
Similarity &
Link Analysis

Stony Brook University
CSE545, Fall 2016

Finding Similar “Items”
?

(http://blog.soton.ac.uk/hive/2012/05/10/r
ecommendation-system-of-hive/)

(http://www.datacommunitydc.org/blog/20
13/08/entity-resolution-for-big-data)

Finding Similar “Items”: What we will cover

● Shingling

● Minhashing

● Locality-sensitive hashing

● Distance Metrics

Document Similarity

Challenge: How to represent the document in a way that can
be efficiently encoded and compared?

Shingles

Goal: Convert documents to sets

Shingles

Goal: Convert documents to sets

k-shingles (aka “character n-grams”)
- sequence of k characters

E.g. k=2 doc=”abcdabd”
singles(doc, 2) = {ab, bc, cd, da, bd}

Shingles

Goal: Convert documents to sets

k-shingles (aka “character n-grams”)
- sequence of k characters

E.g. k=2 doc=”abcdabd”
singles(doc, 2) = {ab, bc, cd, da, bd}

● Similar documents have many common shingles
● Changing words or order has minimal effect.
● In practice use 5 < k < 10

k-shingles (aka “character n-grams”)
- sequence of k characters

E.g. k=2 doc=”abcdabd”
singles(doc, 2) = {ab, bc, cd, da, bd}

● Similar documents have many common shingles
● Changing words or order has minimal effect.
● In practice use 5 < k < 10

Shingles

Goal: Convert documents to sets

Large enough that any given shingle
appearing a document is highly unlikely
 (e.g. < .1% chance)

Can hash large shingles to smaller
 (e.g. 9-shingles into 4 bytes)

Can also use words (aka n-grams).

Shingles

Problem: Even if hashing, sets of shingles are large
(e.g. 4 bytes => 4x the size of the document).

Minhashing

Goal: Convert sets to shorter ids, signatures

Goal: Convert sets to shorter ids, signatures

Characteristic Matrix, X:
….

(Leskovec at al., 2014; http://www.mmds.org/)

often very sparse! (lots of zeros)

Minhashing - Background

Jaccard Similarity:

S1 S2

http://www.mmds.org/

Characteristic Matrix:

S
1

S
2

ab 1 1

bc 0 1

de 1 0

ah 1 1

ha 0 0

ed 1 1

ca 0 1

Minhashing - Background

Jaccard Similarity:

Characteristic Matrix:

S
1

S
2

ab 1 1 * *

bc 0 1 *

de 1 0 *

ah 1 1 **

ha 0 0

ed 1 1 **

ca 0 1 *

Minhashing - Background

Jaccard Similarity:

Characteristic Matrix:

Jaccard Similarity:
S

1
S

2

ab 1 1 * *

bc 0 1 *

de 1 0 *

ah 1 1 **

ha 0 0

ed 1 1 **

ca 0 1 *

sim(S
1,

S
2
) =

3 / 6

both have / # at least one has

Minhashing - Background

Shingles

Problem: Even if hashing, sets of shingles are large
(e.g. 4 bytes => 4x the size of the document).

Minhashing
Characteristic Matrix: X

S
1

S
2

S
3

S
4

ab 1 0 1 0

bc 1 0 0 1

de 0 1 0 1

ah 0 1 0 1

ha 0 1 0 1

ed 1 0 1 0

ca 1 0 1 0

(Leskovec at al., 2014; http://www.mmds.org/)

Idea: We don’t need to
actually shuffle we can
just use hash functions.

Approximate Approach:
1) Instead of keeping whole characteristic
matrix, just keep first row where 1 is
encountered.
2) Shuffle and repeat to get a “signature”
for each set.

http://www.mmds.org/

Minhashing
Characteristic Matrix:

S
1

S
2

S
3

S
4

ab 1 0 1 0

bc 1 0 0 1

de 0 1 0 1

ah 0 1 0 1

ha 0 1 0 1

ed 1 0 1 0

ca 1 0 1 0

(Leskovec at al., 2014; http://www.mmds.org/)

Minhash function: h
● Based on permutation of rows in

the characteristic matrix, h maps
sets to first row where set appears.

http://www.mmds.org/

Minhashing
Characteristic Matrix:

S
1

S
2

S
3

S
4

ab 1 0 1 0

bc 1 0 0 1

de 0 1 0 1

ah 0 1 0 1

ha 0 1 0 1

ed 1 0 1 0

ca 1 0 1 0

(Leskovec at al., 2014; http://www.mmds.org/)

Minhash function: h
● Based on permutation of rows in the

characteristic matrix, h maps sets to first row
where set appears.

permuted
order

1 ha

2 ed

3 ab

4 bc

5 ca

6 ah

7 de

http://www.mmds.org/

Minhashing
Characteristic Matrix:

S
1

S
2

S
3

S
4

ab 1 0 1 0

bc 1 0 0 1

de 0 1 0 1

ah 0 1 0 1

ha 0 1 0 1

ed 1 0 1 0

ca 1 0 1 0

(Leskovec at al., 2014; http://www.mmds.org/)

Minhash function: h
● Based on permutation of rows in the

characteristic matrix, h maps sets to first row
where set appears.

permuted
order

1 ha

2 ed

3 ab

4 bc

5 ca

6 ah

7 de

3

4

7

6

1

2

5

http://www.mmds.org/

Minhashing
Characteristic Matrix:

S
1

S
2

S
3

S
4

ab 1 0 1 0

bc 1 0 0 1

de 0 1 0 1

ah 0 1 0 1

ha 0 1 0 1

ed 1 0 1 0

ca 1 0 1 0

(Leskovec at al., 2014; http://www.mmds.org/)

Minhash function: h
● Based on permutation of rows in the

characteristic matrix, h maps sets to first row
where set appears.

