Estimating Financial Risk
through Monte Carlo
Simulation

Modeling Value at Risk (VaR) with Linear Regression
Under Normal Distribution Assumption

Outline

- What Are We Getting Into?
- Basic Terms

- Monte Carlo Risk Modeling
- Results / Evaluations

What Are We Getting Into?

- Train a linear regression model on stock data

- Calculate the risk by running the trained model on
virtual markets produced by Monte Carlo
Simulation

- We will assume normal distribution for features
(market factors) and use multivariate normal
distribution for the simulation

- Monte Carlo Simulation is massively parellelizable
and Spark is very useful for this!

Basic Terms

1. Value at Risk (VaR)

A simple measure of investment risk that tries to
provide a reasonable estimate of maximum probable
loss in value of an investment over the particular period

e.g.) A VaR of 1 mil dollars with a 5% p-value and two
weeks -> your investment stands 5% chance of losing
more than 1 mil dollars over two weeks

Basic Terms

1.

5% VaR

Line at -0.82 means 5%
Value-at-Risk is 0.82.

Red area to the left of
the line represents 5%
of the total area under
the curve.

The curve represents a
hypothetical Profit-and-Loss
probability density function. It has
mean one and standard deviation
one, but fatter tails than a Normal
distribution. The 5% VaR point is
1.82 standard deviations below the
mean, versus 1.64 for a Normal
distribution.

Blue area to the right
of the line represents
95% of the total area

under the curve.

Basic Terms

1. Conditional Value at Risk (CVaR)
Expected Shortfall (average of VaR values)

e.g.) A CVaR of 5 million dollars with a 5% g-value and
two weeks indicates the belief that the average loss in
the worst 5% of outcomes is 5 million dollars.

Basic Terms

2. Market Factors

A value that can be used as an indicator of macro
aspects of the financial climate at a particular time

,}gﬁﬁﬁs&,ﬂm \ 9 W) KENSHC S&P sectors on day of less Brexit fear
— - : Y W STATS BOX Average return | 39 times since Jun. 25, 2015
“NASDAQ -
s
= BOUGHT (XLU)

; » = o)
\ ((Q‘\ 100 +15 k168 . +0.16%
B 3 ; o BEFORE
7 o0 T e T e _
| : s g SOLD +0.12%
o0 pst DAY OF (XLV) "
W EVENT HEALTH +0.10%
o B -

TTTTTT
ssssssss

zzzzzzzzzzzzzzzzzzzzzzzzz

Basic Terms

3. Resilient Distributed Datasets (RDDs)

Spark revolves around the concept of a resilient
distributed dataset (RDD), which is a fault-tolerant
collection of elements that can be operated on in
parallel.

Basic Terms

3. Resilient Distributed Datasets (RDDs)

It is an immutable distributed collection of objects. Each
dataset in RDD is divided into logical partitions, which
may be computed on different nodes of the cluster.
RDDs can contain any type of Python, Java, or Scala
objects, including user-defined classes.

Basic Terms

4. Linear Regression
- Try to fit the model with a linear assumption
yi:ﬁ1$i1+"'+ﬁp$ip+5£:x?ﬂ+5i: i=1,...,n,
- Find parameters which minimize errors

Find miélQ(a,ﬁ), for Q(a, B) = zn:E,;z = i(yi — a — fz;)?
a, =1 il

Basic Terms

4. Linear Regression

= + +
- y = Bx 01 e
* The slope of the line (82) — the angle between a data point and the
regression line
¥ . . ‘
« The y intercept (01) — the point where x crosses the y axis (x = 0)

Basic Terms

5. Monte Carlo Simulation

Monte Carlo simulation performs risk analysis by
building models of possible results by substituting a
range of values—a probability distribution—for any
factor that has inherent uncertainty. It then calculates
results over and over, each time using a different set of
random values from the probability functions.

