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Understanding Textual Content

@® Computationally analyze textual content to understand text
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Sitting here, all alone Watching the snow fall Looking back at the days We threw them snow balls

@® Dominant approach to analyzing/understanding text is Statistical

Learning
@® Learn the appropriate input to output transformation from data!

@® Pro: No need to laboriously design complex rule based systems
@® Better Generalization



The learning from data paradigm
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Representing Text

@® How to represent text?

@® Choose what granularity is used for representation
® Document
® Sentence/Phrases
@® Words
@® Characters

@® Properties of a good representation
@® Useful for the task
@® Allow the model to efficiently use it for the task
@® Bonus: Useful for several tasks and not just a specific task




Representing Words

@® A 1-hot representation
tiger= [0,0,0,0,0,0,0,1,0,0,0]
lion=  [0,0,0,0,0,0,1,0,0,0,0]

® Vector with a single non-zero dimension
® Representation does not capture similiarity between words!




Distributional Method

A word is known by the company it keeps — John Rupert Firth

tains open and the moon shining in on the
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planet | night | full | shadow | shine | crescent
moon 10 22 | 43 16 29 12

sun 14 10| 4 15 45 0
dog 0 4| 2 10 0 0

lazzling snow , the moon has risen full an

Co-Occurrence Matrix

1 the temple of the moon , driving out of



Representing Words - Brown Clusters
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Hierarchical clustering of words (based on classes)

Discrete representation

Very competitive and popular

Useful for variety of tasks like NER, POS tagging etc

[Image from: https://www.researchgate.net/figure/261610872_figl_A-hierarchical-structure-fragment-generated-by-Brown-clustering-for-7-words-from-the] 7
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Distributional Method-Fundamentals

A word is known by the company it keeps — John Rupert Firth
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Distributional Method-Problems with Raw
Co-occurrence Matrices

{ Very high dimensional. Increases with vocabulary size

|

{ Less robust models due to data sparsity.

|

[ Store important information in a fixed dimension dense vector.

|

[Courtesy:Socher]



Distributed Word Representations

/ \ Explicit Latent

Word Embeddings are Dimensions Dimensions
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SVD Word Embeddings
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SVD Word Embeddings (Visualization)

Corpus: | like deep learning. | like NLP. | enjoy flying.
Printing first two columns of U corresponding to the 2 biggest singular values

for 1 in xrange(len(words)):

0.8} plt.text(U[i,0], U[i,1], words[i])
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Issues with Word Embeddings

® Computational Scalability: O(n3)
@® Does not scale well when we have millions of words.

@® Might need to apply transformations on raw co-occurrence
matrices (PPMI etc) to obtain high quality embeddings




An alternative approach: Neural Word
Embeddings

@® Learn word embeddings directly from data

@® Use a neural network based architecture

@® Online, scalable to large data sets

@® Implicitly factorizes the co-occurrence matrix




Skipgram model — Learning Word Embeddings

/Lea rn para meters\

W (embeddings)
and X.

Given a word w
and a context
word ¢, maximize
Pr(c|w).
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https://ronxin.github.io/wevi/ 1 5
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Visualizing word embeddings

1.5 7 [Rumelhart+, 2003] Animal

Bird
B Canary Raobin

0.5 1

Flower Rose Fish

0.0 Sunfish

Daisy

Salmon

0.5
Tree

oy Oak Pine

Plant

' 1 I T ' ! [Courtesy:Rumélbart]]

1.5 1.0 0.5 0.0 0.5 1.0 1.5

1.5

Learn a mapping from words to a continuous space. J 16




Visualizing Word Embeddings - Word
Network




Interesting clusters
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Summary

@® Word Embeddings are learned directly from data

@® Represent words in a low dimensional space capturing similarity in
meaning

® Shown to be useful features for several NLP Tasks

@® Scale well to large data
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