h(S1) = ed #permuted row 2
h(S2) = ha #permuted row 1
h(S3) =

3

4

7

6

1

2

5

permuted
order

1 ha

2 ed

3 ab

4 bc

5 ca

6 ah

7 de

http://www.mmds.org/

Minhashing
Characteristic Matrix:

S
1

S
2

S
3

S
4

ab 1 0 1 0

bc 1 0 0 1

de 0 1 0 1

ah 0 1 0 1

ha 0 1 0 1

ed 1 0 1 0

ca 1 0 1 0

(Leskovec at al., 2014; http://www.mmds.org/)

Minhash function: h
● Based on permutation of rows in the

characteristic matrix, h maps sets to first row
where set appears.

h(S1) = ed #permuted row 2
h(S2) = ha #permuted row 1
h(S3) = ed #permuted row 2
h(S4) =

3

4

7

6

1

2

5

permuted
order

1 ha

2 ed

3 ab

4 bc

5 ca

6 ah

7 de

http://www.mmds.org/

Minhashing
Characteristic Matrix:

S
1

S
2

S
3

S
4

ab 1 0 1 0

bc 1 0 0 1

de 0 1 0 1

ah 0 1 0 1

ha 0 1 0 1

ed 1 0 1 0

ca 1 0 1 0

(Leskovec at al., 2014; http://www.mmds.org/)

Minhash function: h
● Based on permutation of rows in the

characteristic matrix, h maps sets to first row
where set appears.

h(S1) = ed #permuted row 2
h(S2) = ha #permuted row 1
h(S3) = ed #permuted row 2
h(S4) = ha #permuted row 1

3

4

7

6

1

2

5

permuted
order

1 ha

2 ed

3 ab

4 bc

5 ca

6 ah

7 de

http://www.mmds.org/

Minhashing
Characteristic Matrix:

S
1

S
2

S
3

S
4

ab 1 0 1 0

bc 1 0 0 1

de 0 1 0 1

ah 0 1 0 1

ha 0 1 0 1

ed 1 0 1 0

ca 1 0 1 0

(Leskovec at al., 2014; http://www.mmds.org/)

Minhash function: h
● Based on permutation of rows in the

characteristic matrix, h maps sets to rows.

Signature matrix: M
● Record first row where each set

had a 1 in the given permutation

h
1
(S1) = ed #permuted row

2
h

1
(S2) = ha #permuted row

1
h

1
(S3) = ed #permuted row

2
h

1
(S4) = ha #permuted row

1

3

4

7

6

1

2

5

S
1

S
2

S
3

S
4

h
1

2 1 2 1

http://www.mmds.org/

Minhashing
Characteristic Matrix:

S
1

S
2

S
3

S
4

ab 1 0 1 0

bc 1 0 0 1

de 0 1 0 1

ah 0 1 0 1

ha 0 1 0 1

ed 1 0 1 0

ca 1 0 1 0

(Leskovec at al., 2014; http://www.mmds.org/)

Minhash function: h
● Based on permutation of rows in the

characteristic matrix, h maps sets to rows.

Signature matrix: M
● Record first row where each set had a 1 in

the given permutation

h
1
(S1) = ed #permuted row

2
h

1
(S2) = ha #permuted row

1
h

1
(S3) = ed #permuted row

2
h

1
(S4) = ha #permuted row

1

3

4

7

6

1

2

5

S
1

S
2

S
3

S
4

h
1

2 1 2 1

http://www.mmds.org/

Minhashing
Characteristic Matrix:

S
1

S
2

S
3

S
4

ab 1 0 1 0

bc 1 0 0 1

de 0 1 0 1

ah 0 1 0 1

ha 0 1 0 1

ed 1 0 1 0

ca 1 0 1 0

(Leskovec at al., 2014; http://www.mmds.org/)

Minhash function: h
● Based on permutation of rows in the

characteristic matrix, h maps sets to rows.

Signature matrix: M
● Record first row where each set had a 1 in

the given permutation

h
1
(S1) = ed #permuted row

2
h

1
(S2) = ha #permuted row

1
h

1
(S3) = ed #permuted row

2
h

1
(S4) = ha #permuted row

1

3

4

7

6

1

2

5

S
1

S
2

S
3

S
4

h
1

2 1 2 1

http://www.mmds.org/

Minhashing
Characteristic Matrix:

(Leskovec at al., 2014; http://www.mmds.org/)

Minhash function: h
● Based on permutation of rows in the

characteristic matrix, h maps sets to rows.

Signature matrix: M
● Record first row where each set had a 1 in

the given permutation

S
1

S
2

S
3

S
4

h
1

2 1 2 1

h
2

4

2

1

3

6

7

5

3

4

7

6

1

2

5

S
1

S
2

S
3

S
4

ab 1 0 1 0

bc 1 0 0 1

de 0 1 0 1

ah 0 1 0 1

ha 0 1 0 1

ed 1 0 1 0

ca 1 0 1 0

http://www.mmds.org/

Minhashing
Characteristic Matrix:

(Leskovec at al., 2014; http://www.mmds.org/)

Minhash function: h
● Based on permutation of rows in the

characteristic matrix, h maps sets to rows.

Signature matrix: M
● Record first row where each set had a 1 in

the given permutation

S
1

S
2

S
3

S
4

h
1

2 1 2 1

h
2

2 1 4 1

4

2

1

3

6

7

5

3

4

7

6

1

2

5

S
1

S
2

S
3

S
4

ab 1 0 1 0

bc 1 0 0 1

de 0 1 0 1

ah 0 1 0 1

ha 0 1 0 1

ed 1 0 1 0

ca 1 0 1 0

http://www.mmds.org/

1

3

7

6

2

5

4

Minhashing
Characteristic Matrix:

(Leskovec at al., 2014; http://www.mmds.org/)

Minhash function: h
● Based on permutation of rows in the

characteristic matrix, h maps sets to rows.