Methods for Calculating VaR

1. Variance-Covariance
2. Historical Simulation

3. Monte Carlo Simulation >

Monte Carlo Risk Modeling

Our Approach

- Time interval: two weeks

- Model: Linear Regression

- Features (x): four market factors

- Dataset (y): historical data of 3,000 stocks. Returns
(change of stock values)

- Objective: Calculate VaR and CVaR of stocks with
Monte Carlo Simulation

Dataset

- Stock History Data from Yahoo (GOOGL.csv)

Date,Open,High,Low,Close,Volume,Ad]j

2014-10-24,554.98,555.00,545.16,548.
2014-10-23,548.28,557.40,545.50,553.
2014-10-22,541.05,550.76,540.23,542.
2014-10-21,537.27,538.77,530.20,538.
2014-10-20,520.45,533.16,519.14,532,

Close

90,2175400,548.90
65,2151300,553.65
69,2973700,542.69
03,2459500,538.03
38,2748200,532, 38

Dataset

Oct
Oct
Oct
Oct
Oct
Oct

Stock History Data from investing.com
(CrudeOil.tsv)

24,
23,
22,
21,
20,
18,

2014
2014
2014
2014
2014
2014

81.01
82.09
80.52
82.49
81.91
82.67

81.
80.
82.
81.
82.
82.

95
42
55
86
39
39

81

.95
82.
83.
83.
82.
B2.

37
15
26
73
72

80.
80.
80.
81.
80.
82.

36
05
22
57
78
39

272.51K -1.32%
354.84K 1.95%
352.22K =2.39%
297.52K 0.71%
301.04K -0.93%

0.75%

Preprocessing

- Data Point Generation (Two-week interval)

(price on day A - price 14 days later [= 10 rows below]) /
(price on day A)

twoWeekReturns(history: Array[(DateTime, Double)]): Arrayl[Double] = {
history.sliding(10).map { window =>
next = window. last._2

prev = window.head._2
(next — prev) / prev
}.toArray

Preprocessing

- Trimming Data Matrix (no need for details)

Set the start date and the end date for factors/stocks

trimToRegion(history: Array[(DateTime, Double)], start: DateTime, end: DateTime)
: Array[(DateTime, Double)] = {

trimmed = history.dropWhile(_._1 < start).takewhile(_._1 <= end)
(trimmed.head._1 != start) {

trimmed = Array((start, trimmed.head._2)) ++ trimmed

}
(trimmed.last._1 '= end) {

trimmed = trimmed ++ Array((end, trimmed.last._2))
}

trimmed

Preprocessing

- Trimming Data Matrix (no need for details)

Fill in the missing values with the value at the closest date

filllnHistory(history: Array[(DateTime, Double)], start: DateTime, end: DateTime)
+ Array[(DateTime, Double)] = {
cur = history
filled = ArrayBuffer[(DateTime, Double)]()
curDate = start
(curDate < end) {
(cur.tail.nonEmpty && cur.tail.head._1 == curDate) {
cur = cur.tail -

}

filled += ((curDate, cur.head._2))

curDate += 1.days
(curDate.dayOfWeek().get > 5) curDate += 2.days

filled.toArray

Calculation for Parameters of
Linear Regression

A Monte Carlo risk model typically phrases each
instrument’s return (the change of stock price over a
time period) in terms of a set of market factors.

i
i

r.=c+ j;lwij*ftj

Calculation for Parameters of
Linear Regression

Feature Vector with Market Factors

- NASDAQ

- S&P 500

- Crude Oil Price

- US 30-year Treasury Bonds

Calculation for Parameters of
Linear Regression

Feature vector from the sample code (x: stock value
change, sign of the value is preserved)

[x%Vx x]

featurize(factorReturns: Array[Doublel): ArraylDouble] = {
squaredReturns = factorReturns.map(x == math.signum({x) * x * x)

squareRootedReturns = factorReturns.map{x => math.signum({x) * math.sqrt(math.abs(x]}})
squaredReturns ++ squareRootedReturns ++ factorReturns
}

Calculation for Parameters of
Linear Regression

Linear Regression Model
w: weights for features, f: feature, c: intercept, r: return,
r: return, i stock, j: feature factor, t: trials

[

r.=c+ j;lwij*ftj

Monte Carlo Simulation

- Calculate Covariance matrix of four market factors
factorMat = factorMatrix(factorsReturns)

factorCov = Covariance(factorMat).getCovarianceMatrix().getData()
factorMeans = factorsReturns.map(factor => factor.sum / factor.size).toArray

