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Big Data Analytics -- The Class

We will learn:

● to analyze different types of data:  
○ high dimensional  
○ graphs
○ infinite/never-ending  
○ labeled  

● to use different models of computation:  
○ MapReduce 
○ streams and online algorithms  
○ single machine in-memory 
○ Spark

J. Leskovec, A.Rajaraman, J.Ullman: Mining of Massive Datasets, www.mmds.org 
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Motivation

One often does not know when a set of data will end. 

● Can not store
● Not practical to access repeatedly
● Rapidly arriving
● Does not make sense to ever “insert” into a database

Can not fit on disk but would like to generalize / summarize 
the data? 



Motivation

One often does not know when a set of data will end. 

● Can not store
● Not practical to access repeatedly
● Rapidly arriving
● Does not make sense to ever “insert” into a database

Can not fit on disk but would like to generalize / summarize 
the data? 

Examples: Google search queries
Satellite imagery data

Text Messages, Status updates
Click Streams
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Stream Queries

1. Standing Queries: Stored and permanently executing.

2. Ad-Hoc: One-time questions 
-- must store expected parts / summaries of streams

E.g. Each would handle the following differently: 

What is the mean of values seen so far? 



Streaming Algorithms

● Sampling 

● Filtering Data

● Count Distinct Elements

● Counting Moments

● Incremental Processing*



General Stream Processing Model



Sampling and Filtering Data

Sampling: Create a random sample for statistical analysis.

● Basic version: generate random number; if < sample% keep

○ Problem: Tuples usually are not units-of-analysis for statistical analyses

● Assume provided some key as unit-of analysis to sample over

○ E.g. ip_address, user_id, document_id, ...etc….

● Want 1/20th of all “keys” (e.g. users)
○ Hash to 20 buckets; bucket 1 is “in”; others are “out”
○ Note: do not need to store anything (except hash functions); may be part 

of standing query
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Sampling and Filtering Data

Filtering: Select elements with property x
Example: 40B email addresses to bypass spam filter
● The Bloom Filter (approximates; allows FPs)

○ Given:
■ |S| keys to filter; will be mapped to |B| bits 
■ hashes = h1, h2, …, hk independent hash functions 

○ Algorithm
■ Set all B to 0

■ For each i in hashes, for each s in S: 
Set B[hi (s)] = 1  

… #usually embedded in other code
■ while key x arrives next in stream

● if B[hi (s)] == 1 all i in hashes: do as if x is in S
● else: do as if x not in S

What is the probability of a 
false-positive?

What fraction of |B| are 1s?

Like throwing |S| * k darts at n 
targets. 
1 dart: 1/n
D darts: (1 - 1/n)d

= e-d/n  faction are 1s

probability all k hashes being 1?
(e-(|S|*k)/n )k

Note: Can expand S as stream 
continues 

(e.g. adding verified email 
addresses)



Counting Moments
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Problem: Can’t maintain that many in memory; disk storage is too slow
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Moments:

● Suppose mi is the count of distinct element i in the data

● The kth moment of the stream is 

Examples

● 0th moment: count of distinct elements
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Streaming Solution: Flajolet-Martin Algorithm

Pick a hash, h, to map each of n elements to log2n bits
R = 0 #potential max number of zeros at tail
for each stream element, e:

r(e) = num of trailing 0s from h(e)
R = r(e) if r(e) > R

estimated_distinct_elements = 2R

Problem:
Unstable in practice.

Solution:
1. Partition into groups
2. Take mean in group
3. Take median of 

means
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Counting Moments

Moments:

● Suppose mi is the count of distinct element i in the data

● The kth moment of the stream is 

Examples

● 0th moment: count of distinct elements

● 1st moment: length of stream

● 2nd moment: sum of squares (measures uneveness related to variance)

2nd moment
Streaming Solution: Alon-Matias-Szegedy Algorithm

(Exercise; see in MMDS)


