
Link Analysis
Stony Brook University

CSE545, Fall 2016

The Web , circa 1998

The Web , circa 1998

The Web , circa 1998

Match keywords, language (information retrieval)
Explore directory

The Web , circa 1998

Match keywords, language (information retrieval)
Explore directory

Easy to game with
“term spam”

Time-consuming;
Not open-ended

Enter PageRank

...

PageRank

Key Idea: Consider the citations of the website in addition to keywords.

PageRank

Key Idea: Consider the citations of the website in addition to keywords.

Who links to it?
and what are

their citations?

PageRank

Key Idea: Consider the citations of the website in addition to keywords.

The Web as a directed graph:

Who links to it?
and what are

their citations?

PageRank

Key Idea: Consider the citations of the website in addition to keywords.

Who links to it?
and what are

their citations?

Innovation 1: What pages would a “random Web surfer” end up at?

Innovation 2: Not just own terms but what terms are used by citations?

PageRank

Key Idea: Consider the citations of the website in addition to keywords.

Flow Model:
in-links as votes

Innovation 1: What pages would a “random Web surfer” end up at?

Innovation 2: Not just own terms but what terms are used by citations?

PageRank

Key Idea: Consider the citations of the website in addition to keywords.

Flow Model:
in-links (citations) as votes

But citations from important
pages should count more.

Use recursion to figure out if
each page is important.

Innovation 1: What pages would a “random Web surfer” end up at?

Innovation 2: Not just own terms but what terms are used by citations?

Key Idea: Consider the citations of the website in addition to keywords.

PageRank

Flow Model:
in-links (citations) as votes

But citations from important
pages should count more.

Use recursion to figure out if
each page is important.

Innovation 1: What pages would a “random Web surfer” end up at?

Innovation 2: Not just own terms but what terms are used by citations?

PageRank

Key Idea: Consider the citations of the website in addition to keywords.

Flow Model:
in-links (citations) as votes

But citations from important
pages should count more.

Use recursion to figure out if
each page is important.

Innovation 1: What pages would a “random Web surfer” end up at?

Innovation 2: Not just own terms but what terms are used by citations?

How to compute?

Each page (j) has an importance (i.e. rank, rj)

(nj is |out-links|)

PageRank

Innovation 1: What pages would a “random Web surfer” end up at?

Innovation 2: Not just own terms but what terms are used by citations?

How to compute?

Each page (j) has an importance (i.e. rank, rj)

(nj is |out-links|)

A B

C D

PageRank

Innovation 1: What pages would a “random Web surfer” end up at?

Innovation 2: Not just own terms but what terms are used by citations?

How to compute?

Each page (j) has an importance (i.e. rank, rj)

(nj is |out-links|)

A B

C D

rA/1
rB/4

rC/2 rD = rA/1 + rB/4 + rC/2

PageRank

Innovation 1: What pages would a “random Web surfer” end up at?

Innovation 2: Not just own terms but what terms are used by citations?

How to compute?

Each page (j) has an importance (i.e. rank, rj)

(nj is |out-links|)

A B

C D

PageRank

Innovation 1: What pages would a “random Web surfer” end up at?

Innovation 2: Not just own terms but what terms are used by citations?

How to compute?

Each page (j) has an importance (i.e. rank, rj)

(nj is |out-links|)

A B

C D
A system of
equations?

PageRank

Innovation 1: What pages would a “random Web surfer” end up at?

Innovation 2: Not just own terms but what terms are used by citations?

How to compute?

Each page (j) has an importance (i.e. rank, rj)

(nj is |out-links|)

A B

C D
A system of
equations?

PageRank

Innovation 1: What pages would a “random Web surfer” end up at?

Innovation 2: Not just own terms but what terms are used by citations?

How to compute?

Each page (j) has an importance (i.e. rank, rj)

(nj is |out-links|)

A B

C D
A system of
equations?

Provides
intuition, but
impractical to
solve at scale.

PageRank

Innovation 1: What pages would a “random Web surfer” end up at?

