 ca
2	ed	1	0	1	0	6 ah
5	ca	1	0	1	0	7 de

(Leskovec at al., 2014; http://www.mmds.org/)

Minhash function: h

- Based on permutation of rows in the characteristic matrix, h maps sets to first row where set appears.
$h\left(S_{1}\right)=$ ed \#permuted row 2 $h\left(S_{2}\right)$ = ha \#permuted row 1
$h\left(S_{3}\right)$ = ed \#permuted row 2
$h\left(\mathrm{~S}_{4}\right)=$ ha \#permuted row 1

Minhashing

Characteristic Matrix:

		S_{1}	S_{2}	S_{3}	S_{4}
3	ab	1	0	1	0
4	bc	1	0	0	1
7	de	0	1	0	1
6	ah	0	1	0	1
1	ha	0	1	0	1
2	ed	1	0	1	0
5	ca	1	0	1	0

Minhash function: h

- Based on permutation of rows in the characteristic matrix, h maps sets to rows.

Signature matrix: M

- Record first row where each set had a 1 in the given permutation

	S_{1}	S_{2}	S_{3}	S_{4}
h_{1}	2	1	2	1

$h_{1}\left(\mathrm{~S}_{1}\right)=$ ed \#permuted row
2
$h_{1}\left(\mathrm{~S}_{2}\right)=$ ha \#permuted row

Minhashing

Characteristic Matrix:

		S_{1}	S_{2}	S_{3}	S_{4}
3	ab	1	0	1	0
4	bc	1	0	0	1
7	de	0	1	0	1
6	ah	0	1	0	1
1	ha	0	1	0	1
2	ed	1	0	1	0
5	ca	1	0	1	0

Minhash function: h

- Based on permutation of rows in the characteristic matrix, h maps sets to rows.

Signature matrix: M

- Record first row where each set had a 1 in the given permutation

	S_{1}	S_{2}	S_{3}	S_{4}
h_{1}	2	1	2	1

$$
h_{1}\left(S_{1}\right)=\text { ed \#permuted row }
$$

2

$$
h_{1}\left(\mathrm{~S}_{2}\right)=\text { ha \#permuted row }
$$

Minhashing

Characteristic Matrix:

		S_{1}	S_{2}	S_{3}	S_{4}
3	ab	1	0	1	0
4	bc	1	0	0	1
7	de	0	1	0	1
6	ah	0	1	0	1
1	ha	0	1	0	1
2	ed	1	0	1	0
5	ca	1	0	1	0

Minhash function: h

- Based on permutation of rows in the characteristic matrix, h maps sets to rows.

Signature matrix: M

- Record first row where each set had a 1 in the given permutation

	S_{1}	S_{2}	S_{3}	S_{4}
h_{1}	2	1	2	1

$$
2 \begin{array}{|c|}
\hline h_{1}\left(\mathrm{~S}_{1}\right)=\text { ed \#permuted row } \\
h_{1}\left(\mathrm{~S}_{2}\right)=\text { ha \#permuted row }
\end{array}
$$

Minhashing

Characteristic Matrix:

			S_{1}	S_{2}	S_{3}	S_{4}
4	3	ab	1	0	1	0
2	4	bc	1	0	0	1
1	7	de	0	1	0	1
3	6	ah	0	1	0	1
6	1	ha	0	1	0	1
7	2	ed	1	0	1	0
5	5	ca	1	0	1	0

(Leskovec at al., 2014; http://www.mmds.org/)

Minhash function: h

- Based on permutation of rows in the characteristic matrix, h maps sets to rows.

Signature matrix: M

- Record first row where each set had a 1 in the given permutation

	S_{1}	S_{2}	S_{3}	S_{4}
h_{1}	2	1	2	1
h_{2}				

Minhashing

Characteristic Matrix:

			S_{1}	S_{2}	S_{3}	S_{4}
4	3	ab	1	0	1	0
2	4	bc	1	0	0	1
1	7	de	0	1	0	1
3	6	ah	0	1	0	1
6	1	ha	0	1	0	1
7	2	ed	1	0	1	0
5	5	ca	1	0	1	0

(Leskovec at al., 2014; http://www.mmds.org/)

Minhash function: h

- Based on permutation of rows in the characteristic matrix, h maps sets to rows.

Signature matrix: M

- Record first row where each set had a 1 in the given permutation

	S_{1}	S_{2}	S_{3}	S_{4}
h_{1}	2	1	2	1
h_{2}	2	1	4	1

Minhashing

Characteristic Matrix:

										S_{1}	S_{2}	S_{3}	S_{4}
1	4	3	ab	1	0	1	0						
3	2	4	bc	1	0	0	1						
7	1	7	de	0	1	0	1						
6	3	6	ah	0	1	0	1						
2	6	1	ha	0	1	0	1						
5	7	2	ed	1	0	1	0						
4	5	5	ca	1	0	1	0						

Minhash function: h

- Based on permutation of rows in the characteristic matrix, h maps sets to rows.

Signature matrix: M

- Record first row where each set had a 1 in the given permutation

	S_{1}	S_{2}	S_{3}	S_{4}
h_{1}	2	1	2	1
h_{2}	2	1	4	1
h_{3}				

Minhashing

Characteristic Matrix:

										S_{1}	S_{2}	S_{3}	S_{4}
1	4	3	ab	1	0	1	0						
3	2	4	bc	1	0	0	1						
7	1	7	de	0	1	0	1						
6	3	6	ah	0	1	0	1						
2	6	1	ha	0	1	0	1						
5	7	2	ed	1	0	1	0						
4	5	5	ca	1	0	1	0						

Minhash function: h

- Based on permutation of rows in the characteristic matrix, h maps sets to rows.

Signature matrix: M

- Record first row where each set had a 1 in the given permutation

	S_{1}	S_{2}	S_{3}	S_{4}
h_{1}	2	1	2	1
h_{2}	2	1	4	1
h_{3}	1	2	1	2

Minhashing

Characteristic Matrix: X

										S_{1}	S_{2}	S_{3}	S_{4}
1	4	3	ab	1	0	1	0						
3	2	4	bc	1	0	0	1						
7	1	7	de	0	1	0	1						
6	3	6	ah	0	1	0	1						
2	6	1	ha	0	1	0	1						
5	7	2	ed	1	0	1	0						
4	5	5	ca	1	0	1	0						

Minhash function: h

- Based on permutation of rows in the characteristic matrix, h maps sets to rows.