Signature matrix: M
● Record first row where each set had a 1 in

the given permutation

S
1

S
2

S
3

S
4

h
1

2 1 2 1

h
2

2 1 4 1

h
3

4

2

1

3

6

7

5

3

4

7

6

1

2

5

S
1

S
2

S
3

S
4

ab 1 0 1 0

bc 1 0 0 1

de 0 1 0 1

ah 0 1 0 1

ha 0 1 0 1

ed 1 0 1 0

ca 1 0 1 0

http://www.mmds.org/

1

3

7

6

2

5

4

Minhashing
Characteristic Matrix:

(Leskovec at al., 2014; http://www.mmds.org/)

Minhash function: h
● Based on permutation of rows in the

characteristic matrix, h maps sets to rows.

Signature matrix: M
● Record first row where each set had a 1 in

the given permutation

S
1

S
2

S
3

S
4

h
1

2 1 2 1

h
2

2 1 4 1

h
3

1 2 1 2

4

2

1

3

6

7

5

3

4

7

6

1

2

5

S
1

S
2

S
3

S
4

ab 1 0 1 0

bc 1 0 0 1

de 0 1 0 1

ah 0 1 0 1

ha 0 1 0 1

ed 1 0 1 0

ca 1 0 1 0

http://www.mmds.org/

1

3

7

6

2

5

4

Minhashing
Characteristic Matrix: X

(Leskovec at al., 2014; http://www.mmds.org/)

Minhash function: h
● Based on permutation of rows in the

characteristic matrix, h maps sets to rows.

Signature matrix: M
● Record first row where each set had a 1 in

the given permutation

S
1

S
2

S
3

S
4

h
1

2 1 2 1

h
2

2 1 4 1

h
3

1 2 1 2

...

...

4

2

1

3

6

7

5

3

4

7

6

1

2

5

S
1

S
2

S
3

S
4

ab 1 0 1 0

bc 1 0 0 1

de 0 1 0 1

ah 0 1 0 1

ha 0 1 0 1

ed 1 0 1 0

ca 1 0 1 0

http://www.mmds.org/

1

3

7

6

2

5

4

Minhashing
Characteristic Matrix:

(Leskovec at al., 2014; http://www.mmds.org/)

Minhash function: h
● Based on permutation of rows in the

characteristic matrix, h maps sets to rows.

Signature matrix: M
● Record first row where each set had a 1 in

the given permutation

S
1

S
2

S
3

S
4

h
1

2 1 2 1

h
2

2 1 4 1

h
3

1 2 1 2

...

...

4

2

1

3

6

7

5

3

4

7

6

1

2

5

S
1

S
2

S
3

S
4

ab 1 0 1 0

bc 1 0 0 1

de 0 1 0 1

ah 0 1 0 1

ha 0 1 0 1

ed 1 0 1 0

ca 1 0 1 0

Property of signature matrix:
The probability for any h

i
 (i.e. any row), that

h
i
(S

1
) = h

i
(S

2
) is the same as Sim(S1, S2)

http://www.mmds.org/

1

3

7

6

2

5

4

Minhashing
Characteristic Matrix:

(Leskovec at al., 2014; http://www.mmds.org/)

Minhash function: h
● Based on permutation of rows in the

characteristic matrix, h maps sets to rows.

Signature matrix: M
● Record first row where each set had a 1 in

the given permutation

S
1

S
2

S
3

S
4

h
1

2 1 2 1

h
2

2 1 4 1

h
3

1 2 1 2

...

...

4

2

1

3

6

7

5

3

4

7

6

1

2

5

S
1

S
2

S
3

S
4

ab 1 0 1 0

bc 1 0 0 1

de 0 1 0 1

ah 0 1 0 1

ha 0 1 0 1

ed 1 0 1 0

ca 1 0 1 0

Property of signature matrix:
The probability for any h

i
 (i.e. any row), that

h
i
(S

1
) = h

i
(S

2
) is the same as Sim(S1, S2)

Thus, similarity of signatures S1, S2 is the fraction of
minhash functions (i.e. rows) in which they agree.

http://www.mmds.org/

1

3

7

6

2

5

4

Minhashing
Characteristic Matrix:

(Leskovec at al., 2014; http://www.mmds.org/)

Minhash function: h
● Based on permutation of rows in the

characteristic matrix, h maps sets to rows.

Signature matrix: M
● Record first row where each set had a 1 in

the given permutation

S
1

S
2

S
3

S
4

h
1

2 1 2 1

h
2

2 1 4 1

h
3

1 2 1 2

...

...

4

2

1

3

6

7

5

3

4

7

6

1

2

5

S
1

S
2

S
3

S
4

ab 1 0 1 0

bc 1 0 0 1

de 0 1 0 1

ah 0 1 0 1

ha 0 1 0 1

ed 1 0 1 0

ca 1 0 1 0

Property of signature matrix:
The probability for any h

i
 (i.e. any row), that

h
i
(S

1
) = h

i
(S

2
) is the same as Sim(S1, S2)

Thus, similarity of signatures S1, S2 is the fraction of
minhash functions (i.e. rows) in which they agree.

Estimate with a random sample of
permutations (i.e. ~100)

http://www.mmds.org/

1

3

7

6

2

5

4

Minhashing
Characteristic Matrix:

(Leskovec at al., 2014; http://www.mmds.org/)

Minhash function: h
● Based on permutation of rows in the

characteristic matrix, h maps sets to rows.

Signature matrix: M
● Record first row where each set had a 1 in

the given permutation

S
1

S
2

S
3

S
4

h
1

2 1 2 1

h
2

2 1 4 1

h
3

1 2 1 2

4

2

1

3

6

7

5

3

4

7

6

1

2

5

S
1

S
2

S
3

S
4

ab 1 0 1 0

bc 1 0 0 1

de 0 1 0 1

ah 0 1 0 1

ha 0 1 0 1

ed 1 0 1 0

ca 1 0 1 0

Property of signature matrix:
The probability for any h

i
 (i.e. any row), that

h
i
(S

1
) = h

i
(S

2
) is the same as Sim(S1, S2)

Thus, similarity of signatures S1, S2 is the fraction of
minhash functions (i.e. rows) in which they agree.