Three Indexes: Percent Change from Their 2000 Peaks Wi

—Nominal Dow —Nominal S&P500 —Nominal Nasdag ~ "*=™"*"*"

_ Closer to the reality!
- (comparing to
independence
assumptions)

§ g ¥ 3EEoRE

2000 2000 2002 2003 2008 2005 2006 2007 2008 2009 200 2011 2012 2013 201 2015 206

Monte Carlo Simulation

- Generate samples of market factor values
following multivariate normal distribution

trialReturns(
seed: Long

SeqlArray [Double]],
Array[Double],
jances: Arrayl[Array[Doublel]l): SeqlDouble]l = {
rand = MersenneTwister(seed)
multivariateNormal = MultivariateNormalDistribution(rand, factorMeans,
factorCovariances)

trialReturns = Array[Double] (numTrials)
(i <= @ until numTrials) {
trialFactorReturns = multivariateNormal.sample()
trialFeatures = RunRisk.featurize(trialFactorReturns)
trialReturns(i) = trialReturn(trialFeatures, instruments)

}
trialReturns

Parallel Computations with
RDDs

- # of trials: 10,000,000

- # of RDDs: 1,000

- Use different seed for Mersenne Twister random
generator and feed it to multivariate normal sample
for each trial

seeds = (baseSeed until baseSeed + parallelism)
seedRdd = sc.parallelize(seeds, parallelism)

seedRdd. flatMap(
trialReturns(_, numTrials / parallelism, bInstruments.value, factorMeans, factorCov))

One RDD for One Trial

- One trial simulates one virtual market situation

- Each market situation is simulated by features
sampled by multivariate normal distribution of four
market factors and the trained Linear Regression
model parameters

- For each market situation, we calculate the average
of VaRs of all stock prices (increase/decrease)

One RDD for One Trial

computeTrialReturns(

stocksReturns: SeqlArray[Double]],

factorsReturns: SeqlArray[Doublel],

sc: SparkContext,

baseSeed: Long,

numTrials: Int,

parallelism: Int): RDD[Double] = {
factorMat = factorMatrix(factorsReturns)
factorCov = Covariance(factorMat).getCovarianceMatrix().getData()
factorMeans = factorsReturns.map(factor == factor.sum / factor.size).toArray
factorFeatures = factorMat.map(featurize)
factorWeights = computeFactorWeights(stocksReturns, factorFeatures)

bInstruments = sc.broadcast(factorWeights)

seeds = (baseSeed until baseSeed + parallelism)
seedRdd = sc.parallelize(seeds, parallelism)

seedRdd. flatMap(
trialReturns(_, numTrials / parallelism, bInstruments.value, factorMeans, factorCov))

One RDD for One Trial

trialReturn(trial: Array[Double], instruments: Seq[Array[Doublel]): Double = {
totalReturn = 0.0
(instrument <- instruments) {
totalReturn += instrumentTrialReturn(instrument, trial)
}
totalReturn / instruments.size
¥

instrumentTrialReturn(instrument: Array[Double], trial: Array[Double]): Double
instrumentTrialReturn = instrument(Q)
i=9
(i < trial.length) {
instrumentTrialReturn += trial(i) * instrument(i+1)
i+=1
}
instrumentTrialReturn
}

Finally, VaR and CVaR

- Aggregate all trial results

fivePercentVaR(trials: RDD[Double]): Double = {
topLosses = trials.takeOrdered(math.max(trials.count().toInt / 20, 1))
topLosses. last

}

fivePercentCVaR(trials: RDD[Double]): Double = {
topLosses = trials.takeOrdered(math.max(trials.count().toInt / 26, 1))
topLosses.sum / toplLosses. length

}

Results & Evaluation

. & ch09-risk — java -cp fusrflocal/spark/conff:fusr/localfspark/jars/® -Xmx1g org.ap...

