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The Web , circa 1998

Match keywords, language (information retrieval)
Explore directory

Easy to game with
“term spam”

Time-consuming;
Not open-ended



Enter PageRank
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Innovation 1: What pages would a “random Web surfer” end up at?

Innovation 2: Not just own terms but what terms are used by citations?

How to compute?

Each page (j) has an importance (i.e. rank, rj)

(nj is |out-links|)

A B

C D
A system of 
equations?

Provides
intuition, but
impractical to 
solve at scale.
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Innovation 1: What pages would a “random Web surfer” end up at?

Where is surfer at time t+1?
p(t+1) = M · p(t) 

Suppose: p(t+1) = p(t), 
then p(t) is a 
stationary distribution 
of a random walk.

Thus, r is a stationary 
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○ Stationary distributions have a unique 
distribution if:
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a node can’t propagate its rank
■ No “spider traps”

set of nodes with no way out.
(technically: it needs to be:

 stochastic, irreducible, and aperiodic )

columns sum to 1 same node doesn’t repeat at a regular interval
non-zero chance of going to any another node
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No “dead-ends”
No “spider traps”

The “Google” PageRank Formulation
Add teleportation chance at all nodes.
i.e. at each step, two choices
1. Follow a random link (probability, ᶔ = ~.85)
2. Teleport to a random node (probability, 1-ᶔ)

Add teleportation from dead end with probability 1

A B     ...

A ⅘*0 + ⅕*¼ ¼

B ⅘*⅓ + ⅕*¼ ¼

C ⅘*⅓ + ⅕*¼ ¼

D ⅘*⅓ + ⅕*¼ ¼

assume
ᶔ = ⅘ 

To apply: 
run power iterations over M’
instead of M.

Matrix Model


