
Frequent Itemset Mining
Stony Brook University

CSE545, Fall 2016

Frequent Itemset Mining aka Association Rules

Goal: Identify items that are often purchased together.

Frequent Itemset Mining aka Association Rules

Goal: Identify items that are often purchased together.

Frequent Itemset Mining aka Association Rules

Goal: Identify items that are often purchased together.

Classic Example:

If someone buys diapers and milk, then he/she is likely to buy beer

Don’t be surprised if you find six-packs next to diapers!

Market-Basket Model

Given:

● Set of potential items
● Instances of baskets

Each basket (b ∈ baskets) is a subset of items
(i.e. the items bought in a single purchase)

Market-Basket Model

Given:

● Set of potential items
● Instances of baskets

Each basket (b ∈ baskets) is a subset of items
(i.e. the items bought in a single purchase)

Find:

Frequent itemsets -- itemsets which appear together in at least s baskets
(s = “support”)

Association Rules -- if-then rules about the contents of baskets
(e.g. if basket contains 7-up and Snickers, then it likely to also contains Pop Secret)

Market-Basket Model

Given:

● Set of potential items
● Instances of baskets

Each basket (b ∈ baskets) is a subset of items
(i.e. the items bought in a single purchase)

Find:

Frequent itemsets -- itemsets which appear together in at least s baskets
(s = “support”)

Association Rules -- if-then rules about the contents of baskets
(e.g. if basket contains 7-up and Snickers, then it likely to also contains Pop Secret)

s(I) -- support, number of times appearing together.
Rule : I → j //given I items j is likely to appear
confidence -- How likely is j, given I:

Market-Basket Model

Given:

● Set of potential items
● Instances of baskets

Each basket (b ∈ baskets) is a subset of items
(i.e. the items bought in a single purchase)

Find:

Frequent itemsets -- itemsets which appear together in at least s baskets
(s = “support”)

Association Rules -- if-then rules about the contents of baskets
(e.g. if basket contains 7-up and Snickers, then it likely to also contains Pop Secret)

s(I) -- support, number of times appearing together.
Rule : I → j //given I items j is likely to appear
confidence -- How likely is j, given I:

Typical use: find all rules with at least a given support and a given confidence.

Market-Basket Model

Given:

● Set of potential items
● Instances of baskets

Each basket (b ∈ baskets) is a subset of items
(i.e. the items bought in a single purchase)

Find:

Frequent itemsets -- itemsets which appear together in at least s baskets
(s = “support”)

Association Rules -- if-then rules about the contents of baskets
(e.g. if basket contains 7-up and Snickers, then it likely to also contains Pop Secret)

s(I) -- support, number of times appearing together.
Rule : I → j //given I items j is likely to appear
confidence -- How likely is j, given I:

Typical use: find all rules with at least a given support and a given confidence.

Why support?

Market-Basket Model

Given:

● Set of potential items
● Instances of baskets

Each basket (b ∈ baskets) is a subset of items
(i.e. the items bought in a single purchase)

Find:

Frequent itemsets -- itemsets which appear together in at least s baskets
(s = “support”)

Association Rules -- if-then rules about the contents of baskets
(e.g. if basket contains 7-up and Snickers, then it likely to also contains Pop Secret)

s(I) -- support, number of times appearing together.
Rule : I → j //given I items j is likely to appear
confidence -- How likely is j, given I:

Typical use: find all rules with at least a given support and a given confidence.