A B

C D

to \ from A B C D

A 0 1/2 1 0

B 1/3 0 0 1/2

C 1/3 0 0 1/2

D 1/3 1/2 0 0

“Transition Matrix”, M

PageRank

Innovation 1: What pages would a “random Web surfer” end up at?
To start: N=4 nodes, so r = [¼, ¼, ¼, ¼,]

A B

C D

to \ from A B C D

A 0 1/2 1 0

B 1/3 0 0 1/2

C 1/3 0 0 1/2

D 1/3 1/2 0 0

“Transition Matrix”, M

PageRank

Innovation 1: What pages would a “random Web surfer” end up at?
To start: N=4 nodes, so r = [¼, ¼, ¼, ¼,]
after first iteration: M·r = [3/8, 5/24, 5/24, 5/24]

A B

C D

to \ from A B C D

A 0 1/2 1 0

B 1/3 0 0 1/2

C 1/3 0 0 1/2

D 1/3 1/2 0 0

“Transition Matrix”, M

PageRank

Innovation 1: What pages would a “random Web surfer” end up at?
To start: N=4 nodes, so r = [¼, ¼, ¼, ¼,]
after first iteration: M·r = [3/8, 5/24, 5/24, 5/24]
after second iteration: M(M·r) = M2·r = [15/48, 11/48, …]

A B

C D

to \ from A B C D

A 0 1/2 1 0

B 1/3 0 0 1/2

C 1/3 0 0 1/2

D 1/3 1/2 0 0

“Transition Matrix”, M

PageRank

Innovation 1: What pages would a “random Web surfer” end up at?
To start: N=4 nodes, so r = [¼, ¼, ¼, ¼,]
after first iteration: M·r = [3/8, 5/24, 5/24, 5/24]
after second iteration: M(M·r) = M2·r = [15/48, 11/48, …]

A B

C D

to \ from A B C D

A 0 1/2 1 0

B 1/3 0 0 1/2

C 1/3 0 0 1/2

D 1/3 1/2 0 0

“Transition Matrix”, M

Power iteration algorithm

Initialize: r[0] = [1/N, …, 1/N],
r[-1]=[0,...,0]

while (err_norm(r[t],r[t-1])>min_err):
r[t+1] = M·r[t]
t+=1

solution = r[t]

err_norm(v1, v2) = |v1 - v2| #L1 norm

PageRank

Innovation 1: What pages would a “random Web surfer” end up at?
To start: N=4 nodes, so r = [¼, ¼, ¼, ¼,]
after first iteration: M·r = [3/8, 5/24, 5/24, 5/24]
after second iteration: M(M·r) = M2·r = [15/48, 11/48, …]

A B

C D

to \ from A B C D

A 0 1/2 1 0

B 1/3 0 0 1/2

C 1/3 0 0 1/2

D 1/3 1/2 0 0

“Transition Matrix”, M

Power iteration algorithm

Initialize: r[0] = [1/N, …, 1/N],
r[-1]=[0,...,0]

while (err_norm(r[t],r[t-1])>min_err):
r[t+1] = M·r[t]
t+=1

solution = r[t]

err_norm(v1, v2) = |v1 - v2| #L1 norm

PageRank

Innovation 1: What pages would a “random Web surfer” end up at?
To start: N=4 nodes, so r = [¼, ¼, ¼, ¼,]
after first iteration: M·r = [3/8, 5/24, 5/24, 5/24]
after second iteration: M(M·r) = M2·r = [15/48, 11/48, …]

Power iteration algorithm

Initialize: r[0] = [1/N, …, 1/N],
r[-1]=[0,...,0]

while (err_norm(r[t],r[t-1])>min_err):
r[t+1] = M·r[t]
t+=1

solution = r[t]

err_norm(v1, v2) = |v1 - v2| #L1 norm

As err_norm gets smaller
we are moving toward:

r = M·r

We are actually just
finding the
eigenvector of M.

PageRank

Innovation 1: What pages would a “random Web surfer” end up at?
To start: N=4 nodes, so r = [¼, ¼, ¼, ¼,]
after first iteration: M·r = [3/8, 5/24, 5/24, 5/24]
after second iteration: M(M·r) = M2·r = [15/48, 11/48, …]

Power iteration algorithm

Initialize: r[0] = [1/N, …, 1/N],
r[-1]=[0,...,0]

while (err_norm(r[t],r[t-1])>min_err):
r[t+1] = M·r[t]
t+=1

solution = r[t]

err_norm(v1, v2) = |v1 - v2| #L1 norm

As err_norm gets smaller
we are moving toward:

r = M·r

We are actually just
finding the
eigenvector of M.

x is an
eigenvector of ᵣ if:

A·x = ᵣ·x

PageRank

Innovation 1: What pages would a “random Web surfer” end up at?
To start: N=4 nodes, so r = [¼, ¼, ¼, ¼,]
after first iteration: M·r = [3/8, 5/24, 5/24, 5/24]
after second iteration: M(M·r) = M2·r = [15/48, 11/48, …]

Power iteration algorithm

Initialize: r[0] = [1/N, …, 1/N],
r[-1]=[0,...,0]

while (err_norm(r[t],r[t-1])>min_err):
r[t+1] = M·r[t]
t+=1

solution = r[t]

err_norm(v1, v2) = |v1 - v2| #L1 norm

As err_norm gets smaller
we are moving toward:

r = M·r

We are actually just
finding the
eigenvector of M.

x is an
eigenvector of ᵣ if:

A·x = ᵣ·x

A = 1
since columns of M sum to 1.

thus, 1r=Mr

finds the...