O~ cvar @ (<[> [Done

B) in 9 ms on localhost (999/1000)
| 16/10/31 ©9:40:04 INFO Executor: Finished task 999.8 in stage 3.8 (TID 3993). 14
2105 bytes result sent to driver
| 16/18/31 09:40:04 INFO TaskSetManager: Finished task 999.@ in stage 3.8 (TID 399
|9) in 9 ms on localhost (100@/1088)

16/10/31 ©9:40:84 INFO TaskSchedulerImpl: Removed TaskSet 3.8, whose tasks have
all completed, from pool

16/18/31 09:408:84 INFO DAGScheduler: ResultStage 3 (takeOrdered at RunRisk.scala
| :319) finished in 12.121 s

16/10/31 ©9:40:904 INFO DAGScheduler: Job 3 finished: takeOrdered at RunRisk.scal
a:319, took 12.150025 s
VaR 5%: -0.12510664768215088

CVaR 5%: -9.2649633272222984

16/18/31 ©9:40:84 INFO SparkContext: Starting job: count at RunRisk.scala:314
16/10/31 ©9:40:84 INFO DAGScheduler: Got job 4 (count at RunRisk.scala:314) with
1000 output partitions

16/10/31 ©9:40:84 INFO DAGScheduler: Final stage: ResultStage 4 (count at RunRis
k.scala:314)

16/18/31 ©9:40:84 INFO DAGScheduler: Parents of final stage: List(

16/18/31 89:40:04 INFO DAGScheduler: Missing parents: List()

16/10/31 99:40:84 INFO DAGScheduler: Submitting ResultStage 4 (PartitionwiseSamp
| ledRDD [4] at sample at RunRisk.scala:329), which has no missing parents

16/10/31 89:40:04 INFO MemoryStore: Block broadcast_5 stored as values in memory

(estimated size 19.7 KB, free 289.5 MB)

Results & Evaluation

- Confidence Interval (95%)

We are 95% confident to say that the VaR would fall into
this interval.

- Bootstrapping

Resample from the subset of VaRs resulted from trials

Results & Evaluation

- Bootstrapped Confidence Interval (95%)

Get the confidence interval from bootstrapped dataset.

bootstrappedConfidencelnterval(
: RDD[Doublel,
Statistic: RDD[Double] == Double,
mples: Int,
Double): (Double, Double) = {
stats = (@ until numResamples).map { i =>
resample = trials.sample(true, 1.8)

computeStatistic(resample)
}.sorted
lowerIndex = (numResamples % pValue / 2 - 1).tolInt

upperIndex = math.ceil(numResamples * (1 - pValue / 2)).tolnt
(stats(lowerIndex), stats(upperIndex))

}

Results & Evaluation

- Kupiec's proportion-of-failures (POF) test

Counts the number of times that the losses exceeded
the VaR. The null hypothesis is that the VaR is
reasonable, and a sufficiently extreme test statistic
means that the VaR estimate does not accurately
describe the data.

Results & Evaluation

I
. , . .
- Kupiec's proportion-of-failures (POF) test
PortfolioID VaRID VaRLevel POF LRatioPOF PValuePOF Observations Failures
"Equity" "Mormal95" .95 accept 0.46147 8.49694 1843 57
"Equity" "Normal99" @.99 reject 3.5118 9.0860933 1843 17
"Equity" "Historical95" 08.95 accept @.910823 8.34005 1843 59
"Equity" "Historical99" 8.99 accept 0.22768 8.63325 1043 12
"Equity" "EWMAS5" 8.95 accept @.91023 8.34005 1843 59

"Equity" "EWMAS9" @.99 reject 9.8298 09.0817171 1043 22

Results & Evaluation

Kupiec test says that this VaR model is not reasonable...

|] [] ch09-risk — java -cp fusrflocalf/spark/conf/:/usrflocal/spark/jars/* -Xmx1g org....