Why support? favors really common items --
can’t recommend common
items “everywhere”

Market-Basket Model

Given:

● Set of potential items
● Instances of baskets

Each basket (b ∈ baskets) is a subset of items
(i.e. the items bought in a single purchase)

Find:

Frequent itemsets -- itemsets which appear together in at least s baskets
(s = “support”)

Association Rules -- if-then rules about the contents of baskets
(e.g. if basket contains 7-up and Snickers, then it likely to also contains Pop Secret)

s(I) -- support, number of times appearing together.
Rule : I → j //given I items j is likely to appear
confidence -- How likely is j, given I:

interest -- Difference between c and “expected c” :

Market-Basket Model

Given:

● Set of potential items
● Instances of baskets

Each basket (b ∈ baskets) is a subset of items
(i.e. the items bought in a single purchase)

Find:

Frequent itemsets -- itemsets which appear together in at least s baskets
(s = “support”)

Association Rules -- if-then rules about the contents of baskets
(e.g. if basket contains 7-up and Snickers, then it likely to also contains Pop Secret)

s(I) -- support, number of times appearing together.
Rule : I → j //given I items j is likely to appear
confidence -- How likely is j, given I:

interest -- Difference between c and “expected c” :

Main-Memory Bottleneck

Imagine application: Process basket by basket, counting pairs, triples, etc...

Main-Memory Bottleneck

Imagine application: Process basket by basket, counting pairs, triples, etc...

● Counting itemsets in memory can run out of space quickly.

● If storing in memory: just not enough space

● If storing on disk: too much swapping in and out with every increment

Main-Memory Bottleneck

Imagine application: Process basket by basket, counting pairs, triples, etc...

● Counting itemsets in memory can run out of space quickly.

● If storing in memory: just not enough space

● If storing on disk: too much swapping in and out with every increment

One partial solution: we can do a lot just counting pairs, since a triple can be

evidenced by strong confidence of its 3 subset pairs.

2 Approaches to store pairs

(Aka sparse matrix format: [i, j, s])
(half the size of a full matrix)

2 Approaches to store pairs

(Aka sparse matrix format: [i, j, s])
(half the size of a full matrix)

Triples beats if we only have ⅓ of possible pairs

A’ Priori Algorithm

Can we use multiple passes and negate the need to store items in main memory?

Goal: Find frequent pairs.

A’ Priori Algorithm

Can we use multiple passes and negate the need to store items in main memory?

Goal: Find frequent pairs.

Key idea: Monotonicity -- If itemset I appears at least s times, then J ⊆ I also
appears at least s times.

Thus, if item i does not appear in s baskets, then no set including i can appear in s
baskets. (using contrapositive of monotonicity)

A’ Priori Algorithm

Can we use multiple passes and negate the need to store items in main memory?

Goal: Find frequent pairs.

Pass 1: count basket occurrences of each item

//frequent items -- appear at least s times

Pass 2: count pairs of frequent items

//requires O(|frequent items|2) + O(|frequent items|) memory

A’ Priori Algorithm

A’ Priori Algorithm
To use triangle matrix method, need to
map to old numbers.

K_sets -- sets of size k

Pass 1: count basket occurrences of each item

//frequent items -- appear at least s times

Pass 2: count pairs of frequent items

//requires O(|frequent items|2) + O(|frequent items|) memory

A’ Priori Algorithm: What about triples, etc...?

K_sets -- sets of size k

Pass 1: count basket occurrences of each item

//frequent items -- appear at least s times

Pass 2: count pairs of frequent items

//requires O(|frequent items|2) + O(|frequent items|) memory

Pass 3+: count k_sets of frequent (k-1)_sets -- C
k

//C
k
 are possible k_sets (meeting support threshold)

A’ Priori Algorithm: What about triples, etc...?

K_sets -- sets of size k

Pass 1: count basket occurrences of each item

//frequent items -- appear at least s times

Pass 2: count pairs of frequent items

//requires O(|frequent items|2) + O(|frequent items|) memory

Pass 3+: count k_sets of frequent (k-1)_sets -- C
k

//C
k
 are candidate k_sets

//L
k
 those meeting support threshold

A’ Priori Algorithm: What about triples, etc...?

● One pass for each k

● Space needed on kth pass is up to C choose k
○ In practice, memory often peaks at 2

Thus, often focus only on pairs.

A’ Priori Algorithm