Signature matrix: M

- Record first row where each set had a 1 in the given permutation

	S_{1}	S_{2}	S_{3}	S_{4}
h_{1}	2	1	2	1
h_{2}	2	1	4	1
h_{3}	1	2	1	2
\ldots				
\ldots				

Minhashing

Characteristic Matrix:

										S_{1}	S_{2}	S_{3}	S_{4}
1	4	3	ab	1	0	1	0						
3	2	4	bc	1	0	0	1						
7	1	7	de	0	1	0	1						
6	3	6	ah	0	1	0	1						
2	6	1	ha	0	1	0	1						
5	7	2	ed	1	0	1	0						
4	5	5	ca	1	0	1	0						

Property of signature matrix:

The probability for any h_{i} (i.e. any row), that $h_{i}\left(S_{1}\right)=h_{i}\left(S_{2}\right)$ is the same as $\operatorname{Sim}\left(S_{1}, S_{2}\right)$

	S_{1}	S_{2}	S_{3}	S_{4}
h_{1}	2	1	2	1
h_{2}	2	1	4	1
h_{3}	1	2	1	2
\ldots				
\cdots				

Minhashing

Characteristic Matrix:

										S_{1}	S_{2}	S_{3}	S_{4}
1	4	3	ab	1	0	1	0						
3	2	4	bc	1	0	0	1						
7	1	7	de	0	1	0	1						
6	3	6	ah	0	1	0	1						
2	6	1	ha	0	1	0	1						
5	7	2	ed	1	0	1	0						
4	5	5	ca	1	0	1	0						

Property of signature matrix:

The probability for any h_{i} (i.e. any row), that $h_{i}\left(S_{1}\right)=h_{i}\left(S_{2}\right)$ is the same as $\operatorname{Sim}\left(S_{1}, S_{2}\right)$

Thus, similarity of signatures S_{1}, S_{2} is the fraction of minhash functions (i.e. rows) in which they agree.

	S_{1}	S_{2}	S_{3}	S_{4}
h_{1}	2	1	2	1
h_{2}	2	1	4	1
h_{3}	1	2	1	2
\ldots				
\cdots				

Minhashing

Characteristic Matrix:

Property of signature matrix:

The probability for any h_{i} (i.e. any row), that $h_{i}\left(S_{1}\right)=h_{i}\left(S_{2}\right)$ is the same as $\operatorname{Sim}\left(S_{1}, S_{2}\right)$

Thus, similarity of signatures S_{1}, S_{2} is the fraction of

Minhashing

Characteristic Matrix:

Property of signature matrix:

The probability for any h_{i} (i.e. any row), that $h_{i}\left(S_{1}\right)=h_{i}\left(S_{2}\right)$ is the same as $\operatorname{Sim}\left(S_{1}, S_{2}\right)$

Thus, similarity of signatures S_{1}, S_{2} is the fraction of

Minhashing

Characteristic Matrix:

| | | | S_{1} | S_{2} | S_{3} | S_{4} | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 4 | 3 | ab | 1 | 0 | 1 | 0 |
| 3 | 2 | 4 | bc | 1 | 0 | 0 | 1 |
| 7 | 1 | 7 | de | 0 | 1 | 0 | 1 |
| 6 | 3 | 6 | ah | 0 | 1 | 0 | 1 |
| 2 | 6 | 1 | ha | 0 | 1 | 0 | 1 |
| 5 | 7 | 2 | ed | 1 | 0 | 1 | 0 |
| 4 | 5 | 5 | ca | 1 | 0 | 1 | 0 |

Minhashing

Characteristic Matrix:

| | | | S_{1} | S_{2} | S_{3} | S_{4} | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 4 | 3 | ab | 1 | 0 | 1 | 0 |
| 3 | 2 | 4 | bc | 1 | 0 | 0 | 1 |
| 7 | 1 | 7 | de | 0 | 1 | 0 | 1 |
| 6 | 3 | 6 | ah | 0 | 1 | 0 | 1 |
| 2 | 6 | 1 | ha | 0 | 1 | 0 | 1 |
| 5 | 7 | 2 | ed | 1 | 0 | 1 | 0 |
| 4 | 5 | 5 | ca | 1 | 0 | 1 | 0 |

Property of signature matrix:

The probability for any h_{i} (i.e. any row), that $h_{i}\left(S_{1}\right)=h_{i}\left(S_{2}\right)$ is the same as $\operatorname{Sim}\left(S_{1}, S_{2}\right)$

Thus, similarity of signatures S_{1}, S_{2} is the fraction of minhash functions (i.e. rows) in which they agree.

Estimated $\operatorname{Sim}\left(\mathrm{S}_{1}, \mathrm{~S}_{3}\right)=$ agree $/$ all $=2 / 3$

Real $\operatorname{Sim}\left(\mathrm{S}_{1}, \mathrm{~S}_{3}\right)=$ Type a / $(a+b+c)=3 / 4$

Try $\operatorname{Sim}\left(\mathrm{S}_{2}, \mathrm{~S}_{4}\right)$ and $\operatorname{Sim}\left(S_{1}, S_{2}\right)$

Minhashing

In Practice
Problem:

- Can't reasonably do permutations (huge space)
- Can't randomly grab rows according to an order (random disk seeks = slow!)

Minhashing

In Practice

Problem:

- Can't reasonably do permutations (huge space)
- Can't randomly grab rows according to an order (random disk seeks = slow!)
Solution: Use "random" hash functions.
- Setup:
- Pick ~100 hash functions, hashes
- Store M[i][s] = a potential minimum $h_{i}(r)$
\#initialized to infinity (num hashs x num sets)

Minhashing

Solution: Use "random" hash functions.

- Setup:
- Pick ~100 hash functions, hashes
- Store M[i][s] = a potential minimum $h_{i}(r)$
\#initialized to infinity (num hashs x num sets)
- Algorithm:

compute $h_{i}(r)$ for all i in hashes \#precompute 100 values
for each set s in row r :
if $\mathrm{cm}[\mathrm{r}][\mathrm{s}]==1$:
for i in hashes: \#check which hash produces smallest value if $h_{i}(r)<M[i][s]: M[i][s]=h_{i}(r)$

Minhashing

Solution: Use "random" hash functions.

- Setup:
- Pick ~100 hash functions, hashes
- Store M[i][s] = a potential minimum $h_{i}(r)$
\#initialized to i
- Algorithm:

Known as "efficient minhashing".

for r in rows of $\mathrm{cm}: \# c m$ is characteristic matrix
compute $h_{i}(r)$ for all i in hashes \#precompute 100 values
for each set s in row r :
if cm[r][s] == 1:
for i in hashes: \#check which hash produces smallest value if $h_{i}(r)<M[i][s]: M[i][s]=h_{i}(r)$

Minhashing

What hash functions to use?