Estimate with a random sample of
permutations (i.e. ~100)

Estimated Sim(S1, S3) =
agree / all = 2/3

http://www.mmds.org/

1

3

7

6

2

5

4

Minhashing
Characteristic Matrix:

(Leskovec at al., 2014; http://www.mmds.org/)

Minhash function: h
● Based on permutation of rows in the

characteristic matrix, h maps sets to rows.

Signature matrix: M
● Record first row where each set had a 1 in

the given permutation

S
1

S
2

S
3

S
4

h
1

2 1 2 1

h
2

2 1 4 1

h
3

1 2 1 2

4

2

1

3

6

7

5

3

4

7

6

1

2

5

S
1

S
2

S
3

S
4

ab 1 0 1 0

bc 1 0 0 1

de 0 1 0 1

ah 0 1 0 1

ha 0 1 0 1

ed 1 0 1 0

ca 1 0 1 0

Property of signature matrix:
The probability for any h

i
 (i.e. any row), that

h
i
(S

1
) = h

i
(S

2
) is the same as Sim(S1, S2)

Thus, similarity of signatures S1, S2 is the fraction of
minhash functions (i.e. rows) in which they agree.

Estimated Sim(S1, S3) =
agree / all = 2/3

Real Sim(S1, S3) =
Type a / (a + b + c) = 3/4

http://www.mmds.org/

1

3

7

6

2

5

4

Minhashing
Characteristic Matrix:

(Leskovec at al., 2014; http://www.mmds.org/)

Minhash function: h
● Based on permutation of rows in the

characteristic matrix, h maps sets to rows.

Signature matrix: M
● Record first row where each set had a 1 in

the given permutation

S
1

S
2

S
3

S
4

h
1

2 1 2 1

h
2

2 1 4 1

h
3

1 2 1 2

4

2

1

3

6

7

5

3

4

7

6

1

2

5

S
1

S
2

S
3

S
4

ab 1 0 1 0

bc 1 0 0 1

de 0 1 0 1

ah 0 1 0 1

ha 0 1 0 1

ed 1 0 1 0

ca 1 0 1 0

Property of signature matrix:
The probability for any h

i
 (i.e. any row), that

h
i
(S

1
) = h

i
(S

2
) is the same as Sim(S1, S2)

Thus, similarity of signatures S1, S2 is the fraction of
minhash functions (i.e. rows) in which they agree.

Estimated Sim(S1, S3) =
agree / all = 2/3

Real Sim(S1, S3) =
Type a / (a + b + c) = 3/4

Try Sim(S2, S4) and
Sim(S1, S2)

http://www.mmds.org/

Minhashing
In Practice
Problem:
● Can’t reasonably do permutations (huge space)
● Can’t randomly grab rows according to an order

(random disk seeks = slow!)

Minhashing
In Practice
Problem:
● Can’t reasonably do permutations (huge space)
● Can’t randomly grab rows according to an order

(random disk seeks = slow!)

Solution: Use “random” hash functions.
● Setup:

○ Pick ~100 hash functions, hashes
○ Store M[i][s] = a potential minimum h

i
(r)

#initialized to infinity (num hashs x num sets)

Minhashing
Solution: Use “random” hash functions.
● Setup:

○ Pick ~100 hash functions, hashes
○ Store M[i][s] = a potential minimum h

i
(r)

#initialized to infinity (num hashs x num sets)
● Algorithm:
for r in rows of cm: #cm is characteristic matrix

 compute h
i
(r) for all i in hashes #precompute 100 values

 for each set s in row r:

 if cm[r][s] == 1:

 for i in hashes: #check which hash produces smallest value

 if h
i
(r) < M[i][s]: M[i][s] = h

i
(r)

Minhashing
Solution: Use “random” hash functions.
● Setup:

○ Pick ~100 hash functions, hashes
○ Store M[i][s] = a potential minimum h

i
(r)

#initialized to infinity (num hashs x num sets)
● Algorithm:
for r in rows of cm: #cm is characteristic matrix

 compute h
i
(r) for all i in hashes #precompute 100 values

 for each set s in row r:

 if cm[r][s] == 1:

 for i in hashes: #check which hash produces smallest value

 if h
i
(r) < M[i][s]: M[i][s] = h

i
(r)

Known as “efficient minhashing”.

Minhashing

What hash functions to use?

Start with 2 decent hash functions

e.g. h
a
(x) = ascii(string) % large_prime_number

h
b
(x) = (3*ascii(string) + 16) % large_prime_number

Add together multiplying the second times i:

 h
i
(x) = h

a
(x) + i*h

b
(x)

e.g. h
5
(x) = h

a
(x) + 5*h

b
(x)

https://www.eecs.harvard.edu/~michaelm/postscripts/rsa2008.pdf

Minhashing

What hash functions to use?

Start with 2 decent hash functions

e.g. h
a
(x) = ascii(string) % large_prime_number

h
b
(x) = (3*ascii(string) + 16) % large_prime_number

Add together multiplying the second times i:

 h
i
(x) = h

a
(x) + i*h

b
(x)

e.g. h
5
(x) = h

a
(x) + 5*h

b
(x)

https://www.eecs.harvard.edu/~michaelm/postscripts/rsa2008.pdf

Minhashing

Problem: Even if hashing, sets of shingles are large (e.g. 4
bytes => 4x the size of the document).

Minhashing

Problem: Even if hashing, sets of shingles are large (e.g. 4
bytes => 4x the size of the document).

