Statistical Preliminaries

Stony Brook University CSE545, Fall 2016

X: A mapping from Ω to \mathbb{R} that describes the question we care about in practice.

X: A mapping from Ω to \mathbb{R} that describes the question we care about in practice.

Example: Ω = 5 coin tosses = {<HHHHH>, <HHHHT>, <HHHTH>, <HHHTH>, <HHHTH>...} We may just care about how many tails? Thus,

```
X(\langle HHHHH \rangle) = 0
```

```
X(\langle HHHTH \rangle) = 1
```

```
X(\langle TTTHT \rangle) = 4
```

```
X(\langle HTTTT \rangle) = 4
```

X only has 6 possible values: 0, 1, 2, 3, 4, 5

What is the probability that we end up with k = 4 tails?

 $\mathbf{P}(\mathbf{X} = k) := \mathbf{P}(\{\omega : \mathbf{X}(\omega) = k\}) \quad \text{where } \omega \in \mathbf{\Omega}$

X: A mapping from Ω to \mathbb{R} that describes the question we care about in practice.

Example: Ω = 5 coin tosses = {<HHHHH>, <HHHHT>, <HHHTH>, <HHHTH>, <HHHTH>...} We may just care about how many tails? Thus,

- $X(\langle HHHHH \rangle) = 0$
- $X(\langle HHHTH \rangle) = 1$
- $X(\langle TTTHT \rangle) = 4$
- $X(\langle HTTTT \rangle) = 4$

X only has 6 possible values: 0, 1, 2, 3, 4, 5

What is the probability that we end up with k = 4 tails?

 $\mathbf{P}(\mathbf{X} = k) := \mathbf{P}(\{\omega : \mathbf{X}(\omega) = k\}) \quad \text{where } \omega \in \mathbf{\Omega}$

 $X(\omega) = 4$ for 5 out of 32 sets in Ω . Thus, assuming a fair coin, P(X = 4) = 5/32 (Not a variable, but a function that we end up notating a lot like a variable)

X: A mapping from Ω to \mathbb{R} that describes the question we care about in practice.

Example: **Ω** = 5 coin tosses = {<HHHHH>, <HHHHT>, <HHHTH>, <HHHTH>, <HHHTH>,...} We may just care about how many tails? Thus,

- $X(\langle HHHHH \rangle) = 0$ $X(\langle HHHTH \rangle) = 1$
- $X(\langle TTTHT \rangle) = 4$
- $X(\langle HTTTT \rangle) = 4$

X is a *discrete random variable* if it takes only a countable number of values.

X only has 6 possible values: 0, 1, 2, 3, 4, 5

What is the probability that we end up with k = 4 tails?

 $\mathbf{P}(\mathbf{X} = k) := \mathbf{P}(\{\omega : \mathbf{X}(\omega) = k\}) \quad \text{where } \omega \in \mathbf{\Omega}$

 $X(\omega) = 4$ for 5 out of 32 sets in Ω . Thus, assuming a fair coin, P(X = 4) = 5/32 (Not a variable, but a function that we end up notating a lot like a variable)

X: A mapping from Ω to \mathbb{R} that describes the question we care about in practice.

X is a *continuous random variable* if it can take on an infinite number of values between any two given values. X is a *discrete random variable* if it takes only a countable number of values.

X: A mapping from Ω to \mathbb{R} that describes the question we care about in practice.

Example: Ω = inches of snowfall = [0, ∞) $\subseteq \mathbb{R}$

X is a *continuous random variable* if it can take on an infinite number of values between any two given values. X amount of inches in a snowstorm $X(\omega) = \omega$

What is the probability we receive (at least) a inches? $P(X \ge a) := P(\{\omega : X(\omega) \ge a\})$

What is the probability we receive between a and b inches? $P(a \le X \le b) := P(\{\omega : a \le X(\omega) \le b\})$

X: A mapping from Ω to \mathbb{R} that describes the question we care about in practice.