Start with 2 decent hash functions

e.g. $h_{a}(x)=$ ascii $($ string $)$ \% large_prime_number
$h_{b}(x)=\left(3^{*}\right.$ ascii $($ string $\left.)+16\right) \%$ large_prime_number
https://www.eecs.harvard.edu/~michaelm/postscripts/rsa2008.pdf

Minhashing

What hash functions to use?

Start with 2 decent hash functions

e.g. $h_{a}(x)=$ ascii $($ string $)$ \% large_prime_number
$h_{b}(x)=\left(3^{*}\right.$ ascii $($ string $\left.)+16\right) \%$ large_prime_number
Add together multiplying the second times i:

$$
\begin{aligned}
& h_{i}(x)=h_{a}(x)+i^{*} h_{b}(x) \\
& \text { e.g. } h_{5}(x)=h_{a}(x)+5 * h_{b}(x)
\end{aligned}
$$

https://www.eecs.harvard.edu/~michaelm/postscripts/rsa2008.pdf

Minhashing

Problem: Even if hashing, sets of shingles are large (e.g. 4 bytes $=>4 x$ the size of the document).

Minhashing

Problem: Even if hashing, sets of shingles are large (e.g. 4 bytes => $4 x$ the size of the document).

New Problem: Even if the size of signatures are small, it can be computationally expensive to find similar pairs.
E.g. 1 m documents; $1,000,000$ choose $2=500,000,000,000$ pairs

Locality-Sensitive Hashing

Goal: find pairs of minhashes likely to be similar (in order to then test more precisely for similarity).

Candidate pairs: pairs of elements to be evaluated for similarity.

Locality-Sensitive Hashing

Goal: find pairs of minhashes likely to be similar (in order to then test more precisely for similarity).

Candidate pairs: pairs of elements to be evaluated for similarity.

If we wanted the similarity for all pairs of documents, could anything be done?

Locality-Sensitive Hashing

Goal: find pairs of minhashes likely to be similar (in order to then test more precisely for similarity).

Candidate pairs: pairs of elements to be evaluated for similarity.
Approach: Hash multiple times over subsets of data: similar items are likely in the same bucket once.

Locality-Sensitive Hashing

Goal: find pairs of minhashes likely to be similar (in order to then test more precisely for similarity).

Candidate pairs: pairs of elements to be evaluated for similarity.
Approach: Hash multiple times over subsets of data: similar items are likely in the same bucket once.

Approach from MinHash: Hash columns of signature matrix
\Longrightarrow Candidate pairs end up in the same bucket.

Locality-Sensitive Hashing

Signature matrix M

Step 1: Add bands

Locality-Sensitive Hashing

Signature matrix M

Locality-Sensitive Hashing

Step 1: Add bands
Step 2: Hash columns within bands

Locality-Sensitive Hashing

Locality-Sensitive Hashing

Locality-Sensitive Hashing

Step 1: Add bands

Locality-Sensitive Hashing

Step 2: Hash columns

 within bands
Document Similarity Pipeline

Realistic Example: Probabilities of agreement

- 100,000 documents
- 100 random permutations/hash functions/rows
=> if 4byte integers then 40 Mb to hold signature matrix
$=>$ still 100 k choose 2 is a lot (\sim billion)

Realistic Example: Probabilities of agreement

- 100,000 documents
- 100 random permutations/hash functions/rows
=> if 4byte integers then 40 Mb to hold signature matrix
=> still 100k choose 2 is a lot (\sim billion)
- 20 bands of 5 rows
- Want 80% Jaccard Similarity ; for any row $p\left(S_{1}==S_{2}\right)=.8$

Realistic Example: Probabilities of agreement

- 100,000 documents
- 100 random permutations/hash functions/rows
=> if 4byte integers then 40 Mb to hold signature matrix
=> still 100k choose 2 is a lot (\sim billion)
- 20 bands of 5 rows
- Want 80% Jaccard Similarity ; for any row $p\left(S_{1}==S_{2}\right)=.8$
$P\left(S_{1}==S_{2} \mid b\right)$: probability $S 1$ and $S 2$ agree within a given band

Realistic Example: Probabilities of agreement

- 100,000 documents
- 100 random permutations/hash functions/rows
=> if 4byte integers then 40 Mb to hold signature matrix
=> still 100k choose 2 is a lot (\sim billion)
- 20 bands of 5 rows
- Want 80\% Jaccard Similarity ; for any row $p\left(S_{1}==S_{2}\right)=.8$
$P\left(S_{1}==S_{2} \mid b\right)$: probability S1 and S2 agree within a given band

$$
=0.8^{5}=.328 \quad \Rightarrow \quad P\left(S_{1}!=S_{2} \mid b\right)=1-.328=.672
$$

$P\left(S_{1}!=S_{2}\right)$: probability S 1 and S 2 do not agree in any band

Realistic Example: Probabilities of agreement

- 100,000 documents
- 100 random permutations/hash functions/rows
=> if 4byte integers then 40 Mb to hold signature matrix
=> still 100k choose 2 is a lot (\sim billion)
- 20 bands of 5 rows
- Want 80% Jaccard Similarity ; for any row $p\left(S_{1}==S_{2}\right)=.8$
$P\left(S_{1}==S_{2} \mid b\right)$: probability $S 1$ and $S 2$ agree within a given band

$$
=0.8^{5}=.328 \quad \Rightarrow \quad P\left(S_{1}!=S_{2} \mid b\right)=1-.328=.672
$$

$P\left(S_{1}!=S_{2}\right)$: probability $S 1$ and $S 2$ do not agree in any band $=.672^{20}=.00035$

Realistic Example: Probabilities of agreement

- 100,000 documents
- 100 random permutations/hash functions/rows
=> if 4byte integers then 40Mb to hold signature matrix
=> still 100 k choose 2 is a lot (~ 5 billion)
- 20 bands of 5 rows
- Want 80% Jaccard Similarity ; for any row $p\left(S_{1}==S_{2}\right)=.8$
$P\left(S_{1}==S_{2} \mid b\right)$: probability $S 1$ and $S 2$ agree within a given band

$$
=0.8^{5}=.328 \Rightarrow P\left(S_{1}!=S_{2} \mid b\right)=1-.328=.672
$$

$\mathrm{P}\left(\mathrm{S}_{1}!=\mathrm{S}_{2}\right)$: probability S 1 and S 2 do not agree in any band

$$
=.672^{20}=.00035
$$

What if wanting 40% Jaccard Similarity?

Distance Metrics

Pipeline gives us a way to find near-neighbors in high-dimensional space based on Jaccard Distance (1 - Jaccard Sim).

Distance Metrics

Pipeline gives us a way to find near-neighbors in high-dimensional space based on Jaccard Distance (1-Jaccard Sim).