PageRank

Innovation 1: What pages would a “random Web surfer” end up at?
To start: N=4 nodes, so r = [¼, ¼, ¼, ¼,]
after first iteration: M·r = [3/8, 5/24, 5/24, 5/24]
after second iteration: M(M·r) = M2·r = [15/48, 11/48, …]

Power iteration algorithm

Initialize: r[0] = [1/N, …, 1/N],
r[-1]=[0,...,0]

while (err_norm(r[t],r[t-1])>min_err):
r[t+1] = M·r[t]
t+=1

solution = r[t]

err_norm(v1, v2) = |v1 - v2| #L1 norm

As err_norm gets smaller
we are moving toward:

r = M·r

We are actually just
finding the
eigenvector of M.

x is an
eigenvector of ᵣ if:

A·x = ᵣ·x

A = 1
since columns of M sum to 1.

thus, 1r=Mr

finds the...

PageRank

Innovation 1: What pages would a “random Web surfer” end up at?

Where is surfer at time t+1?
p(t+1) = M · p(t)

Suppose: p(t+1) = p(t),
then p(t) is a
stationary distribution
of a random walk.

Thus, r is a stationary
distribution. Probability of
being at given node.

Power iteration algorithm

Initialize: r[0] = [1/N, …, 1/N],
r[-1]=[0,...,0]

while (err_norm(r[t],r[t-1])>min_err):
r[t+1] = M·r[t]
t+=1

solution = r[t]

err_norm(v1, v2) = |v1 - v2| #L1 norm

PageRank

Innovation 1: What pages would a “random Web surfer” end up at?

Where is surfer at time t+1?
p(t+1) = M · p(t)

Suppose: p(t+1) = p(t),
then p(t) is a
stationary distribution
of a random walk.

Thus, r is a stationary
distribution. Probability of
being at given node.

aka 1st order Markov Process
● Rich probabilistic theory. One finding:

○ Stationary distributions have a unique
distribution if:

PageRank

Innovation 1: What pages would a “random Web surfer” end up at?

Where is surfer at time t+1?
p(t+1) = M · p(t)

Suppose: p(t+1) = p(t),
then p(t) is a
stationary distribution
of a random walk.

Thus, r is a stationary
distribution. Probability of
being at given node.

aka 1st order Markov Process
● Rich probabilistic theory. One finding:

○ Stationary distributions have a unique
distribution if:
■ No “dead-ends”

a node can’t propagate its rank
■ No “spider traps”

set of nodes with no way out.

PageRank

Innovation 1: What pages would a “random Web surfer” end up at?

Where is surfer at time t+1?
p(t+1) = M · p(t)

Suppose: p(t+1) = p(t),
then p(t) is a
stationary distribution
of a random walk.

Thus, r is a stationary
distribution. Probability of
being at given node.

aka 1st order Markov Process
● Rich probabilistic theory. One finding:

○ Stationary distributions have a unique
distribution if:
■ No “dead-ends”

a node can’t propagate its rank
■ No “spider traps”

set of nodes with no way out.
(technically: it needs to be:

 stochastic, irreducible, and aperiodic)

PageRank
Where is surfer at time t+1?
p(t+1) = M · p(t)

Suppose: p(t+1) = p(t),
then p(t) is a
stationary distribution
of a random walk.

Thus, r is a stationary
distribution. Probability of
being at given node.

aka 1st order Markov Process
● Rich probabilistic theory. One finding:

○ Stationary distributions have a unique
distribution if:
■ No “dead-ends”

a node can’t propagate its rank
■ No “spider traps”

set of nodes with no way out.

A B

C D

to \ from A B C D

A 0 0 1 0

B 1/3 0 0 1

C 1/3 0 0 0

D 1/3 0 0 0

r would eventually
converge to
[0, 0, …]

PageRank
Where is surfer at time t+1?
p(t+1) = M · p(t)

Suppose: p(t+1) = p(t),
then p(t) is a
stationary distribution
of a random walk.

