Streaming Algorithms

Stony Brook University CSE545, Fall 2016

Big Data Analytics -- The Class

We will learn:

- to analyze different types of data:
 - high dimensional
 - graphs
 - infinite/never-ending
 - labeled
- to use different models of computation:
 - MapReduce
 - streams and online algorithms
 - single machine in-memory
 - Spark

J. Leskovec, A.Rajaraman, J.Ullman: Mining of Massive Datasets, www.mmds.org

Big Data Analytics -- The Class

We will learn:

- to analyze different types of data:
 - high dimensional
 - o graphs
 - infinite/never-ending
 - \circ labeled
- to use different models of computation:
 - MapReduce
 - streams and online algorithms
 - single machine in-memory
 - o Spark

J. Leskovec, A.Rajaraman, J.Ullman: Mining of Massive Datasets, www.mmds.org

Motivation

One often does not know when a set of data will end.

- Can not store
- Not practical to access repeatedly
- Rapidly arriving
- Does not make sense to ever "insert" into a database

Can not fit on disk but would like to generalize / summarize the data?

Motivation

One often does not know when a set of data will end.

- Can not store
- Not practical to access repeatedly
- Rapidly arriving
- Does not make sense to ever "insert" into a database

Can not fit on disk but would like to generalize / summarize the data?

Examples: Google search queries Satellite imagery data Text Messages, Status updates Click Streams

Stream Queries

1. Standing Queries: Stored and permanently executing.

- 2. Ad-Hoc: One-time questions
 - -- must store expected parts / summaries of streams

Stream Queries

1. Standing Queries: Stored and permanently executing.

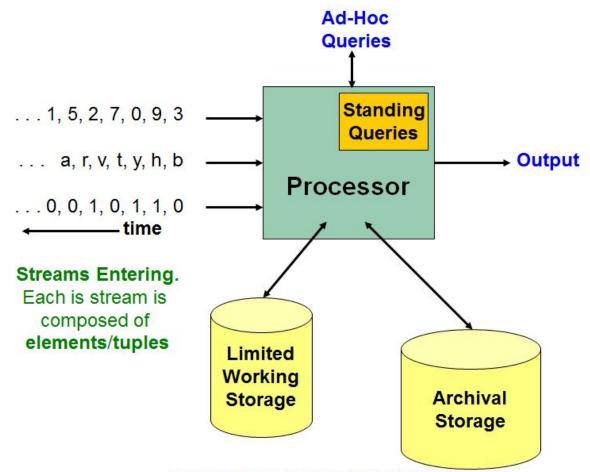
- 2. Ad-Hoc: One-time questions
 - -- must store expected parts / summaries of streams
- E.g. Each would handle the following differently:

What is the mean of values seen so far?

Streaming Algorithms

- Sampling
- Filtering Data
- Count Distinct Elements
- Counting Moments
- Incremental Processing*

General Stream Processing Model



Sampling: Create a random sample for statistical analysis.

- Basic version: generate random number; if < sample% keep
 - Problem: Tuples usually are not units-of-analysis for statistical analyses
- Assume provided some key as unit-of analysis to sample over
 - E.g. ip_address, user_id, document_id, ...etc....
- Want 1/20th of all "keys" (e.g. users)
 - Hash to 20 buckets; bucket 1 is "in"; others are "out"
 - Note: do not need to store anything (except hash functions); may be part of standing query

Filtering: Select elements with property x

Example: 40B email addresses to bypass spam filter

Filtering: Select elements with property x

Example: 40B email addresses to bypass spam filter

- The Bloom Filter
 - Given:
 - |S| keys to filter; will be mapped to |B| bits
 - hashes = $h_{1,} h_{2'} \dots h_{k}$ independent hash functions

Filtering: Select elements with property x

Example: 40B email addresses to bypass spam filter

- The Bloom Filter (approximates; allows FPs)
 - Given:
 - |S| keys to filter; will be mapped to |B| bits
 - hashes = $h_{1,} h_{2'} \dots h_{k}$ independent hash functions
 - Algorithm
 - Set all B to 0
 - For each i in hashes, for each s in S:

Set $B[h_i(s)] = 1$

... #usually embedded in other code

- while key x arrives next in stream
 - if B[h_i (s)] == 1 for all i in hashes: do as if x is in S
 - else: do as if x not in S

Filtering: Select elements with property x

Example: 40B email addresses to bypass spam filter

- The Bloom Filter (approximates; allows FPs)
 - Given:
 - |S| keys to filter; will be mapped to |B| bits
 - hashes = $h_{1,} h_{2'} \dots h_{k}$ independent hash functions
 - Algorithm
 - Set all B to 0
 - For each i in hashes, for each s in S:

Set $B[h_i(s)] = 1$

- ... #usually embedded in other code
 - while key x arrives next in stream
 - if $B[h_i(s)] == 1$ all i in hashes: do as if x is in S
 - else: do as if x not in S

What is the probability of a false-positive?