Typical properties of a

 distance metric, d :$$
\begin{aligned}
& d(x, x)=0 \\
& d(x, y)=d(y, x) \\
& d(x, y) \leq d(x, z)+d(z, y)
\end{aligned}
$$

Distance Metrics

Pipeline gives us a way to find near-neighbors in high-dimensional space based on Jaccard Distance (1-Jaccard Sim).

There are other metrics of similarity. e.g:

- Euclidean Distance
- Cosine Distance
- Edit Distance
- Hamming Distance

Distance Metrics

Pipeline gives us a way to find near-neighbors in high-dimensional space based on Jaccard Distance (1-Jaccard Sim).

There are other metrics of similarity. e.g:

- Euclidean Distance

$$
\begin{aligned}
& \text { arity. e.g: } \\
& \text { distance }(X, Y)=\sqrt{\sum_{i}^{n}\left(x_{i}-y_{i}\right)^{2}}
\end{aligned}
$$

("L2 Norm")

- Cosine Distance
- Edit Distance
- Hamming Distance

Distance Metrics

Pipeline gives us a way to find near-neighbors in high-dimensional space based on Jaccard Distance (1-Jaccard Sim).

There are other metrics of similarity. e.g:

$$
\begin{aligned}
& \text { arity. e.g: } \\
& \text { distance }(X, Y)=\sqrt{\sum_{i}^{n}\left(x_{i}-y_{i}\right)^{2}} \quad \text { ("L2 Norm") }
\end{aligned}
$$

- Cosine Distance
- Edit Distance
- Hamming Distance

Locality Sensitive Hashing - Theory

LSH Can be generalized to many distance metrics by converting output to a probability and providing a lower bound on probability of being similar.

Locality Sensitive Hashing - Theory

LSH Can be generalized to many distance metrics by converting output to a probability and providing a lower bound on probability of being similar.
E.g. for euclidean distance:

- Choose random lines (analogous to hash functions in minhashing)
- Project the two points onto each line; match if two points within an interval

Link Analysis

The Web , circa 1998

AltaVisfa
 View Mabimeda From Our Vantage Peint
 $A(1) \cdot 1+174$
 Car Buying \& Car In

Click here for abertising information-reach milligns enery manth:
Search the Web \sim and Diaplay the Results in Standard Form v
Submi
Search with Digital's Alta Vista [Advanced Search] [Add URL]
Make Me Laugh..

$$
\frac{5 \text { Creative Web }}{\text { Create a Site. }}
$$

e '1́cite $^{\prime}$	
- mimer ${ }^{\text {a }}$	people finder \qquad mops \qquad yellow poges \qquad news \qquad Excite Search: twice the power of the competition.
Owacer	What: \square
"Turbo Searchr" Download Excite Direct	Where: World Wide Web v [Helol
Take an	
ExciteSecing Tour	Excite Reviews: site reviens by the web's best editorial team.

\section*{© () YAHOO!
 Labed Mexeager
 (3) Knw whemiments areonine | (4) No |
| :---: |
| $\begin{array}{c}\text { Yabos Mail } \\ \text { free from arpmere }\end{array}$ |}

Souch staucedsench

Yahool Auctions			
Categaries			
dangus	Campuen	Sead	Dide Tambate
Canmes	Electamia	-9xCmas	
Camin	fatacind	, whd	Lenitares
Canklank	\%um	Teter	-2aces

Lexal Yibuets

Mare liatas

The Web , circa 1998

Arts 8 Humanibes
Businens 8 Economy

Computers \& internet
hume wuw strane
Education
Colkestindurimsie. K. 12
Entertainment

Government

Heallh
fith De News 8 Medin alcomuge Xexpquen. II Recreation 8 . Sports eant Imol detan Onticsn.

Reference

Regional Ceumith Bitans. US Sults
Science Srenth dumer Thenemay Social Science arherchere Exemanco Lenenun Society \& Culture 13i- Pesple Exixamme Bripen compha

- Atumr Bary Len保nide - DinEmbetilt *miligua - Wiatledan- Tesu de Frase Harkeplace Fancele-spensered by Pepai II Smax-becoser pat of Yhas siappieg. - IC Cersis - fod ajob, pestyee Derama - Matbe planes imikeylani ucceisetics Broadcast Events - ApeET POL WeysmOgm naw. Inside Yaboot - TManes - kadgaweson, wacte heans, chess, pieetle - 12 Mesia- Sary Xeme 2 Kia

Inali Yebows

Alare Tiseost

The Web , circa 1998

Arts 8 Humanities

Business 8 Economy道 Lumase Sapsury idn
Computers \& Internet hemet WWW Sthan Sm Efucation Colkstindivermic. K. 12
Entertainment News 8 Media Nalcompe Teapqum. In Recreation 8 Sports Sent Imal datal Ontasn
Reference Cen Detim Ontition Regional Ceumith Begoms. US Sutes Sclence

 Alamngrrylentrindten Mathota-Teradefrosa

Marketace

 aeppues - DCemsis font kjot, pestyer
 Broadcast Eventa paEt put weran er Andilli- Atrit of ter nexth

Time-consuming; Not open-ended

Enter PageRank

The Anatomy of a Large-Scale Hypertextual Web Search Engine

Sergey Brin and Lawrence Page
Computer Science Department,
Stanford University, Stanford, CA 94305, USA
sergey@cs.stanford.edu and page@cs.stanford.edu

Abstract
In this paper, we present Google, a prototype of a large-scale search engine which makes heavy use of the structure and produce much 1 text and hyperlink c

The PageRank Citation Ranking: Bringing Order to the Web

January 29, 1998

Abstract
The importance of a Web page is an inherently subjective matter, which depends on the readers interests, knowledge and attitudes. But there is still much that can be said objectively

PageRank

Key Idea: Consider the citations of the website.

PageRank

Key Idea: Consider the citations of the website.
Who links to it? and what are their citations?

PageRank

Key Idea: Consider the citations of the website.
Who links to it? and what are their citations?

Innovation 1: What pages would a "random Web surfer" end up at?
Innovation 2: Not just own terms but what terms are used by citations?

PageRank

View 1: Flow Model:

 in-links as votesLeskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org
Innovation 1: What pages would a "random Web surfer" end up at?
Innovation 2: Not just own terms but what terms are used by citations?

PageRank

View 1: Flow Model:

in-links (citations) as votes
but, citations from important pages should count more.
=> Use recursion to figure out if each page is important.

Innovation 1: What pages would a "random Web surfer" end up at?
Innovation 2: Not just own terms but what terms are used by citations?