New Problem: Even if the size of signatures are small, it can
be computationally expensive to find similar pairs.

E.g. 1m documents; 1,000,000 choose 2 = 500,000,000,000 pairs

Locality-Sensitive Hashing

Goal: find pairs of minhashes likely to be similar (in order to
then test more precisely for similarity).

Candidate pairs: pairs of elements to be evaluated for similarity.

Locality-Sensitive Hashing

Goal: find pairs of minhashes likely to be similar (in order to
then test more precisely for similarity).

Candidate pairs: pairs of elements to be evaluated for similarity.

If we wanted the similarity for all pairs of
documents, could anything be done?

Locality-Sensitive Hashing

Goal: find pairs of minhashes likely to be similar (in order to
then test more precisely for similarity).

Candidate pairs: pairs of elements to be evaluated for similarity.

Approach: Hash multiple times over subsets of data: similar
items are likely in the same bucket once.

Locality-Sensitive Hashing

Goal: find pairs of minhashes likely to be similar (in order to
then test more precisely for similarity).

Candidate pairs: pairs of elements to be evaluated for similarity.

Approach: Hash multiple times over subsets of data: similar
items are likely in the same bucket once.

Approach from MinHash: Hash columns of signature matrix

Candidate pairs end up in the same bucket.

Locality-Sensitive Hashing

(Leskovec at al., 2014; http://www.mmds.org/)

Step 1: Add bands

http://www.mmds.org/

Locality-Sensitive Hashing

(Leskovec at al., 2014; http://www.mmds.org/)

Can be tuned to catch
most true-positives with

least false-positives.

Step 1: Add bands

http://www.mmds.org/

Locality-Sensitive Hashing
Step 1: Add bands
Step 2: Hash columns

within bands

(Leskovec at al., 2014; http://www.mmds.org/)

http://www.mmds.org/

Locality-Sensitive Hashing

(Leskovec at al., 2014; http://www.mmds.org/)

Step 1: Add bands
Step 2: Hash columns

within bands

http://www.mmds.org/

Locality-Sensitive Hashing

(Leskovec at al., 2014; http://www.mmds.org/)

Step 1: Add bands
Step 2: Hash columns

within bands

http://www.mmds.org/

Locality-Sensitive Hashing

(Leskovec at al., 2014; http://www.mmds.org/)

Criteria for being
candidate pair:

● They end up in same
bucket for at least 1
band.

Step 1: Add bands
Step 2: Hash columns

within bands

http://www.mmds.org/

Locality-Sensitive Hashing

(Leskovec at al., 2014; http://www.mmds.org/)

Simplification:
There are enough buckets
compared to rows per band that
columns must be identical in
order to hash to the same
bucket.

Thus, we only need to check if
identical within a band.

Step 1: Add bands
Step 2: Hash columns

within bands

http://www.mmds.org/

Document Similarity Pipeline

Shingling Minhashing
Locality-
sensitive
hashing

Realistic Example: Probabilities of agreement

● 100,000 documents
● 100 random permutations/hash functions/rows

=> if 4byte integers then 40Mb to hold signature matrix
=> still 100k choose 2 is a lot (~5billion)

Realistic Example: Probabilities of agreement

● 100,000 documents
● 100 random permutations/hash functions/rows

=> if 4byte integers then 40Mb to hold signature matrix
=> still 100k choose 2 is a lot (~5billion)

● 20 bands of 5 rows
● Want 80% Jaccard Similarity ; for any row p(S1 == S2) = .8

Realistic Example: Probabilities of agreement

● 100,000 documents
● 100 random permutations/hash functions/rows

=> if 4byte integers then 40Mb to hold signature matrix
=> still 100k choose 2 is a lot (~5billion)

● 20 bands of 5 rows
● Want 80% Jaccard Similarity ; for any row p(S1 == S2) = .8

P(S1==S2 | b): probability S1 and S2 agree within a given band

Realistic Example: Probabilities of agreement

● 100,000 documents
● 100 random permutations/hash functions/rows

=> if 4byte integers then 40Mb to hold signature matrix
=> still 100k choose 2 is a lot (~5billion)

● 20 bands of 5 rows
● Want 80% Jaccard Similarity ; for any row p(S1 == S2) = .8

P(S1==S2 | b): probability S1 and S2 agree within a given band
= 0.85 = .328 => P(S1!=S2 | b) = 1-.328 = .672

P(S1!=S2): probability S1 and S2 do not agree in any band

Realistic Example: Probabilities of agreement

● 100,000 documents
● 100 random permutations/hash functions/rows

=> if 4byte integers then 40Mb to hold signature matrix
=> still 100k choose 2 is a lot (~5billion)

● 20 bands of 5 rows
● Want 80% Jaccard Similarity ; for any row p(S1 == S2) = .8

P(S1==S2 | b): probability S1 and S2 agree within a given band
= 0.85 = .328 => P(S1!=S2 | b) = 1-.328 = .672

P(S1!=S2): probability S1 and S2 do not agree in any band
=.67220 = .00035

Realistic Example: Probabilities of agreement

● 100,000 documents
● 100 random permutations/hash functions/rows

=> if 4byte integers then 40Mb to hold signature matrix
=> still 100k choose 2 is a lot (~5billion)

● 20 bands of 5 rows
● Want 80% Jaccard Similarity ; for any row p(S1 == S2) = .8

P(S1==S2 | b): probability S1 and S2 agree within a given band
= 0.85 = .328 => P(S1!=S2 | b) = 1-.328 = .672

P(S1!=S2): probability S1 and S2 do not agree in any band
=.67220 = .00035

What if wanting 40% Jaccard Similarity?

Distance Metrics

Pipeline gives us a way to find near-neighbors in high-dimensional
space based on Jaccard Distance (1 - Jaccard Sim).