Filtering: Select elements with property x

Example: 40B email addresses to bypass spam filter

- The Bloom Filter (approximates; allows FPs)
 - Given:
 - |S| keys to filter; will be mapped to |B| bits
 - hashes = $h_{1,} h_{2'} \dots h_{k}$ independent hash functions
 - Algorithm
 - Set all B to 0
 - For each i in hashes, for each s in S:

Set $B[h_i(s)] = 1$

- ... #usually embedded in other code
 - while key x arrives next in stream
 - if $B[h_i(s)] == 1$ all i in hashes: do as if x is in S
 - else: do as if x not in S

What is the probability of a false-positive?

What fraction of |B| are 1s?

Like throwing |S| * k darts at n targets. 1 dart: 1/n D darts: (1 - 1/n)^d

= e^{-d/n} faction are 1s

Filtering: Select elements with property x

Example: 40B email addresses to bypass spam filter

- The Bloom Filter (approximates; allows FPs)
 - Given:
 - |S| keys to filter; will be mapped to |B| bits
 - hashes = h_{1} , $h_{2'}$, ..., h_{k} independent hash functions
 - Algorithm
 - Set all B to 0
 - For each i in hashes, for each s in S:

Set $B[h_i(s)] = 1$

- ... #usually embedded in other code
 - while key x arrives next in stream
 - if $B[h_i(s)] == 1$ all i in hashes: do as if x is in S
 - else: do as if x not in S

What is the probability of a false-positive?

What fraction of |B| are 1s?

Like throwing |S| * k darts at n targets. 1 dart: 1/n D darts: (1 - 1/n)^d = e^{-d/n} faction are 1s

probability all k hashes being 1?

Filtering: Select elements with property x

Example: 40B email addresses to bypass spam filter

- The Bloom Filter (approximates; allows FPs)
 - Given:
 - |S| keys to filter; will be mapped to |B| bits
 - hashes = h_{1} , $h_{2'}$, ..., h_{k} independent hash functions
 - Algorithm
 - Set all B to 0
 - For each i in hashes, for each s in S:

Set $B[h_i(s)] = 1$

- ... #usually embedded in other code
 - while key x arrives next in stream
 - if $B[h_i(s)] == 1$ all i in hashes: do as if x is in S
 - else: do as if x not in S

What is the probability of a false-positive?

What fraction of |B| are 1s?

Like throwing |S| * k darts at n targets. 1 dart: 1/n D darts: (1 - 1/n)^d

= $e^{-d/n}$ faction are 1s

probability all k hashes being 1? $(e^{-(|S|^*k)/n})^k$

Note: Can expand S as stream continues (e.g. adding verified email addresses)

Moments:

- Suppose m_i is the count of distinct element i in the data
- The kth moment of the stream is

$$\sum_{i \in \text{Set}} m_i^k$$

Examples

- 0th moment: count of distinct elements
- 1st moment: length of stream
- 2nd moment: sum of squares (measures *uneveness* related to variance)

0th moment One Solution: Just keep a set (hashmap, dictionary, heap)

Problem: Can't maintain that many in memory; disk storage is too slow

0th moment: count of distinct elements

- 1st moment: length of stream
- 2nd moment: sum of squares (measures *uneveness* related to variance)

Oth moment Streaming Solution: Flajolet-Martin Algorithm Pick a hash, *h*, to map each of n elements to $\log_2 n$ bits R = 0 #potential max number of zeros at tail for each stream element, e: r(e) = num of trailing 0s from *h*(e) R = r(e) if r(e) > R estimated_distinct_elements = 2^R

- 0th moment: count of distinct elements
- 1st moment: length of stream
- 2nd moment: sum of squares (measures *uneveness* related to variance)

Oth moment Streaming Solution: Flajolet-Martin Algorithm Pick a hash, *h*, to map each of n elements to $\log_2 n$ bits R = 0 #potential max number of zeros at tail for each stream element, e: r(e) = num of trailing 0s from *h*(e) R = r(e) if r(e) > R estimated_distinct_elements = 2^R Problem: Unstable in practice.

- 0th moment: count of distinct elements
- 1st moment: length of stream
- 2nd moment: sum of squares (measures *uneveness* related to variance)

Oth moment Streaming Solution: Flajolet-Martin Algorithm Pick a hash, *h*, to map each of n elements to $\log_2 n$ bits R = 0 #potential max number of zeros at tail for each stream element, e: r(e) = num of trailing 0s from *h*(e) R = r(e) if r(e) > R estimated_distinct_elements = 2^R

- 0th moment: count of distinct elements
- 1st moment: length of stream
- 2nd moment: sum of squares (measures *uneveness* related to variance)

Problem: Unstable in practice.

Solution:

- 1. Partition into groups
- 2. Take mean in group
- 3. Take median of means

1st moment Streaming Solution: Simply keep a counter

- 0th moment: count of distinct elements
- 1st moment: length of stream
- 2nd moment: sum of squares (measures *uneveness* related to variance)

2nd moment Streaming Solution: Alon-Matias-Szegedy Algorithm

(Exercise; see in MMDS)

- 0th moment: count of distinct elements
- 1st moment: length of stream
- 2nd moment: sum of squares (measures *uneveness* related to variance)