16/18/31 10:23:26 INFO Executor: Finished task 999.@ in stage 483.0 (TID 483999)
. 189625 bytes result sent to driver

16/10/31 10:23:26 INFO TaskSetManager: Finished task 999.8 in stage 403.@ (TID 4
83999) in 8 ms on localhost (10@e/1@00)

16/10/31 10:23:26 INFO TaskSchedulerImpl: Removed TaskSet 483.8, whose tasks hav
e all completed, from pool

16/18/31 10:23:26 INFO DAGScheduler: ResultStage 483 (takeOrdered at RunRisk.sca
12:319) finished in 11.257 s

16/10/31 10:23:26 INFO DAGScheduler: Job 483 finished: takeOrdered at RunRisk.sc
ala:319, took 11.262985 s

VaR confidence interval: (-0.125409004584482001,-0.12468834434968425)

CVaR confidence interval: (-0.2655703019054329,-0.26444242296872705)

Kupiec test p-value: 0.0

16/10/31 10:23:26 INFO SparkContext: Starting job: stats at RunRisk.scala:299
16/10/31 10:23:26 INFO DAGScheduler: Got job 484 (stats at RunRisk.scala:299) wi
th 1000 output partitions

16/10/31 10:23:26 INFO DAGScheduler: Final stage: ResultStage 404 (stats at RunR
isk.scala:299)

16/10/31 10:23:26 INFO DAGScheduler: Parents of final stage: List()

16/10/31 10:23:26 INFO DAGScheduler: Missing parents: List()

16/18/31 10:23:26 INFO DAGScheduler: Submitting ResultStage 484 (MapPartitionsRD
D[4B4] at stats at RunRisk.scala:299), which has no missing parents

16/10/31 10:23:26 INFO MemoryStore: Block broadcast_485 stored as values in memo
ry {estimated size 3.2 KB, free 289.5 MB)

Density

Results & Evaluation

Market Factor Distributions

Figure 0

Two Week Return (5)

Crude Qil

320
300
280
260
240
220
200

= 180

Z 160
8 140
120
100
0
60
40
20

Figure 1

Two Week Return (§)

US 30-Year Treasury

Density

Results & Evaluation

Market Factor Distributions

& Figure 2 [N] Figure 3
200
110 o 190
/ \ 180 £\
100 / \ 170 /
%0 / \ 160 / \
/ 150
@0 / 140
| 130 /
70 120 /
110 /
£ g 100 /
g /
50 { a % /
/ 80 i
a0 f 70 of
;’ 60 i
] / \ 50 /-
20 / i
/ \ 30 /
. o 20 /
= A \\ 10 e
0 e == 0 —_—
[

Two Week Return (points) Two Week Return (points)

S&P 500 NASDAQ

Results & Evaluation

Monte Carlo Simulation

3,000 stocks

References

Advanced Analytics with Spark: Patterns for Learning from Data at Scale (2015) -
Josh Wills, Sandy Ryza, Sean Owen, and Uri Laserson

http://spark.apache.org/docs/latest/programming-guide.html
http://spark.apache.org/docs/latest/programming-guide.html
https://github.com/sryza/aas
https://github.com/sryza/aas
https://www.mathworks.com/help/risk/pof.html
https://www.mathworks.com/help/risk/pof.html
https://en.wikipedia.org/wiki/Linear_regression
https://en.wikipedia.org/wiki/Linear_regression
http://www.palisade.com/risk/monte_carlo_simulation.asp
http://www.palisade.com/risk/monte_carlo_simulation.asp

Image Resources

http://sakiicelimbekardas.blogspot.com/2016/02/stock.html
http://sakiicelimbekardas.blogspot.com/2016/02/stock.html
http://www.cnbc.com/2016/06/23/sp-500-sectors-in-the-brexit-crosshairs.html
http://www.cnbc.com/2016/06/23/sp-500-sectors-in-the-brexit-crosshairs.html
http://www.cnbc.com/2015/07/17/5-tech-trades-on-nasdaqs-record-close.html
http://www.cnbc.com/2015/07/17/5-tech-trades-on-nasdaqs-record-close.html
http://www.investing.com/analysis/the-s-p-500,-dow-and-nasdaq-since-their-2000-highs-378646
http://www.investing.com/analysis/the-s-p-500,-dow-and-nasdaq-since-their-2000-highs-378646
http://www.investing.com/analysis/the-s-p-500,-dow-and-nasdaq-since-their-2000-highs-378646