(http://rosalind.info/glossary/euclidean-distance/)

Distance Metrics

Pipeline gives us a way to find near-neighbors in high-dimensional space based
on Jaccard Distance (1 - Jaccard Sim).

Typical properties of a
distance metric, d:

d(x, x) = 0

d(x, y) = d(y, x)

d(x, y) ≤ d(x,z) + d(z,y)
(http://rosalind.info/glossary/euclidean-distance/)

Distance Metrics

Pipeline gives us a way to find near-neighbors in high-dimensional space based
on Jaccard Distance (1 - Jaccard Sim).

There are other metrics of similarity. e.g:

● Euclidean Distance

● Cosine Distance

…

● Edit Distance

● Hamming Distance

Distance Metrics

Pipeline gives us a way to find near-neighbors in high-dimensional space based
on Jaccard Distance (1 - Jaccard Sim).

There are other metrics of similarity. e.g:

● Euclidean Distance

● Cosine Distance

…

● Edit Distance

● Hamming Distance

(“L2 Norm”)

Distance Metrics

Pipeline gives us a way to find near-neighbors in high-dimensional space based
on Jaccard Distance (1 - Jaccard Sim).

There are other metrics of similarity. e.g:

● Euclidean Distance

● Cosine Distance

…

● Edit Distance

● Hamming Distance

(“L2 Norm”)

Locality Sensitive Hashing - Theory

LSH Can be generalized to many distance metrics by
converting output to a probability and providing a lower bound
on probability of being similar.

Locality Sensitive Hashing - Theory

LSH Can be generalized to many distance metrics by
converting output to a probability and providing a lower bound
on probability of being similar.

E.g. for euclidean distance:

● Choose random lines (analogous to hash functions in
minhashing)

● Project the two points onto each line; match if two points
within an interval

Link Analysis

The Web , circa 1998

The Web , circa 1998

Match keywords, language (information retrieval)
Explore directory

The Web , circa 1998

Match keywords, language (information retrieval)
Explore directory

Easy to game with
“term spam”

Time-consuming;
Not open-ended

Enter PageRank

...

PageRank

Key Idea: Consider the citations of the website.

PageRank

Key Idea: Consider the citations of the website.

Who links to it?
and what are

their citations?

PageRank

Key Idea: Consider the citations of the website.

Who links to it?
and what are

their citations?

Innovation 1: What pages would a “random Web surfer” end up at?

Innovation 2: Not just own terms but what terms are used by citations?

PageRank

Innovation 1: What pages would a “random Web surfer” end up at?

Innovation 2: Not just own terms but what terms are used by citations?

View 1: Flow Model:
in-links as votes

PageRank

Innovation 1: What pages would a “random Web surfer” end up at?

Innovation 2: Not just own terms but what terms are used by citations?

View 1: Flow Model:

in-links (citations) as votes

but, citations from important pages should count more.

=> Use recursion to figure out if each page is important.

How to compute?

Each page (j) has an importance (i.e. rank, r
j
)

(nj is |out-links|)

PageRank

View 1: Flow Model:

A B

C D

How to compute?

Each page (j) has an importance (i.e. rank, r
j
)

(nj is |out-links|)

PageRank

View 1: Flow Model:

A B

C D

r
A
/1

r
B
/4

r
C
/2 r

D
 = r

A
/1 + r

B
/4 + r

C
/2

How to compute?

Each page (j) has an importance (i.e. rank, r
j
)

(nj is |out-links|)

PageRank

View 1: Flow Model:
A B

C D

How to compute?

Each page (j) has an importance (i.e. rank, r
j
)

(nj is |out-links|)

PageRank

View 1: Flow Model:

A System of Equations:

A B

C D

How to compute?

Each page (j) has an importance (i.e. rank, r
j
)

(nj is |out-links|)

PageRank

View 1: Flow Model:

A System of Equations:

A B

C D

How to compute?

Each page (j) has an importance (i.e. rank, r
j
)

(nj is |out-links|)

PageRank

View 1: Flow Model: Solve
A B

C D

PageRank A B

C D

to \ from A B C D

A 0 1/2 1 0

B 1/3 0 0 1/2

C 1/3 0 0 1/2

D 1/3 1/2 0 0

Transition Matrix, M

to \ from A B C D

A 0 1/2 1 0

B 1/3 0 0 1/2

C 1/3 0 0 1/2

D 1/3 1/2 0 0

Transition Matrix, M

Innovation: What pages would a “random Web surfer” end up at?
 To start: N=4 nodes, so r = [¼, ¼, ¼, ¼,]

View 2: Matrix Formulation
A B

C D

View 2: Matrix Formulation

to \ from A B C D

A 0 1/2 1 0

B 1/3 0 0 1/2

C 1/3 0 0 1/2

D 1/3 1/2 0 0

Transition Matrix, M

Innovation: What pages would a “random Web surfer” end up at?
 To start: N=4 nodes, so r = [¼, ¼, ¼, ¼,]
 after 1st iteration: M·r = [3/8, 5/24, 5/24, 5/24]
 after 2nd iteration: M(M·r) = M2·r = [15/48, 11/48, …]

A B

C D

to \ from A B C D

A 0 1/2 1 0

B 1/3 0 0 1/2

C 1/3 0 0 1/2

D 1/3 1/2 0 0

“Transition Matrix”, M

Power iteration algorithm

initialize: r[0] = [1/N, …, 1/N],
r[-1]=[0,...,0]

while (err_norm(r[t],r[t-1])>min_err):

err_norm(v1, v2) = |v1 - v2| #L1 norm

Innovation: What pages would a “random Web surfer” end up at?
 To start: N=4 nodes, so r = [¼, ¼, ¼, ¼,]
 after 1st iteration: M·r = [3/8, 5/24, 5/24, 5/24]
 after 2nd iteration: M(M·r) = M2·r = [15/48, 11/48, …]

