
Incremental Input Stream Segmentation
for Real-time NLP Applications

Mahsa Yarmohammadi

Streaming NLP for Big Data Class
SBU – Computer Science Department

9/29/2016

Outline

• Introduction

 Simultaneous speech-to-speech translation (SST) as an
example of a real-time NLP application

• Current input stream segmentation strategies

• Incorporating syntax into input stream segmentation

• A novel partial parsing approach

 Hedge parsing

• Impact of hedge parsing in MT and SST

Introduction

• Simultaneous speech-to-speech translation (SST):

Listening to source language speech, and at the same time,

producing target language speech.

• Challenges of SST, and real-time systems:

• no later revisions of mistakes

• little latency in delivering the output after receiving the input

• process parts of the input, even before it has been completed

• segment continuous stream input data to the appropriate units

SST Pipeline

Input Segmentation

• SST requires segments of the stream input that:

•are separated at appropriate positions

•are non-overlapping

•could be processed sequentially

• Granularity of segments impacts translation latency/acc.

•shorter segments are typically delivered more quickly

 shorter segments are typically processed more quickly

 shorter segments will likely result in inferior translation accuracy

Input Segmentation

• Previous work on SST mainly focused on

•Pauses in the speech

•The location of comma or period in the transcribed text

•Combined punctuation-based and length-based methods

•Joint segmentation and translation optimization

Input Segmentation
• Fϋgen et al. (2007)

• Baseline: sentence boundaries

• 36.6% BLEU score by translating ASR reference transcripts,

33.4% by translating ASR hypotheses

• avg sentence length: 30 words

• Automatically predicted punctuation marks

• similar BLEU scores as above, avg segment length: 9 words

• Every n words

• n=7, 30.1% BLEU for ASR reference, 27.5% BLEU for ASR hypothesis

• can destroy semantic context

• Non-speech duration of 0.3 seconds

• 32.6% BLEU score for ASR hypotheses

• + lexical features 32.9% BLEU score, avg segment length: 9 words

Input Segmentation

•Rangarajan Sridhar et al. (2013)

•Non-linguistic and linguistic segmentation strategies

•Every n words

• larger n values: good translation accuracy, but high latency

•Optimal word alignment occurs only within segments

• poor translation due to short segments (2-4 words)

•Sentences, or comma-separated segments

• automatically predicted by an SVM classifier

• performs the best, but the classifier introduces a significant delay

• Four segment types of noun, verb, particle, and adverbial

• poor translation, mainly due to short segments

Input Segmentation

•Matusov et al. (2007)

• automatic sentence boundary and sub-sentence punctuation
prediction

• the best translation achieved when boundary detection algorithms
were directly optimized for translation quality

•Cettolo and Federico (2006)

• punctuation-based, length-based, and combined text segmentation
criteria

• the best performance achieved by combining both linguistic and
input length constraints

Syntax-based Segmentation and Annotation

• Human interpreters depend on info. of a structural nature

• the input segmentation follows mainly syntactical principles

• Syntactic annotations in the input segments could
potentially improve the performance of SST

•syntactic annotations can be helpful in regular

(non-incremental) translation

(Mi et al., 2008;Liu et al., 2011;Zhang et al., 2011;Tamura et al., 2013)

Incremental Syntactic Analysis

• Applying syntactic info in real-time scenarios is challenging

• Conventional full syntactic parsing:

• is not directly applicable to sub-sentential segments

•builds fully connected structures over the entire string

• is generally computationally expensive

• A fast partial syntactic parsing of the input should be
considered

A Novel Partial Parsing Approach

Propose a novel partial parsing method for fast and
incremental syntactic analysis of the input that:

1) less computationally demanding than a full parser but more
effective than a shallow parser

2) allows for syntax-based segmentation, and

3) incorporates some degree of syntax without requiring the
entire sentence

Full Syntactic Parsing

• Full parsing gives a complex complete parse tree of the
sentence

 hierarchically embedded structures, recursive phrase construction

 great expressive power but computationally expensive

Partial Syntactic Parsing

•Shallow parsing (chunking) identifies flat, non-overlapping
constituents

• the chunks lack hierarchical structures

• very fast and efficient, but not powerful enough to define
recursive phrases

Syntactic Parsing

Shallow parsing Full parsing

flat bracketing structures fully recursive structures

complexity

efficiency

Syntactic Parsing

Shallow parsing Some partial parsing? Full parsing

flat bracketing structures fully recursive structures

portions of recursive structures

complexity

efficiency

Syntactic Parsing

Shallow parsing Hedge parsing Full parsing

flat bracketing structures fully recursive structures

fully recursive structures for
constituents covering < L words

Hedge Transform

• Preserving every constituent of length up to some span L

Hedge Transform

• Preserving every constituent of length up to some span L

span=3span=2

Hedge Transform

• Preserving every constituent of length up to some span L

span=3

span=5

span=2

Hedge Transform

• Preserving every constituent of length up to some span L

span=3

span=5

span=2

span=1 span=1

Hedge Transform

• Constituents of span > L are recursively removed, children
are attached to the parent

 example: L=4

Hedge Transform

• Constituents of span > L are recursively removed, children
are attached to the parent

 example: L=4

Hedge Transform

• Constituents of span > L are recursively removed, children
are attached to the parent

 example: L=4

Hedge Transform

• Hedges are sequentially connected to the top-most node,
allowing for sentence segmentation before parsing

Hedge Parsing in MT

• Impact of hedge parsing in machine translation (MT):

(1) How does augmenting a translation model with hedge
syntax affect a regular (non-incremental) translation?
compared to

 no syntax

 shallow syntax

 full syntax

(2) How does hedge segmentation of the input affect the
latency/acc trade-off in an incremental translation?
compared to
 raw segments

 non-linguistic syntax

 shallow syntax

Hedge Parsing in MT

• In summary, the results show:

 significant improvement in translation quality by using hedge-
syntax on the target side of the translation model compared to
shallow- or no-syntax

 comparable to the performance of a full-syntax model

 hedge-syntax on the source side of the translation model falls
behind full syntax although again outperforms shallow syntax

 hedge parsing of the inputs resulted in an acceptable accuracy/
latency trade-off in simultaneous translation, notably outperforming
shallow syntax

Thank You!

Questions?

SST Pipeline