PageRank

View 1: Flow Model:

How to compute?
Each page (j) has an importance (i.e. rank, r_{j})

$$
\begin{aligned}
& \text { vote }_{j}=\frac{r_{j}}{n_{j}} \\
& r_{j}=\sum_{i \in \text { inn Links }_{(j)}}^{\text {vote }_{i}}
\end{aligned}
$$

(n_{j} is |out-links|)

PageRank

View 1: Flow Model:

How to compute?
Each page (j) has an importance (i.e. rank, r_{j})

$$
\begin{gathered}
\text { vote }_{j}=\frac{r_{j}}{n_{j}} \\
r_{j}=\sum_{i \in \text { inLinks }(j)} v o t e_{i}
\end{gathered}
$$

$$
\left(n_{j}\right. \text { is |out-links|) }
$$

PageRank

View 1: Flow Model:

How to compute?

Each page (j) has an importance (i.e. rank, r_{j})

$$
\begin{aligned}
& \text { vote }_{j}=\frac{r_{j}}{n_{j}} \\
& { }_{j}=\sum_{i \in \text { inLinks }(j)} \text { vote }_{i}
\end{aligned}
$$

(n_{j} is |out-links|)

PageRank

View 1: Flow Model:

A System of Equations:

$$
r_{A}=\frac{r_{B}}{2}+\frac{r_{C}}{1}
$$

How to compute?
Each page (j) has an importance (i.e. rank, r_{j})

$$
\begin{gathered}
\text { vote }_{j}=\frac{r_{j}}{n_{j}} \\
r_{j}=\sum_{i \in i n L i n k s(j)}^{v_{j}} \text { vote } e_{i}
\end{gathered}
$$

$$
\left(n_{j}\right. \text { is |out-links|) }
$$

PageRank

View 1: Flow Model:

A System of Equations:

$$
r_{A}=\frac{r_{B}}{2}+\frac{r_{C}}{1} \quad \text { How to compute? }
$$

Each page (j) has an importance (i.e. rank, r_{j})

$$
\text { vote }_{j}=\frac{r_{j}}{n_{j}} \quad\left(n_{j} \text { is |out-links } \mid\right)
$$

PageRank

View 1: Flow Model: Solve
$1=r_{A}+r_{B}+r_{C}+r_{D}$

$$
r_{A}=\frac{r_{B}}{2}+\frac{r_{C}}{1} \quad \text { How to compute? }
$$

$r_{B}=\frac{r_{A}^{2}}{3}+\frac{r_{D}}{2}$
$r_{C}=\frac{r_{A}}{3}+\frac{r_{D}}{2}$
$r_{D}=\frac{r_{A}}{3}+\frac{r_{B}}{2}$
Each page (j) has an importance (i.e. rank, r_{j})

$$
\text { vote }_{j}=\frac{r_{j}}{n_{j}} \quad\left(n_{j} \text { is lout-links } \mid\right)
$$

PageRank

$$
1=r_{A}+r_{B}+r_{C}+r_{D}
$$

$$
\begin{aligned}
& r_{A}=\frac{r_{B}}{2}+\frac{r_{C}}{1} \\
& r_{B}=\frac{r_{A}}{3}+\frac{r_{D}}{2} \\
& r_{C}=\frac{r_{A}}{3}+\frac{r_{D}}{2} \\
& r_{D}=\frac{r_{A}}{3}+\frac{r_{B}}{2}
\end{aligned}
$$

to \backslash from	\boldsymbol{A}	\boldsymbol{B}	\boldsymbol{C}	\boldsymbol{D}
\boldsymbol{A}	0	$1 / 2$	1	0
\boldsymbol{B}	$1 / 3$	0	0	$1 / 2$
\boldsymbol{C}	$1 / 3$	0	0	$1 / 2$
\boldsymbol{D}	$1 / 3$	$1 / 2$	0	0

Transition Matrix, M

Innovation: What pages would a "random Web surfer" end up at?
To start: $N=4$ nodes, so $r=[1 / 4,1 / 4,1 / 4,1 / 4$,

View 2: Matrix Formulation

$$
1=r_{A}+r_{B}+r_{C}+r_{D}
$$

$$
\begin{aligned}
& r_{A}=\frac{r_{B}}{2}+\frac{r_{C}}{1} \\
& r_{B}=\frac{r_{A}}{3}+\frac{r_{D}}{2} \\
& r_{C}=\frac{r_{A}}{3}+\frac{r_{D}}{2} \\
& r_{D}=\frac{r_{A}}{3}+\frac{r_{B}}{2}
\end{aligned}
$$

to \backslash from	\boldsymbol{A}	\boldsymbol{B}	\boldsymbol{C}	\boldsymbol{D}
\boldsymbol{A}	0	$1 / 2$	1	0
\boldsymbol{B}	$1 / 3$	0	0	$1 / 2$
\boldsymbol{C}	$1 / 3$	0	0	$1 / 2$
\boldsymbol{D}	$1 / 3$	$1 / 2$	0	0

Transition Matrix, M

Innovation: What pages would a "random Web surfer" end up at?
To start: $N=4$ nodes, so $r=[1 / 4,1 / 4,1 / 4,1 / 4$, after 1st iteration: $M \cdot r=[3 / 8,5 / 24,5 / 24,5 / 24]$ after 2nd iteration: $M(M \cdot r)=M^{2} \cdot r=[15 / 48,11 / 48, \ldots]$
View 2: Matrix Formulation

$$
1=r_{A}+r_{B}+r_{C}+r_{D}
$$

$$
\begin{aligned}
& r_{A}=\frac{r_{B}}{2}+\frac{r_{C}}{1} \\
& r_{B}=\frac{r_{A}}{3}+\frac{r_{D}}{2} \\
& r_{C}=\frac{r_{A}}{3}+\frac{r_{D}}{2} \\
& r_{D}=\frac{r_{A}}{3}+\frac{r_{B}}{2}
\end{aligned}
$$

to \backslash from	\boldsymbol{A}	\boldsymbol{B}	\boldsymbol{C}	\boldsymbol{D}
\boldsymbol{A}	0	$1 / 2$	1	0
\boldsymbol{B}	$1 / 3$	0	0	$1 / 2$
\boldsymbol{C}	$1 / 3$	0	0	$1 / 2$
\boldsymbol{D}	$1 / 3$	$1 / 2$	0	0

Transition Matrix, M

Innovation: What pages would a "random Web surfer" end up at?
To start: $N=4$ nodes, so $r=[1 / 4,1 / 4,1 / 4,1 / 4$, after 1st iteration: $M \cdot r=[3 / 8,5 / 24,5 / 24,5 / 24]$ after 2nd iteration: $M(M \cdot r)=M^{2} \cdot r=[15 / 48,11 / 48, \ldots]$