A B

C D

to \ from A B C D

A 0 1/2 1 0

B 1/3 0 0 1/2

C 1/3 0 0 1/2

D 1/3 1/2 0 0

“Transition Matrix”, M

Power iteration algorithm

initialize: r[0] = [1/N, …, 1/N],
r[-1]=[0,...,0]

while (err_norm(r[t],r[t-1])>min_err):
r[t+1] = M·r[t]
t+=1

solution = r[t]

err_norm(v1, v2) = |v1 - v2| #L1 norm

Innovation: What pages would a “random Web surfer” end up at?
 To start: N=4 nodes, so r = [¼, ¼, ¼, ¼,]
 after 1st iteration: M·r = [3/8, 5/24, 5/24, 5/24]
 after 2nd iteration: M(M·r) = M2·r = [15/48, 11/48, …]

Power iteration algorithm

initialize: r[0] = [1/N, …, 1/N],
r[-1]=[0,...,0]

while (err_norm(r[t],r[t-1])>min_err):
r[t+1] = M·r[t]
t+=1

solution = r[t]

err_norm(v1, v2) = |v1 - v2| #L1 norm

As err_norm gets smaller we are moving toward: r = M·r

View 3: Eigenvectors:

Power iteration algorithm

initialize: r[0] = [1/N, …, 1/N],
r[-1]=[0,...,0]

while (err_norm(r[t],r[t-1])>min_err):
r[t+1] = M·r[t]
t+=1

solution = r[t]

err_norm(v1, v2) = |v1 - v2| #L1 norm

As err_norm gets smaller we are moving toward: r = M·r

View 3: Eigenvectors:
We are actually just finding the eigenvector of M.

x is an
eigenvector of ᵣ if:

A·x = ᵣ·x

finds the...

Power iteration algorithm

initialize: r[0] = [1/N, …, 1/N],
r[-1]=[0,...,0]

while (err_norm(r[t],r[t-1])>min_err):
r[t+1] = M·r[t]
t+=1

solution = r[t]

err_norm(v1, v2) = |v1 - v2| #L1 norm

As err_norm gets smaller we are moving toward: r = M·r

View 3: Eigenvectors:
We are actually just finding the eigenvector of M.

x is an
eigenvector of ᵣ if:

A·x = ᵣ·x

A = 1
since columns of M sum to 1.

thus, 1r=Mr

finds the...

View 4: Markov Process

Where is surfer at time t+1? p(t+1) = M · p(t)

Suppose: p(t+1) = p(t), then p(t) is a stationary distribution
of a random walk.

Thus, r is a stationary distribution. Probability of being at
given node.

View 4: Markov Process

Where is surfer at time t+1? p(t+1) = M · p(t)

Suppose: p(t+1) = p(t), then p(t) is a stationary distribution
of a random walk.

Thus, r is a stationary distribution. Probability of being at
given node.

aka 1st order Markov Process
● Rich probabilistic theory. One finding:

○ Stationary distributions have a unique distribution if:
■ No “dead-ends”: a node can’t propagate its rank
■ No “spider traps”: set of nodes with no way out.

Also known as being stochastic, irreducible, and aperiodic.

View 4: Markov Process - Problems for vanilla PI

aka 1st order Markov Process
● Rich probabilistic theory. One finding:

○ Stationary distributions have a unique distribution if:
■ No “dead-ends”: a node can’t propagate its rank
■ No “spider traps”: set of nodes with no way out.

Also known as being stochastic, irreducible, and aperiodic.

A B

C D

to \ from A B C D

A 0 0 1 0

B 1/3 0 0 1

C 1/3 0 0 0

D 1/3 0 0 0

What would r
converge to?

View 4: Markov Process - Problems for vanilla PI

aka 1st order Markov Process
● Rich probabilistic theory. One finding:

○ Stationary distributions have a unique distribution if:
■ No “dead-ends”: a node can’t propagate its rank
■ No “spider traps”: set of nodes with no way out.

Also known as being stochastic, irreducible, and aperiodic.

to \ from A B C D

A 0 0 1 0

B 1/3 0 0 1

C 1/3 0 0 0

D 1/3 1 0 0

What would r
converge to?

A B

C D

View 4: Markov Process - Problems for vanilla PI

aka 1st order Markov Process
● Rich probabilistic theory. One finding:

○ Stationary distributions have a unique distribution if:

Also known as being stochastic, irreducible, and aperiodic.

to \ from A B C D

A 0 0 1 0

B 1/3 0 0 1

C 1/3 0 0 0

D 1/3 1 0 0

What would r
converge to?

A B

C D

 same node doesn’t repeat at regular intervals
columns sum to 1 non-zero chance of going to any other node

Goals:
No “dead-ends”
No “spider traps”

The “Google” PageRank Formulation
Add teleportation:At each step, two choices
1. Follow a random link (probability, ᶔ = ~.85)
2. Teleport to a random node (probability, 1-ᶔ)

A B

C D

Goals:
No “dead-ends”
No “spider traps”

The “Google” PageRank Formulation
Add teleportation:At each step, two choices
1. Follow a random link (probability, ᶔ = ~.85)
2. Teleport to a random node (probability, 1-ᶔ)

A B

C D

to \ from A B C D

A 0 0 1 0

B ⅓ 0 0 1

C ⅓ 0 0 0

D ⅓ 1 0 0

Goals:
No “dead-ends”
No “spider traps”

The “Google” PageRank Formulation
Add teleportation:At each step, two choices
1. Follow a random link (probability, ᶔ = ~.85)
2. Teleport to a random node (probability, 1-ᶔ)

A B

C D

to \ from A B C D

A 0 0+.15*¼ 1 0+.15*¼

B ⅓ 0+.15*¼ 0 .85*1+.15*¼

C ⅓ 0+.15*¼ 0 0+.15*¼

D ⅓ .85*1
+.15*¼

0 0+.15*¼

Goals:
No “dead-ends”
No “spider traps”

