Streaming Algorithms

CSE 545 - Spring 2017

Big Data Analytics -- The Class

We will learn:

- to analyze different types of data:
- high dimensional
- graphs
- infinite/never-ending
- labeled
- to use different models of computation:
- MapReduce
- streams and online algorithms
- single machine in-memory
- Spark
J. Leskovec, A.Rajaraman, J.Ullman: Mining of Massive Datasets, www.mmds.org

Big Data Analytics -- The Class

We will learn:

- to analyze different types of data:
- high dimensional
- graphs
- infinite/never-ending
- labeled
- to use different models of computation:
- MapReduce
- streams and online algorithms
- single machine in-memory
- Spark
J. Leskovec, A.Rajaraman, J.Ullman: Mining of Massive Datasets, www.mmds.org

Motivation

One often does not know when a set of data will end.

- Can not store
- Not practical to access repeatedly
- Rapidly arriving
- Does not make sense to ever "insert" into a database

Can not fit on disk but would like to generalize / summarize the data?

Motivation

One often does not know when a set of data will end.

- Can not store
- Not practical to access repeatedly
- Rapidly arriving
- Does not make sense to ever "insert" into a database

Can not fit on disk but would like to generalize / summarize the data?

Examples: Google search queries
Satellite imagery data
Text Messages, Status updates
Click Streams

Stream Queries

Stream Queries

E.g. How would you handle:

What is the mean of values seen so far?

We will cover the following algorithms:

- Sampling
- Filtering Data
- Count Distinct Elements
- Counting Moments

General Stream Processing Model

Sampling and Filtering Data

Sampling: Create a random sample for statistical analysis.
Basic Idea: generate random number; if < sample\% keep
Problem: records/rows usually are not units-of-analysis for statistical analyses

Sampling and Filtering Data

Sampling: Create a random sample for statistical analysis.
Basic Idea: generate random number; if < sample\% keep
Problem: records/rows usually are not units-of-analysis for statistical analyses
Potential Solution:

- Assume provided some key as unit-of analysis to sample over
- E.g. ip_address, user_id, document_id, ...etc....

Sampling and Filtering Data

Sampling: Create a random sample for statistical analysis.
Basic Idea: generate random number; if < sample\% keep
Problem: records/rows usually are not units-of-analysis for statistical analyses
Potential Solution:

- Assume provided some key as unit-of analysis to sample over
- E.g. ip_address, user_id, document_id, ...etc....
- Want $1 / 20$ th of all "keys" (e.g. users)
- Hash to 20 buckets; bucket 1 is "in"; others are "out"
- Note: do not need to store anything (except hash functions); may be part of standing query

Sampling and Filtering Data

Filtering: Select elements with property x
Example: 40B email addresses to bypass spam filter

Sampling and Filtering Data

Filtering: Select elements with property x
Example: 40B email addresses to bypass spam filter

- The Bloom Filter
- Given:
- |S| keys to filter; will be mapped to $|\mathrm{B}|$ bits
- \quad hashes $=h_{1}, h_{2}, \ldots, h_{k}$ independent hash functions

Sampling and Filtering Data

Filtering: Select elements with property x
Example: 40B email addresses to bypass spam filter

- The Bloom Filter (approximates; allows FPs, but not FNs)
- Given:
- $\quad|\mathrm{S}|$ keys to filter; will be mapped to $|\mathrm{B}|$ bits
- hashes $=h_{1}, h_{2}, \ldots, h_{k}$ independent hash functions
- Algorithm

```
set all B to 0
for each i in hashes, for each s in S:
set }\textrm{B}[\mp@subsup{h}{i}{}(\textrm{s})]=
... #usually embedded in other code
while key x arrives next in stream
    if B[h
        do as if x is in S
    else: do as if x not in S
```


Sampling and Filtering Data

Filtering: Select elements with property x

What is the probability of a false-positive?

Sampling and Filtering Data

Filtering: Select elements with property x
Example: 40B email addresses to bypass spam filte

- The Bloom Filter (approximates; allows FPs)
- Given:
- $|S|$ keys to filter; will be mapped to $|\mathrm{B}|$ bits
- hashes $=h_{1,} h_{2}, \ldots, h_{k}$ independent hash functions
- Algorithm

```
set all B to 0
for each i in hashes, for each s in S:
set B[hi(s)] = 1
... #usually embedded in other code
while key x arrives next in stream
    if B[h
        do as if x is in S
    else: do as if x not in S
```


Sampling and Filtering Data

Filtering: Select elements with property x
Example: 40B email addresses to bypass spam filte

- The Bloom Filter (approximates; allows FPs)
- Given:
- |S| keys to filter; will be mapped to |B| bits
- hashes $=h_{1}, h_{2}, \ldots, h_{k}$ independent hash functions
- Algorithm

```
set all B to 0
for each i in hashes, for each s in S:
set B[hi(s)] = 1
... #usually embedded in other code
while key x arrives next in stream
    if B[h
        do as if x is in S
    else: do as if x not in S
```

What is the probability of a false-positive?