Power iteration algorithm

initialize: $r[0]=[1 / N, \ldots, 1 / N]$,

$$
r[-1]=[0, \ldots, 0]
$$

while (err_norm(r[t],r[t-1])>min_err):
err_norm(v1, v2) = |v1 - v2| \#L1 norm

to \backslash from	\boldsymbol{A}	\boldsymbol{B}	\boldsymbol{C}	\boldsymbol{D}
\boldsymbol{A}	0	$1 / 2$	1	0
\boldsymbol{B}	$1 / 3$	0	0	$1 / 2$
\boldsymbol{C}	$1 / 3$	0	0	$1 / 2$
\boldsymbol{D}	$1 / 3$	$1 / 2$	0	0

"Transition Matrix", M

Innovation: What pages would a "random Web surfer" end up at?
To start: $N=4$ nodes, so $r=[1 / 4,1 / 4,1 / 4,1 / 4$, after 1st iteration: $M \cdot r=[3 / 8,5 / 24,5 / 24,5 / 24]$ after 2nd iteration: $M(M \cdot r)=M^{2} \cdot r=[15 / 48,11 / 48, \ldots]$

Power iteration algorithm

initialize: $r[0]=[1 / N, \ldots, 1 / N]$,

$$
r[-1]=[0, \ldots, 0]
$$

while (err_norm(r[t],r[t-1])>min_err):

$$
\begin{aligned}
& r[t+1]=M \cdot r[t] \\
& t+=1
\end{aligned}
$$

solution $=r[t]$
err_norm(v1, v2) = |v1 - v2| \#L1 norm

to \backslash from	\boldsymbol{A}	\boldsymbol{B}	\boldsymbol{C}	\boldsymbol{D}
\boldsymbol{A}	0	$1 / 2$	1	0
\boldsymbol{B}	$1 / 3$	0	0	$1 / 2$
\boldsymbol{C}	$1 / 3$	0	0	$1 / 2$
\boldsymbol{D}	$1 / 3$	$1 / 2$	0	0

"Transition Matrix", M

As err_norm gets smaller we are moving toward: $r=M \cdot r$

View 3: Eigenvectors:

Power iteration algorithm

$$
\begin{aligned}
& \text { initialize: } \quad r[0]=[1 / N, \ldots, 1 / N], \\
& r[-1]=[0, \ldots, 0] \\
& \text { while (err_norm }(r[t], r[t-1])>\text { min_err }): \\
& \quad r[t+1]=M \cdot r[t] \\
& \quad t+=1
\end{aligned}
$$

As err_norm gets smaller we are moving toward: $r=M \cdot r$

View 3: Eigenvectors:

We are actually just finding the eigenvector of M.

Power iteration algorithm

$$
\begin{array}{ll}
\text { initialize: } & r[0]=[1 / N, \ldots, 1 / N] \quad \text { eigenvector of } \lambda \text { if: } \\
& r[-1]=[0, \ldots, 0]
\end{array}
$$

x is an

$$
A \cdot x=\lambda \cdot x
$$

while (err_norm(r[t],r[t-1])>min_err):

$$
\begin{aligned}
& r[t+1]=M \cdot r[t] \\
& t+=1
\end{aligned}
$$

solution $=r[t]$
err_norm(v1, v2) = |v1 - v2| \#L1 norm

As err_norm gets smaller we are moving toward: $r=M \cdot r$

View 3: Eigenvectors:

We are actually just finding the eigenvector of M.

Power iteration algorithm

$$
\begin{array}{ll}
\text { initialize: } & r[0]=[1 / N, \ldots, 1 / N] \quad \text { eigenvector of } \lambda \text { if: } \\
& r[-1]=[0, \ldots, 0]
\end{array}
$$

x is an

$$
A \cdot x=\lambda \cdot x
$$

while (err_norm(r[t],r[t-1])>min_err):

$$
\begin{aligned}
& r[t+1]=M \cdot r[t] \\
& t+=1
\end{aligned}
$$

solution $=r[t]$

$$
A=1
$$

since columns of M sum to 1 .
thus, $1 r=M r$
err_norm(v1, v2) = |v1 - v2| \#L1 norm

View 4: Markov Process

Where is surfer at time $\mathrm{t}+1 ? \quad \mathrm{p}(\mathrm{t}+1)=\mathrm{M} \cdot \mathrm{p}(\mathrm{t})$
Suppose: $p(t+1)=p(t)$, then $p(t)$ is a stationary distribution of a random walk.
Thus, r is a stationary distribution. Probability of being at given node.

View 4: Markov Process

Where is surfer at time $t+1 ? \quad p(t+1)=M \cdot p(t)$
Suppose: $p(t+1)=p(t)$, then $p(t)$ is a stationary distribution of a random walk.
Thus, r is a statipnary distribution. Probability of being at given node.
aka 1st order Markov Process

- Rich probabilistic theory. One finding:
- Stationary distributions have a unique distribution if:
- No "dead-ends": a node can't propagate its rank
- No "spider traps": set of nodes with no way out.

Also known as being stochastic, irreducible, and aperiodic.

View 4: Markov Process - Problems for vanilla PI

to \backslash from	\boldsymbol{A}	\boldsymbol{B}	\boldsymbol{C}	\boldsymbol{D}
\boldsymbol{A}	0	0	1	0
\boldsymbol{B}	$1 / 3$	0	0	1
\boldsymbol{C}	$1 / 3$	0	0	0
\boldsymbol{D}	$1 / 3$	0	0	0

What would r converge to?
aka 1st order Markov Process

- Rich probabilistic theory. One finding:
- Stationary distributions have a unique distribution if:

■ No "dead-ends": a node can't propagate its rank

- No "spider traps": set of nodes with no way out.

Also known as being stochastic, irreducible, and aperiodic.

View 4: Markov Process - Problems for vanilla PI

to \backslash from	\boldsymbol{A}	\boldsymbol{B}	\boldsymbol{C}	\boldsymbol{D}
\boldsymbol{A}	0	0	1	0
\boldsymbol{B}	$1 / 3$	0	0	1
\boldsymbol{C}	$1 / 3$	0	0	0
\boldsymbol{D}	$1 / 3$	1	0	0

What would r converge to?
aka 1st order Markov Process

- Rich probabilistic theory. One finding:
- Stationary distributions have a unique distribution if:

■ No "dead-ends": a node can't propagate its rank

- No "spider traps": set of nodes with no way out.

Also known as being stochastic, irreducible, and aperiodic.

