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Random Variables

X: A mapping from Ω to ℝ  that describes the question we care about in practice.
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Random Variables

X: A mapping from Ω to ℝ  that describes the question we care about in practice.

Example: Ω = 5 coin tosses = {<HHHHH>, <HHHHT>, <HHHTH>, <HHHTH>…}
We may just care about how many tails? Thus, 

X(<HHHHH>) = 0
X(<HHHTH>) = 1 
X(<TTTHT>) = 4
X(<HTTTT>) = 4

X only has 6 possible values: 0, 1, 2, 3, 4, 5
What is the probability that we end up with k = 4 tails?

P(X = k) := P( {ω : X(ω) = k} )       where ω ∊ Ω    
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Random Variables

X: A mapping from Ω to ℝ  that describes the question we care about in practice.

Example: Ω = 5 coin tosses = {<HHHHH>, <HHHHT>, <HHHTH>, <HHHTH>…}
We may just care about how many tails? Thus, 

X(<HHHHH>) = 0
X(<HHHTH>) = 1 
X(<TTTHT>) = 4
X(<HTTTT>) = 4

X only has 6 possible values: 0, 1, 2, 3, 4, 5
What is the probability that we end up with k = 4 tails?

P(X = k) := P( {ω : X(ω) = k} )       where ω ∊ Ω    
X(ω) = 4 for 5 out of 32 sets in Ω. Thus, assuming a fair coin, P(X = 4) = 5/32 

(Not a variable, but a function that we end up notating a lot like a variable) 4



Random Variables

X: A mapping from Ω to ℝ  that describes the question we care about in practice.

Example: Ω = 5 coin tosses = {<HHHHH>, <HHHHT>, <HHHTH>, <HHHTH>…}
We may just care about how many tails? Thus, 

X(<HHHHH>) = 0
X(<HHHTH>) = 1 
X(<TTTHT>) = 4
X(<HTTTT>) = 4

X only has 6 possible values: 0, 1, 2, 3, 4, 5
What is the probability that we end up with k = 4 tails?

P(X = k) := P( {ω : X(ω) = k} )       where ω ∊ Ω    
X(ω) = 4 for 5 out of 32 sets in Ω. Thus, assuming a fair coin, P(X = 4) = 5/32 

(Not a variable, but a function that we end up notating a lot like a variable)

X is a discrete random variable 
if it takes only a countable 

number of values. 
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Random Variables

X: A mapping from Ω to ℝ  that describes the question we care about in practice.

X is a discrete random variable 
if it takes only a countable 

number of values. 

X is a continuous random variable if it 
can take on an infinite number of 

values between any two given values. 
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Random Variables

X: A mapping from Ω to ℝ  that describes the question we care about in practice.

Example: Ω = inches of snowfall = [0, ∞) ⊆ ℝ

X amount of inches in a snowstorm

X(ω) = ω

What is the probability we receive (at least) a inches?
P(X ≥ a) := P( {ω : X(ω) ≥ a} ) 

What is the probability we receive between a and b inches?
P(a ≤ X ≤ b) := P( {ω : a ≤ X(ω) ≤ b} ) 7

X is a continuous random variable if it 
can take on an infinite number of 

values between any two given values. 



Random Variables

X: A mapping from Ω to ℝ  that describes the question we care about in practice.

Example: Ω = inches of snowfall = [0, ∞) ⊆ ℝ

X amount of inches in a snowstorm

X(ω) = ω

What is the probability we receive (at least) a inches?
P(X ≥ a) := P( {ω : X(ω) ≥ a} ) 

What is the probability we receive between a and b inches?
P(a ≤ X ≤ b) := P( {ω : a ≤ X(ω) ≤ b} ) 

P(X = i) := 0, for all i ∊ Ω

(probability of receiving exactly i 

inches of snowfall is zero) 
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X is a continuous random variable if it 
can take on an infinite number of 

values between any two given values. 



Random Variables, Revisited

X: A mapping from Ω to ℝ  that describes the question we care about in practice.