 $\mathbf{X}(\boldsymbol{\omega}) = \boldsymbol{\omega}$

Example: Ω = inches of snowfall = [0, ∞) $\subseteq \mathbb{R}$

X is a *continuous random variable* if it can take on an infinite number of values between any two given values.

What is the probability we receive (at least) a inches? $P(X \ge a) := P(\{\omega : X(\omega) \ge a\})$

What is the probability we receive between a and b inches? $P(a \le X \le b) := P(\{\omega : a \le X(\omega) \le b\})$

X amount of inches in a snowstorm

 $\mathbf{P}(\mathbf{X} = \mathbf{i}) := 0$, for all $\mathbf{i} \in \mathbf{\Omega}$

(probability of receiving <u>exactly</u> i inches of snowfall is zero)

Random Variables, Revisited

X: A mapping from Ω to \mathbb{R} that describes the question we care about in practice.

Example: Ω = inches of snowfall = [0, ∞) $\subseteq \mathbb{R}$

X is a *continuous random variable* if it can take on an infinite number of values between any two given values.

X amount of inches in a snowstorm

$$\mathbf{X}(\omega) = \omega$$

s?

$$P(X = i) := 0$$
, for all $i \in \Omega$

(probability of receiving <u>exactly</u> i inches of snowfall is zero)

How to model?

inches?

How to model?

X is a *continuous random variable* if it can take on an infinite number of values between any two given values.

X is a *continuous random variable* if there exists a function *fx* such that:

$$f_X(x) \ge 0$$
, for all $x \in X$,
 $\int_{-\infty}^{\infty} f_X(x) dx = 1$, and
 $P(a < X < b) = \int_a^b f_X(x) dx$

X is a *continuous random variable* if it can take on an infinite number of values between any two given values.

X is a *continuous random variable* if there exists a function *fx* such that:

$$f_X(x) \ge 0$$
, for all $x \in X$,
 $\int_{-\infty}^{\infty} f_X(x) dx = 1$, and
 $P(a < X < b) = \int_a^b f_X(x) dx$

fx : "probability density function" (pdf)

16

Common Trap

- $f_X(x)$ does not yield a probability $\circ \int_a^b f_X(x) dx$ does
 - x may be anything (\mathbb{R})
 - thus, $f_X(x)$ may be > 1

A Common Probability Density Function

Common *pdf*s: Normal(μ , σ^2)

$$f_X(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

Common *pdf*s: Normal(μ , σ^2)

Credit: Wikipedia

Common *pdf*s: Normal(μ , σ^2)

- $X \sim Normal(\mu, \sigma^2)$, examples:
 - height
 - intelligence/ability
 - measurement error
 - averages (or sum) of
 lots of random variables

Common pdfs: Normal(0, 1) ("standard normal")

How to "standardize" any normal distribution:

- subtract the mean, μ (aka "mean centering")
- divide by the standard deviation, $\boldsymbol{\sigma}$

 $z = (x - \mu) / \sigma$, (aka "z score")

Common pdfs: Normal(0, 1)

 $P(-1 \le Z \le 1) \approx .68, \quad P(-2 \le Z \le 2) \approx .95, \quad P(-3 \le Z \le 3) \approx .99$

Credit: MIT Open Courseware: Probability and Statistics

Cumulative Distribution Function

For a given random variable X, the cumulative distribution function (CDF), Fx: $\mathbb{R} \to [0, 1]$, is defined by: $F_X(x) = P(X \le x)$

х

Cumulative Distribution Function

Random Variables, Revisited

X: A mapping from Ω to \mathbb{R} that describes the question we care about in practice.

X is a *continuous random variable* if it can take on an infinite number of values between any two given values. X is a discrete random variable if it takes only a countable number of values.

For a given random variable X, the *cumulative distribution function* (CDF), *Fx:* $\mathbb{R} \rightarrow [0, 1]$, is defined by:

 $F_X(x) = \mathcal{P}(X \le x)$

X is a discrete random variable if it takes only a countable number of values.