What fraction of |B| are 1s?

Like throwing $|S|^{*}$ k darts at n targets.
1 dart: 1/n
d darts: $(1-1 / n)^{d}=$ prob of 0
$=e^{-\mathrm{d} / \mathrm{n}}$ are 0s
thus, (1- $e^{-d / n}$) are 1 s
probability all k hashes being 1?

Sampling and Filtering Data

Filtering: Select elements with property x
Example: 40B email addresses to bypass spam filte

- The Bloom Filter (approximates; allows FPs)
- Given:
- |S| keys to filter; will be mapped to |B| bits
- hashes $=h_{1}, h_{2}, \ldots, h_{k}$ independent hash functions
- Algorithm

```
set all B to 0
for each i in hashes, for each s in S:
set }\textrm{B}[\mp@subsup{h}{i}{}(\textrm{s})]=
... #usually embedded in other code
while key x arrives next in stream
    if B[h
        do as if x is in S
    else: do as if x not in S
```

What is the probability of a false-positive?

What fraction of $|\mathrm{B}|$ are 1 s ?

Like throwing |S| * k darts at n targets.
1 dart: 1/n
d darts: $(1-1 / n)^{d}=$ prob of 0
$=\mathrm{e}^{-\mathrm{d} / \mathrm{n}}$ are 0 s
thus, ($1-\mathrm{e}^{-\mathrm{d} / n}$) are 1 s
probability all k hashes being 1 ?

$$
\left(1-e^{-\left(|S|^{*} k\right) / n}\right)^{k}
$$

Note: Can expand S as stream continues as long as $|\mathrm{B}|$ has room
(e.g. adding verified email addresses)

Counting Moments

Moments:

- Suppose m_{i} is the count of distinct element i in the data
- The kth moment of the stream is $\sum_{i \in \mathrm{sct}} m_{i}^{k}$
- Oth moment: count of distinct elements
- 1st moment: length of stream
- 2nd moment: sum of squares
(measures uneveness; related to variance)

Counting Moments

Oth moment
One Solution: Just keep a set (hashmap, dictionary, heap)
Problem: Can't maintain that many in memory; disk storage is too slow

- Oth moment: count of distinct elements
- 1st moment: length of stream
- 2nd moment: sum of squares
(measures uneveness; related to variance)

Counting Moments

0th moment

Streaming Solution: Flajolet-Martin Algorithm
Pick a hash, h, to map each of n elements to $\log _{2} n$ bits
$\mathrm{R}=0$ \#potential max number of zeros at tail
for each stream element, e:

$$
\begin{aligned}
& \quad r(e)=\text { num of trailing 0s from } h(e) \\
& R=r(e) \text { if } r(e)>R \\
& \text { estimated_distinct_elements }=2^{R}
\end{aligned}
$$

- Oth moment: count of distinct elements
- 1st moment: length of stream
- 2nd moment: sum of squares
(measures uneveness; related to variance)

Counting Moments

0th moment

Streaming Solution: Flajolet-Martin Algorithm
Problem:
Unstable in practice.
Pick a hash, h, to map each of n elements to $\log _{2} n k$
$\mathrm{R}=0$ \#potential max number of zeros at tail
for each stream element, e:

$$
\begin{aligned}
& \quad r(e)=\text { num of trailing 0s from } h(e) \\
& R=r(e) \text { if } r(e)>R \\
& \text { estimated_distinct_elements }=2^{R}
\end{aligned}
$$

- Oth moment: count of distinct elements
- 1st moment: length of stream
- 2nd moment: sum of squares
(measures uneveness; related to variance)

Counting Moments

0th moment

Streaming Solution: Flajolet-Martin Algorithm
Pick a hash, h, to map each of n elements to $\log _{2} n$
$\mathrm{R}=0$ \#potential max number of zeros at tail
for each stream element, e:

$$
\begin{aligned}
& \quad r(e)=\text { num of trailing } 0 \text { from } h(e) \\
& R=r(e) \text { if } r(e)>R \\
& \text { estimated_distinct_elements }=2^{R}
\end{aligned}
$$

Problem:
Unstable in practice.

Solution:

1. partition into groups
2. Take mean in
group
3. Take median of

- Oth moment: count of distinct elements
- 1st moment: length of stream
- 2nd moment: sum of squares
(measures uneveness; related to variance)

Counting Moments

1st moment
Streaming Solution: Simply keep a counter

- Oth moment: count of distinct elements
- 1st moment: length of stream
- 2nd moment: sum of squares (measures uneveness related to variance)