Example: Ω = inches of snowfall = [0, ∞) ⊆ ℝ

X amount of inches in a snowstorm

X(ω) = ω

What is the probability we receive (at least) a inches?
P(X ≥ a) := P( {ω : X(ω) ≥ a} ) 

What is the probability we receive between a and b inches?
P(a ≤ X ≤ b) := P( {ω : a ≤ X(ω) ≥ b} ) 

P(X = i) := 0, for all i ∊ Ω

(probability of receiving exactly i 

inches of snowfall is zero) 
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X is a continuous random variable if it 
can take on an infinite number of 

values between any two given values. 

How to model?



Continuous Random Variables
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How to model?

Discretize them!
(group into discrete bins)



Continuous Random Variables

11But aren’t we throwing away information? 

P(bin=8) = .32

P(bin=12) = .08



Continuous Random Variables
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Continuous Random Variables
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X is a continuous random variable if it 
can take on an infinite number of 

values between any two given values. 

X is a continuous random variable if there exists a function fx such that:



Continuous Random Variables
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X is a continuous random variable if it 
can take on an infinite number of 

values between any two given values. 

X is a continuous random variable if there exists a function fx such that:

fx : “probability density function” (pdf)



Continuous Random Variables
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Continuous Random Variables
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Continuous Random Variables

Common Trap

●              does not yield a probability

○                      does

○ ᭲ may be anything (ℝ)

■ thus,               may be > 1
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Continuous Random Variables

A Common Probability Density Function
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Continuous Random Variables

Common pdfs: Normal(μ, σ2)

              =
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Continuous Random Variables

Common pdfs: Normal(μ, σ2)

              =

μ: mean (or “center”) 
     =  expectation

σ2: variance, 
σ: standard deviation 20



Common pdfs: Normal(μ, σ2)

              =

μ: mean (or “center”) 
     =  expectation

σ2: variance, 
σ: standard deviation

Continuous Random Variables
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Credit: Wikipedia



Continuous Random Variables

Common pdfs: Normal(μ, σ2)

X ~ Normal(μ, σ2), examples:

● height

● intelligence/ability

● measurement error

● averages (or sum) of 

lots of random variables
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Continuous Random Variables

Common pdfs: Normal(0, 1)  (“standard normal”)

How to “standardize” any normal distribution:

● subtract the mean, μ (aka “mean centering”)
● divide by the standard deviation, σ

z = (x - μ)  / σ,   (aka “z score”)

23Credit: MIT Open Courseware: Probability and Statistics



Continuous Random Variables

Common pdfs: Normal(0, 1)

24Credit: MIT Open Courseware: Probability and Statistics



Cumulative Distribution Function
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For a given random variable X, the 
cumulative distribution function (CDF), 

Fx: ℝ → [0, 1], is defined by:

Normal

Uniform



Cumulative Distribution Function
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For a given random variable X, the 
cumulative distribution function (CDF), 

Fx: ℝ → [0, 1], is defined by:

Exponential

Normal

Uniform

Pro:               yields a probability!

Con: Not intuitively interpretable.



Random Variables, Revisited

X: A mapping from Ω to ℝ  that describes the question we care about in practice.

X is a discrete random variable 
if it takes only a countable 

number of values. 

X is a continuous random variable if it 
can take on an infinite number of 

values between any two given values. 
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Discrete Random Variables
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X is a discrete random variable 
if it takes only a countable 

number of values. 

For a given random variable X, the 
cumulative distribution function (CDF), 

Fx: ℝ → [0, 1], is defined by:



Discrete Random Variables
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X is a discrete random variable 
if it takes only a countable 

number of values. 

For a given random variable X, the 
cumulative distribution function (CDF), 

Fx: ℝ → [0, 1], is defined by:

Binomial (n, p)

(like normal)



Discrete Random Variables
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X is a discrete random variable 
if it takes only a countable 

number of values. 

