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Introduction

- Simultaneous speech-to-speech translation (SST):
Listening to source language speech, and at the same time,
producing target language speech.

* Challenges of SST, and real-time systems:
* no later revisions of mistakes

- little latency in delivering the output after receiving the input
* process parts of the input, even before it has been completed

* segment continuous stream input data to the appropriate units
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Input Segmentation

« SST requires segments of the stream input that:
- are separated at appropriate positions

- are non-overlapping
- could be processed sequentially

» Granularity of segments impacts translation latency/acc.
*shorter segments are typically delivered more quickly
- shorter segments are typically processed more quickly
- shorter segments will likely result in inferior translation accuracy



Input Segmentation

* Previous work on SST mainly focused on

*Pauses in the speech
* The location of comma or period in the transcribed text
- Combined punctuation-based and length-based methods

- Joint segmentation and translation optimization



Input Segmentation
* FUgen et al. (2007)

- Baseline: sentence boundaries
* 36.6% BLEU score by translating ASR reference transcripts,
33.4% by translating ASR hypotheses
- avg sentence length: 30 words
» Automatically predicted punctuation marks
- similar BLEU scores as above, avg segment length: 9 words
* Every n words
* n=7, 30.1% BLEU for ASR reference, 27.5% BLEU for ASR hypothesis
* can destroy semantic context
* Non-speech duration of 0.3 seconds
+ 32.6% BLEU score for ASR hypotheses

* + |lexical features 32.9% BLEU score, avg segment length: 9 words



Input Segmentation

- Rangarajan Sridhar et al. (2013)
* Non-linguistic and linguistic segmentation strategies

* Every n words

* larger n values: good translation accuracy, but high latency
* Optimal word alignment occurs only within segments

* poor translation due to short segments (2-4 words)

» Sentences, or comma-separated segments

- automatically predicted by an SVM classifier

* performs the best, but the classifier introduces a significant delay
* Four segment types of noun, verb, particle, and adverbial

* poor translation, mainly due to short segments



Input Segmentation

- Matusov et al. (2007)

« automatic sentence boundary and sub-sentence punctuation
prediction

* the best translation achieved when boundary detection algorithms
were directly optimized for translation quality

* Cettolo and Federico (2006)

* punctuation-based, length-based, and combined text segmentation
criteria

* the best performance achieved by combining both linguistic and
iInput length constraints



Syntax-based Segmentation and Annotation

* Human interpreters depend on info. of a structural nature
*the input segmentation follows mainly syntactical principles

- Syntactic annotations in the input segments could
potentially improve the performance of SST

e syntactic annotations can be helpful in regular
(non-incremental) translation
(Mi et al., 2008;Liu et al., 2011;Zhang et al., 2011;Tamura et al., 2013)



Incremental Syntactic Analysis

* Applying syntactic info in real-time scenarios is challenging

- Conventional full syntactic parsing:
*1s not directly applicable to sub-sentential segments

* builds fully connected structures over the entire string
*1s generally computationally expensive

- A fast partial syntactic parsing of the input should be
considered



A Novel Partial Parsing Approach

Propose a novel partial parsing method for fast and
Incremental syntactic analysis of the input that:

1) less computationally demanding than a full parser but more
effective than a shallow parser

2) allows for syntax-based segmentation, and

3) incorporates some degree of syntax without requiring the
entire sentence



Full Syntactic Parsing

* Full parsing gives a complex complete parse tree of the
sentence

- hierarchically embedded structures, recursive phrase construction
= great expressive power but computationally expensive
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Partial Syntactic Parsing

-Shallow parsing (chunking) identifies flat, non-overlapping
constituents

* the chunks lack hierarchical structures

- very fast and efficient, but not powerful enough to define
recursive phrases
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Syntactic Parsing

Shallow parsing Full parsing
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Syntactic Parsing

Shallow parsing  Some patrtial parsing? Full parsing
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Syntactic Parsing

Shallow parsing Hedge parsing Full parsing
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Hedge Transform

* Preserving every constituent of length up to some span L



Hedge Transform

* Preserving every constituent of length up to some span L
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Hedge Transform

* Preserving every constituent of length up to some span L
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Hedge Transform

* Preserving every constituent of length up to some span L
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Hedge Transform

- Constituents of span > L are recursively removed, children
are attached to the parent

-example: L=4
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Hedge Transform

- Constituents of span > L are recursively removed, children
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Hedge Transform

- Constituents of span > L are recursively removed, children
are attached to the parent

-example: L=4
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Hedge Transform

- Hedges are sequentially connected to the top-most node,
allowing for sentence segmentation before parsing
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Hedge Parsing in MT

 Impact of hedge parsing in machine translation (MT):

(1) How does augmenting a translation model with hedge
syntax affect a regular (non-incremental) translation?

compared to
no syntax
shallow syntax
full syntax

(2) How does hedge segmentation of the input affect the
latency/acc trade-off in an incremental translation?
compared to

raw segments
non-linguistic syntax
shallow syntax



Hedge Parsing in MT

* In summary, the results show:

= significant improvement in translation quality by using hedge-
syntax on the target side of the translation model compared to
shallow- or no-syntax

- comparable to the performance of a full-syntax model

- hedge-syntax on the source side of the translation model falls
behind full syntax although again outperforms shallow syntax

- hedge parsing of the inputs resulted in an acceptable accuracy/
latency trade-off in simultaneous translation, notably outperforming
shallow syntax



Thank You!

Questions?
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