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Classic Example: 

If someone buys diapers and milk, then he/she is likely to buy beer

Don’t be surprised if you find six-packs next to diapers!
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Typical use: find all rules with at least a given support and a given confidence.

Why support? favors really common items -- 
can’t recommend common 
items “everywhere”
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Main-Memory Bottleneck

Imagine application: Process basket by basket, counting pairs, triples, etc...

● Counting itemsets in memory can run out of space quickly. 

● If storing in memory: just not enough space

● If storing on disk: too much swapping in and out with every increment

One partial solution: we can do a lot just counting pairs, since a triple can be 

evidenced by strong confidence of its 3 subset pairs. 
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(half the size of a full matrix)



2 Approaches to store pairs

(Aka sparse matrix format: [i, j, s])
(half the size of a full matrix)

Triples beats if we only have ⅓ of possible pairs
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Can we use multiple passes and negate the need to store items in main memory?

Goal: Find frequent pairs. 

Key idea: Monotonicity -- If itemset I appears at least s times, then J ⊆ I also 
appears at least s times.

Thus, if item i does not appear in s baskets, then no set including i can appear in s 
baskets. (using contrapositive of monotonicity)
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Pass 1: count basket occurrences of each item

//frequent items -- appear at least s times

Pass 2: count pairs of frequent items

//requires O(|frequent items|2) + O(|frequent items|) memory
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A’ Priori Algorithm
To use triangle matrix method, need to 
map to old numbers. 
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K_sets -- sets of size k

Pass 1: count basket occurrences of each item

//frequent items -- appear at least s times

Pass 2: count pairs of frequent items

//requires O(|frequent items|2) + O(|frequent items|) memory

Pass 3+: count k_sets of frequent (k-1)_sets -- C
k

//C
k
 are candidate k_sets

//L
k
 those meeting support threshold

A’ Priori Algorithm: What about triples, etc...?



● One pass for each k 

● Space needed on kth pass is up to C choose k
○ In practice, memory often peaks at 2

Thus, often focus only on pairs. 

A’ Priori Algorithm