For a given random variable X, the 
cumulative distribution function (CDF), 

Fx: ℝ → [0, 1], is defined by:

For a given discrete random variable X,  
probability mass function (pmf), 

fx: ℝ → [0, 1], is defined by:

Binomial (n, p)



Discrete Random Variables

Two Common Discrete Random Variables

● Binomial(n, p)

 
example: number of heads after n coin flips (p, probability of heads)

● Bernoulli(p) = Binomial(1, p)
example: one trial of success or failure

31

Binomial (n, p)



Hypothesis Testing

Hypothesis -- something one asserts to be true. 

Classical Approach: 

H0: null hypothesis -- some “default” value; “null” => nothing changes

H1: the alternative -- the opposite of the null => a change or a difference



Hypothesis Testing

Hypothesis -- something one asserts to be true. 

Classical Approach: 

H0: null hypothesis -- some “default” value; “null” => nothing changes

H1: the alternative -- the opposite of the null => a change or a difference

Goal: Use probability to determine if we can “reject the null”(H0) in favor of H1.
“There is less than a 5% chance that the null is true” (i.e. 95% alternative is true). 

Example: Hypothesize a coin is biased. 
H0: the coin is not biased (i.e. flipping n times results in a Binomial(n, 0.5))



Hypothesis Testing

Hypothesis -- something one asserts to be true. 

Classical Approach: 

H0: null hypothesis -- some “default” value (usually that one’s hypothesis is false)

H0: null hypothesis -- some “default” value (usually that one’s hypothesis is false)

H1: the alternative -- usually that one’s “hypothesis” is true

More formally: Let X be a random variable and let R be the range of X. R
reject 

⊂ R is the 
rejection region. If X ∊ R

reject
 then we reject the null. 



Hypothesis Testing

Hypothesis -- something one asserts to be true. 

Classical Approach: 

H0: null hypothesis -- some “default” value (usually that one’s hypothesis is false)

H1: the alternative -- usually that one’s “hypothesis” is true

Goal: Use probability to determine if we can “reject the null”(H0) in favor of H1.
“There is less than a 5% chance the null is true” (i.e. 95% alternative is true). 

Example: Hypothesize a coin is biased. 
H0: the coin is not biased (i.e. flipping n times results in a Binomial(n, 0.5))

H0: null hypothesis -- some “default” value (usually that one’s hypothesis is false)

H1: the alternative -- usually that one’s “hypothesis” is true

More formally: Let X be a random variable and let R be the range of X. R
reject 

⊂ R is the 
rejection region. If X ∊ R

reject
 then we reject the null. 

in the example, if n = 1000, then then R
reject 

 = [0, 469] ∪ [531, 1000] 



Hypothesis Testing

Important logical question: 

Does failure to reject the null mean the null is true?



Hypothesis Testing

Important logical question: 

Does failure to reject the null mean the null is true?

no. 

Traditionally, one of the most common reasons to fail to reject the null: 
n is too small (not enough data)

Thought experiment: If we have infinite data, can the null ever be true? 

Big Data problem: “everything” is significant. Thus, consider “effect size” 



Type I, Type II Errors

(Orloff & Bloom, 2014)



Power

significance level (“p-value”) = P(type I error) = P(Reject H0 | H0)  
(probability we are incorrect)

power = 1 - P(type II error) = P(Reject H0 | H1)
(probability we are correct)

P(Reject H0 | H0)     P(Reject H0 | H1)



Multi-test Correction

If alpha = .05, and I run 40 
variables through significance 

tests, then, by chance, how many 
are likely to be significant?



Multi-test Correction

2 (5% any test rejects the null, by chance)

How to fix?



Multi-test Correction

What if all tests are independent?
=> “Bonferroni Correction” (α/m)

Better Alternative: False Discovery Rate 
(Bejamini Hochberg)

How to fix?



Statistical Considerations in Big Data

1. Average multiple models 
(ensemble techniques)

2. Correct for multiple tests
(Bonferonni’s Principle)

3. Smooth data

4. “Plot” data (or figure out a way to 
look at a lot of it “raw”)

5. Interact with data

6. Know your “real” sample size

7. Correlation is not causation

8. Define metrics for success
(set a baseline)

9. Share code and data

10. The problem should drive solution

(http://simplystatistics.org/2014/05/22/10-things-statistics-taught-us-about-big-data-analysis/)