View 4: Markov Process - Problems for vanilla PI

to \backslash from	\boldsymbol{A}	\boldsymbol{B}	\boldsymbol{C}	\boldsymbol{D}
\boldsymbol{A}	0	0	1	0
\boldsymbol{B}	$1 / 3$	0	0	1
\boldsymbol{C}	$1 / 3$	0	0	0
\boldsymbol{D}	$1 / 3$	1	0	0

What would r converge to?

aka 1st order Markov Process

- Rich probabilistic theory. One finding:
- Stationary distributions have a unique distribution if:
same node doesn't repeat at regular intervals
columns sum to 1 non-zero chance of going to any other node
Also known as being stochastic, irreducible, and aperiodic.

Goals:

No "dead-ends" No "spider traps"

The "Google" PageRank Formulation Add teleportation:At each step, two choices 1. Follow a random link (probability, $\beta=\sim .85$)
2. Teleport to a random node (probability, 1- β)

Goals:

No "dead-ends"
No "spider traps"

The "Google" PageRank Formulation Add teleportation:At each step, two choices

1. Follow a random link (probability, $\beta=\sim .85$)
2. Teleport to a random node (probability, 1- β)

to \backslash from	\boldsymbol{A}	\boldsymbol{B}	\boldsymbol{C}	\boldsymbol{D}
\boldsymbol{A}	0	0	1	0
\boldsymbol{B}	$1 / 3$	0	0	1
\boldsymbol{C}	$1 / 3$	0	0	0
\boldsymbol{D}	$1 / 3$	1	0	0

Goals:

No "dead-ends"
No "spider traps"

The "Google" PageRank Formulation Add teleportation:At each step, two choices 1. Follow a random link (probability, $\beta=\sim .85$)
2. Teleport to a random node (probability, 1- β)

to \backslash from	\boldsymbol{A}	\boldsymbol{B}	\boldsymbol{C}	\boldsymbol{D}
\boldsymbol{A}	0	$0+.15^{* 1 / 4}$	1	$0+.15^{* 1 / 4}$
\boldsymbol{B}	$1 / 3$	$0+.15^{* 1 / 4}$	0	$.85^{* 1+.15^{* 1 / 4}}$
\boldsymbol{C}	$1 / 3$	$0+.15^{* 1 / 4}$	0	$0+.15^{* 1 / 4}$
\boldsymbol{D}	$1 / 3$	$.85^{* 1}$ $+.15^{* 1} / 4$	0	$0+.15^{* 1 / 4}$

Goals:

No "dead-ends"
No "spider traps"

The "Google" PageRank Formulation Add teleportation:At each step, two choices 1. Follow a random link (probability, $\beta=\sim .85$)
2. Teleport to a random node (probability, 1- β)

to \from	A	B	C	D
A	0+.15*1/4	0+.15*1/4	$85^{*} 1+.15^{* 1 / 4}$	0+.15*1/4
B	. $85 * 1 / 3+.15 * 1 / 4$	0+.15*1/4	0+.15*1/4	$.85 * 1+.15 * 1 / 4$
C	. $85^{* 1 / 3}+.15 * 1 / 4$	0+.15*1/4	$0+.15^{* 1 / 4}$	0+.15*1/4
D	. $85 * 1 / 3+.15 * 1 / 4$. $85 * 1+.15 * 1 / 4$	0+.15*1/4	0+.15*1/4

Goals:

 No "dead-ends" No "spider traps"The "Google" PageRank Formulation Add teleportation:At each step, two choices

1. Follow a random link (probability, $\beta=\sim .85$)
2. Teleport to a random node (probability, 1- β)

to \backslash from	\boldsymbol{A}	\boldsymbol{B}	\boldsymbol{C}	\boldsymbol{D}
\boldsymbol{A}	0	0	1	0
\boldsymbol{B}	$1 / 3$	0	0	1
\boldsymbol{C}	$1 / 3$	0	0	0
\boldsymbol{D}	$1 / 3$	0	0	0

Goals:

No "dead-ends" No "spider traps"

The "Google" PageRank Formulation Add teleportation:At each step, two choices

1. Follow a random link (probability, $\beta=\sim .85$)
2. Teleport to a random node (probability, 1- β)

to \backslash from	\boldsymbol{A}	\boldsymbol{B}	\boldsymbol{C}	\boldsymbol{D}
\boldsymbol{A}	0	$1 / 4$	1	0
\boldsymbol{B}	$1 / 3$	$1 / 4$	0	1
\boldsymbol{C}	$1 / 3$	$1 / 4$	0	0
\boldsymbol{D}	$1 / 3$	$1 / 4$	0	0

Goals:

No "dead-ends" No "spider traps"

The "Google" PageRank Formulation Add teleportation:At each step, two choices

1. Follow a random link (probability, $\beta=\sim .85$)
2. Teleport to a random node (probability, 1- β)

to 1 from	\boldsymbol{A}	\boldsymbol{B}	\boldsymbol{C}	\boldsymbol{D}
\boldsymbol{A}	0	$.85^{* 1 / 4+.15^{* 1 / 4}}$	1	0
\boldsymbol{B}	$1 / 3$	$.85^{* 1 / 4+.15^{* 1 / 4}}$	0	1
\boldsymbol{C}	$1 / 3$	$.85^{* 1 / 4+.15^{* 1} / 4}$	0	0
\boldsymbol{D}	$1 / 3$	$.85^{* 1 / 4}+.15^{* 1 / 4}$	0	0

Goals:

 No "dead-ends" No "spider traps"The "Google" PageRank Formulation Add teleportation:At each step, two choices

1. Follow a random link (probability, $\beta=\sim .85$)
2. Teleport to a random node (probability, 1- β)
(Teleport from a dead-end has probability 1)

to I from	\boldsymbol{A}	\boldsymbol{B}	\boldsymbol{C}	\boldsymbol{D}
\boldsymbol{A}	$0+.15^{* 1 / 4}$	$1^{* 1 / 4}$	$85^{* 1+.15^{* 1 / 4}}$	$0+.15^{* 1 / 4}$
\boldsymbol{B}	$.85^{* 1 / 3+3} .15^{* 1 / 4} 4$	$1^{* 1 / 4}$	$0+.15^{* 1 / 4}$	$.85^{* 1+.15^{* 1 / 4}}$
\boldsymbol{C}	$.85^{* 1 / 3+.15^{* 1} / 4}$	$1^{* 1 / 4}$	$0+.15^{* 1 / 4}$	$0+.15^{* 1 / 4}$
\boldsymbol{D}	$.85^{* 1 / 3+.15^{* 1 / 4} 4}$	$1^{* 1 / 4}$	$0+.15^{* 1 / 4}$	$0+.15^{* 1 / 4}$

Goals:

No "dead-ends" No "spider traps"