Thus, r is a stationary
distribution. Probability of
being at given node.

aka 1st order Markov Process
● Rich probabilistic theory. One finding:

○ Stationary distributions have a unique
distribution if:
■ No “dead-ends”

a node can’t propagate its rank
■ No “spider traps”

set of nodes with no way out.

A B

C D

PageRank

Innovation 1: What pages would a “random Web surfer” end up at?

Where is surfer at time t+1?
p(t+1) = M · p(t)

Suppose: p(t+1) = p(t),
then p(t) is a
stationary distribution
of a random walk.

Thus, r is a stationary
distribution. Probability of
being at given node.

aka 1st order Markov Process
● Rich probabilistic theory. One finding:

○ Stationary distributions have a unique
distribution if:
■ No “dead-ends”

a node can’t propagate its rank
■ No “spider traps”

set of nodes with no way out.
(technically: it needs to be:

 stochastic, irreducible, and aperiodic)

columns sum to 1 same node doesn’t repeat at a regular interval
non-zero chance of going to any another node

PageRank

No “dead-ends”
No “spider traps”

A B

C D

The “Google” PageRank Formulation
Add teleportation:At each step, two choices
1. Follow a random link (probability, ᶔ = ~.85)
2. Teleport to a random node (probability, 1-ᶔ)

PageRank

No “dead-ends”
No “spider traps”

The “Google” PageRank Formulation
Add teleportation:At each step, two choices
1. Follow a random link (probability, ᶔ = ~.85)
2. Teleport to a random node (probability, 1-ᶔ)

A B

C D

PageRank

No “dead-ends”
No “spider traps”

The “Google” PageRank Formulation
Add teleportation chance at all nodes.
i.e. at each step, two choices
1. Follow a random link (probability, ᶔ = ~.85)
2. Teleport to a random node (probability, 1-ᶔ)

Add teleportation from dead end with probability 1

A B

C D

to \ from A B C D

A 0 0 1 0

B 1/3 0 0 1

C 1/3 0 0 0

D 1/3 0 0 0

PageRank

No “dead-ends”
No “spider traps”

The “Google” PageRank Formulation
Add teleportation chance at all nodes.
i.e. at each step, two choices
1. Follow a random link (probability, ᶔ = ~.85)
2. Teleport to a random node (probability, 1-ᶔ)

Add teleportation from dead end with probability 1

A B

C D

to \ from A B C D

A 0 ¼ 1 0

B 1/3 ¼ 0 1

C 1/3 ¼ 0 0

D 1/3 ¼ 0 0

PageRank

No “dead-ends”
No “spider traps”

The “Google” PageRank Formulation
Add teleportation chance at all nodes.
i.e. at each step, two choices
1. Follow a random link (probability, ᶔ = ~.85)
2. Teleport to a random node (probability, 1-ᶔ)

Add teleportation from dead end with probability 1

(Brin and Page, 1998)

A B

C D

to \ from A B C D

A 0 0 1 0

B 1/3 0 0 1

C 1/3 0 0 0

D 1/3 0 0 0

PageRank

No “dead-ends”
No “spider traps”

The “Google” PageRank Formulation
Add teleportation chance at all nodes.
i.e. at each step, two choices
1. Follow a random link (probability, ᶔ = ~.85)
2. Teleport to a random node (probability, 1-ᶔ)

Add teleportation from dead end with probability 1

(Brin and Page, 1998)

A B

C D

to \ from A B C D

A 0 0 1 0

B 1/3 0 0 1

C 1/3 0 0 0

D 1/3 0 0 0

A B ...

A ⅘*0 + ⅕*¼ ¼

B ⅘*⅓ + ⅕*¼ ¼

C ⅘*⅓ + ⅕*¼ ¼

D ⅘*⅓ + ⅕*¼ ¼

assume
ᶔ = ⅘

Flow Model Matrix Model

PageRank

No “dead-ends”
No “spider traps”

The “Google” PageRank Formulation
Add teleportation chance at all nodes.
i.e. at each step, two choices
1. Follow a random link (probability, ᶔ = ~.85)
2. Teleport to a random node (probability, 1-ᶔ)

Add teleportation from dead end with probability 1

A B ...

A ⅘*0 + ⅕*¼ ¼

B ⅘*⅓ + ⅕*¼ ¼

C ⅘*⅓ + ⅕*¼ ¼

D ⅘*⅓ + ⅕*¼ ¼

assume
ᶔ = ⅘

To apply:
run power iterations over M’
instead of M.

Matrix Model