The “Google” PageRank Formulation
Add teleportation:At each step, two choices
1. Follow a random link (probability, ᶔ = ~.85)
2. Teleport to a random node (probability, 1-ᶔ)

A B

C D

to \ from A B C D

A 0+.15*¼ 0+.15*¼ 85*1+.15*¼ 0+.15*¼

B .85*⅓+.15*¼ 0+.15*¼ 0+.15*¼ .85*1+.15*¼

C .85*⅓+.15*¼ 0+.15*¼ 0+.15*¼ 0+.15*¼

D .85*⅓+.15*¼ .85*1+.15*¼ 0+.15*¼ 0+.15*¼

Goals:
No “dead-ends”
No “spider traps”

The “Google” PageRank Formulation
Add teleportation:At each step, two choices
1. Follow a random link (probability, ᶔ = ~.85)
2. Teleport to a random node (probability, 1-ᶔ)

to \ from A B C D

A 0 0 1 0

B ⅓ 0 0 1

C ⅓ 0 0 0

D ⅓ 0 0 0

A B

C D

Goals:
No “dead-ends”
No “spider traps”

The “Google” PageRank Formulation
Add teleportation:At each step, two choices
1. Follow a random link (probability, ᶔ = ~.85)
2. Teleport to a random node (probability, 1-ᶔ)

to \ from A B C D

A 0 ¼ 1 0

B ⅓ ¼ 0 1

C ⅓ ¼ 0 0

D ⅓ ¼ 0 0

A B

C D

Goals:
No “dead-ends”
No “spider traps”

The “Google” PageRank Formulation
Add teleportation:At each step, two choices
1. Follow a random link (probability, ᶔ = ~.85)
2. Teleport to a random node (probability, 1-ᶔ)

to \ from A B C D

A 0 .85*¼+.15*¼ 1 0

B ⅓ .85*¼+.15*¼ 0 1

C ⅓ .85*¼+.15*¼ 0 0

D ⅓ .85*¼+.15*¼ 0 0

A B

C D

Goals:
No “dead-ends”
No “spider traps”

The “Google” PageRank Formulation
Add teleportation:At each step, two choices
1. Follow a random link (probability, ᶔ = ~.85)
2. Teleport to a random node (probability, 1-ᶔ)
 (Teleport from a dead-end has probability 1)

to \ from A B C D

A 0+.15*¼ 1*¼ 85*1+.15*¼ 0+.15*¼

B .85*⅓+.15*¼ 1*¼ 0+.15*¼ .85*1+.15*¼

C .85*⅓+.15*¼ 1*¼ 0+.15*¼ 0+.15*¼

D .85*⅓+.15*¼ 1*¼ 0+.15*¼ 0+.15*¼

A B

C D

Teleportation, as Flow Model:
Goals:
No “dead-ends”
No “spider traps”

to \ from A B C D

A 0+.15*¼ 1*¼ 85*1+.15*¼ 0+.15*¼

B .85*⅓+.15*¼ 1*¼ 0+.15*¼ .85*1+.15*¼

C .85*⅓+.15*¼ 1*¼ 0+.15*¼ 0+.15*¼

D .85*⅓+.15*¼ 1*¼ 0+.15*¼ 0+.15*¼

A B

C D

(Brin and Page, 1998)

Teleportation, as Flow Model:
Goals:
No “dead-ends”
No “spider traps”

to \ from A B C D

A 0+.15*¼ 1*¼ 85*1+.15*¼ 0+.15*¼

B .85*⅓+.15*¼ 1*¼ 0+.15*¼ .85*1+.15*¼

C .85*⅓+.15*¼ 1*¼ 0+.15*¼ 0+.15*¼

D .85*⅓+.15*¼ 1*¼ 0+.15*¼ 0+.15*¼

(Brin and Page, 1998)

Teleportation,
as Matrix Model:

A B

C D

Teleportation, as Flow Model:
Goals:
No “dead-ends”
No “spider traps”

to \ from A B C D

A 0+.15*¼ .85*¼+.15*¼ 85*1+.15*¼ 0+.15*¼

B .85*⅓+.15*¼ .85*¼+.15*¼ 0+.15*¼ .85*1+.15*¼

C .85*⅓+.15*¼ .85*¼+.15*¼ 0+.15*¼ 0+.15*¼

D .85*⅓+.15*¼ .85*¼+.15*¼ 0+.15*¼ 0+.15*¼

(Brin and Page, 1998)

Teleportation,
as Matrix Model:

Teleportation, as Flow Model:
Goals:
No “dead-ends”
No “spider traps”

to \ from A B C D

A 0+.15*¼ 1*¼ 85*1+.15*¼ 0+.15*¼

B .85*⅓+.15*¼ 1*¼ 0+.15*¼ .85*1+.15*¼

C .85*⅓+.15*¼ 1*¼ 0+.15*¼ 0+.15*¼

D .85*⅓+.15*¼ 1*¼ 0+.15*¼ 0+.15*¼

(Brin and Page, 1998)

Teleportation,
as Matrix Model:

To apply:
run power
iterations over M’
instead of M.

Teleportation, as Flow Model:
Goals:
No “dead-ends”
No “spider traps”

to \ from A B C D

A 0+.15*¼ 1*¼ 85*1+.15*¼ 0+.15*¼

B .85*⅓+.15*¼ 1*¼ 0+.15*¼ .85*1+.15*¼

C .85*⅓+.15*¼ 1*¼ 0+.15*¼ 0+.15*¼

D .85*⅓+.15*¼ 1*¼ 0+.15*¼ 0+.15*¼

(Brin and Page, 1998)

Teleportation,
as Matrix Model:

Steps:
1. Compute M

2. Add 1/N to all
dead-ends.

3. Convert M to M’

4. Run Power
Iterations.