Teleportation, as Flow Model:

$$
r_{j}=\sum_{i \rightarrow j} \beta \frac{r_{i}}{\substack{d_{i} \\ \text { (Brin and Page, 1998) }}}+(1-\beta) \frac{1}{N}
$$

to I from	\boldsymbol{A}	\boldsymbol{B}	\boldsymbol{C}	\boldsymbol{D}
\boldsymbol{A}	$0+.15^{* 1 / 4}$	$1^{* 1 / 4}$	$85^{* 1+.15^{* 1 / 4}}$	$0+.15^{* 1 / 4}$
\boldsymbol{B}	$.85^{* 1 / 3+3} .15^{* 1 / 4} 4$	$1^{* 1 / 4}$	$0+.15^{* 1 / 4}$	$.85^{* 1+.15^{* 1 / 4}}$
\boldsymbol{C}	$.85^{* 1 / 3+.15^{* 1} / 4}$	$1^{* 1 / 4}$	$0+.15^{* 1 / 4}$	$0+.15^{* 1 / 4}$
\boldsymbol{D}	$.85^{* 1 / 3+.15^{* 1 / 4} 4}$	$1^{* 1 / 4}$	$0+.15^{* 1 / 4}$	$0+.15^{* 1 / 4}$

Goals:

No "dead-ends" No "spider traps"

Teleportation, as Flow Model:

$$
r_{j}=\sum_{i \rightarrow j} \beta \frac{r_{i}}{d_{i}}+(1-\beta) \frac{1}{N}
$$

Teleportation, as Matrix Model: $\quad M^{\prime}=\beta M+(1-\beta)\left[\frac{1}{N}\right]$
$N \times N$

to I from	\boldsymbol{A}	\boldsymbol{B}	\boldsymbol{C}	\boldsymbol{D}
\boldsymbol{A}	$0+.15^{* 1 / 4}$	$1^{* 1 / 4}$	$85^{* 1+.15^{* 1 / 4}}$	$0+.15^{* 1 / 4}$
\boldsymbol{B}	$.85^{* 1 / 3+.15^{* 1} / 4}$	$1^{* 1 / 4}$	$0+.15^{* 1 / 4}$	$.85^{* 1+.15^{* 1 / 4}}$
\boldsymbol{C}	$.85^{* 1 / 3+.15^{* 1 / 4} 4}$	$1^{* 1 / 4}$	$0+.15^{* 1 / 4}$	$0+.15^{* 1 / 4}$
\boldsymbol{D}	$.85^{* 1 / 3+.15^{* 11 / 4}}$	$1^{* 1 / 4}$	$0+.15^{* 1 / 4}$	$0+.15^{* 1 / 4}$

Goals:

No "dead-ends" No "spider traps"

Teleportation, as Flow Model:

$$
r_{j}=\sum_{i \rightarrow j} \beta \frac{r_{i}}{d_{i}}+(1-\beta) \frac{1}{N}
$$

Teleportation, as Matrix Model: $\quad M^{\prime}=\beta M+(1-\beta)\left[\frac{1}{N}\right]$

to \backslash from	A	B	C	D
A	0+.15*1/4	. $85 * 1 / 4+.15 * 1 / 4$	$85^{* 1+.15 * 1 / 4}$	0+.15*1/4
B	. $85^{* 1 / 3+4.15 * 1 / 4}$. $85 * 1 / 4+.15 * 1 / 4$	$0+.15 \times 1 / 4$. $85 * 1+.15 * 1 / 4$
C	. $85^{* 1 / 3}+.15^{* 1 / 4}$. $85 * 1 / 4+.15 * 1 / 4$	$0+.15 * 1 / 4$	0+.15*1/4
D	. $85 * 1 / 3+.15 * 1 / 4$. $85 * 1 / 4+.15 * 1 / 4$	$0+.15 * 1 / 4$	0+.15*1/4

Goals:

No "dead-ends" No "spider traps"

Teleportation, as Flow Model:

$$
r_{j}=\sum_{i \rightarrow j} \beta \frac{r_{i}}{d_{i}}+(1-\beta) \frac{1}{N}
$$

$$
\begin{aligned}
& \text { Teleportation, } \\
& \text { as Matrix Model: }
\end{aligned} \quad M^{\prime}=\beta M+(1-\beta)\left[\frac{1}{N}\right]
$$

To apply:

run power
iterations over M' instead of M.

to 1 from	\boldsymbol{A}	\boldsymbol{B}	\boldsymbol{C}	\boldsymbol{D}
\boldsymbol{A}	$0+.15^{\star 1 / 4}$	$1^{* 1 / 4}$	$85^{* 1+.15^{* 1 / 4}}$	$0+.15^{* 1 / 4}$
\boldsymbol{B}	$.85^{* 1 / 3+.15^{* 1 / 4} 4}$	$1^{* 1 / 4}$	$0+.15^{* 1 / 4}$	$.85^{* 1+.15^{* 1 / 4}}$
\boldsymbol{C}	$.85^{* 1 / 3+.15^{* 1 / 4} 4}$	$1^{* 1 / 4}$	$0+.15^{* 1 / 4}$	$0+.15^{* 1 / 4}$
\boldsymbol{D}	$.85^{* 1 / 3+.15^{* 1 / 4} 4}$	$1^{* 1 / 4}$	$0+.15^{* 1 / 4}$	$0+.15^{* 1 / 4}$

Goals:

No "dead-ends" No "spider traps"

Teleportation, as Flow Model:

$$
r_{j}=\sum_{i \rightarrow j} \beta \frac{r_{i}}{d_{i}}+(1-\beta) \frac{1}{N}
$$

Teleportation, as Matrix Model: $\quad M^{\prime}=\beta M+(1-\beta)\left[\frac{1}{N}\right]$
 $$
M^{\prime}=\beta M+(1-\beta)\left[\frac{1}{N}\right]_{N \times N}
$$

 $N \times N$

 $N \times N$}
Steps:

1. Compute M
2. Add $1 / \mathrm{N}$ to all dead-ends.
3. Convert M to M^{\prime}
4. Run Power Iterations.

to \ from	A	B	C	D
A	0+.15*1/4	1*1/4	$85^{* 1+.15 * 1 / 4}$	0+.15*1/4
B	. $85^{* 1 / 3+4.15 * 1 / 4}$	1*1/4	$0+.15 \times 1 / 4$. $85 * 1+.15 * 1 / 4$
C	. $85 * 1 / 3+.15^{* 1 / 4}$	1*1/4	$0+.15 * 1 / 4$	0+.15*1/4
D	. $85 * 1 / 3+.15 * 1 / 4$	1*1/4	$0+.15 * 1 / 4$	0+.15*1/4