For a given random variable X, the *cumulative distribution function* (CDF), *Fx:* $\mathbb{R} \rightarrow [0, 1]$, is defined by:

 $F_X(x) = \mathcal{P}(X \le x)$

X is a *discrete random variable* if it takes only a countable number of values.

(like normal)

For a given random variable X, the cumulative distribution function (CDF), Fx: $\mathbb{R} \to [0, 1]$, is defined by: $F_X(x) = \mathbb{P}(X \le x)$

For a given discrete random variable X, probability mass function (pmf), fx: $\mathbb{R} \rightarrow [0, 1]$, is defined by:

$$f_X(x) = \mathcal{P}(X = x)$$

X is a discrete random variable if it takes only a countable number of values.

$$\sum_{i} f_X(x) = 1$$
$$F_X(f) = P(X \le x) = \sum_{x_i \le x} f_X(x)$$

Two Common Discrete Random Variables

• Binomial(n, p)

 $f_X(x) = {n \choose x} p^x (1-p)^{n-x}$, if $0 \le x \le n$ (0 otherwise) example: number of heads after n coin flips (p, probability of heads)

Bernoulli(p) = Binomial(1, p)
 example: one trial of success or failure

Hypothesis -- something one asserts to be true.

Classical Approach:

*H*_o: *null hypothesis* -- some "default" value; "null" => nothing changes

 H_1 : the alternative -- the opposite of the null => a change or a difference

Hypothesis -- something one asserts to be true.

Classical Approach:

H_o: null hypothesis -- some "default" value; "null" => nothing changes

 H_1 : the alternative -- the opposite of the null => a change or a difference

Goal: Use probability to determine if we can "reject the null"(H_o) in favor of H_1 . "There is less than a 5% chance that the null is true" (i.e. 95% alternative is true).

Example: Hypothesize a coin is biased.

 H_0 : the coin is not biased (i.e. flipping n times results in a Binomial(n, 0.5))

*H*_o: *null hypothesis* -- some "default" value (usually that one's hypothesis is false)

 H_1 : the alternative -- usually that one's "hypothesis" is true

More formally: Let *X* be a random variable and let *R* be the range of X. $R_{reject} \subseteq R$ is the *rejection region.* If $X \in R_{reject}$ then we reject the null.

*H*₀: *null hypothesis* -- some "default" value (usually that one's hypothesis is false)

 H_1 : the alternative -- usually that one's "hypothesis" is true

More formally: Let *X* be a random variable and let *R* be the range of X. $R_{reject} \subseteq R$ is the *rejection region.* If $X \in R_{reject}$ then we reject the null.

in the example, if n = 1000, then then $R_{reject} = [0, 469] \cup [531, 1000]$

Example: Hypothesize a coin is biased.

 H_0 : the coin is not biased (i.e. flipping n times results in a Binomial(n, 0.5))

Important logical question:

Does failure to reject the null mean the null is true?

Important logical question:

Does failure to reject the null mean the null is true?

Thought experiment: If we have infinite data, can the null ever be true?

Type I, Type II Errors

(Orloff & Bloom, 2014)

Power

significance level ("p-value") = P(type I error) = P(Reject H₀ | H₀)
(probability we are incorrect)

power = 1 - P(type II error) = P(Reject H₀ | H₁)
(probability we are correct)

Multi-test Correction

If alpha = .05, and I run 40 variables through significance tests, then, by chance, how many are likely to be significant?

What if all tests are independent? => "Bonferroni Correction" (α/m)

Better Alternative: False Discovery Rate (Bejamini Hochberg)

Statistical Considerations in Big Data

- Average multiple models (ensemble techniques)
- 2. Correct for multiple tests (Bonferonni's Principle)
- 3. Smooth data
- 4. "Plot" data (or figure out a way to look at a lot of it "raw")
- 5. Interact with data

- 6. Know your "real" sample size
- 7. Correlation is not causation
- 8. Define metrics for success (set a baseline)
- 9. Share code and data
- 10. The problem should drive solution

(http://simplystatistics.org/2014/05/22/10-things-statistics-taught-us-about-big-data-analysis/)