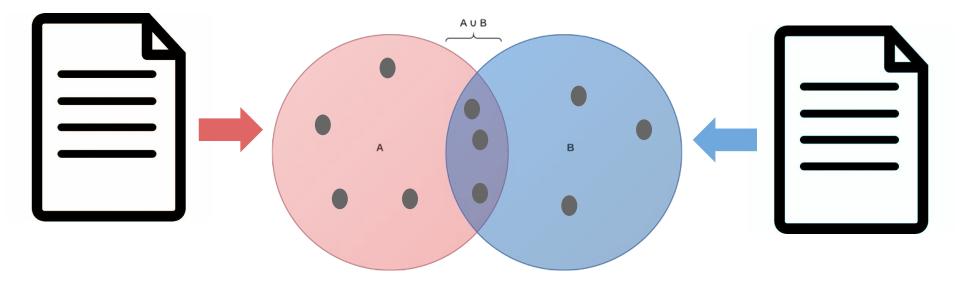
Similarity Search

Stony Brook University CSE545, Fall 2016

Finding Similar Items

- Applications
 - Document Similarity:
 - Mirrored web-pages
 - Plagiarism; Similar News
 - Recommendations:
 - Online purchases
 - Movie ratings
 - Entity Resolution
 - Fingerprint Matching

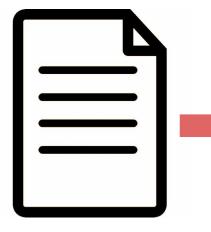

Finding Similar Items: What we will cover

- Set Similarity
 - Shingling
 - Minhashing
 - Locality-sensitive hashing
- Embeddings
- Distance Metrics
- High-Degree of Similarity

Document Similarity

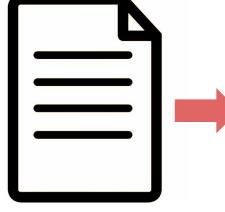
Challenge: How to represent the document in a way that can be efficiently encoded and compared?

Goal: Convert documents to sets



Goal: Convert documents to sets

k-shingles (aka "character n-grams") - sequence of k characters


Goal: Convert documents to sets

k-shingles (aka "character n-grams") - sequence of k characters

E.g. *k*=2 doc="abcdabd" singles(doc, 2) = {ab, bc, cd, da, bd}

Goal: Convert documents to sets

k-shingles (aka "character n-grams") - sequence of k characters

E.g. *k*=2 doc="abcdabd" singles(doc, 2) = {ab, bc, cd, da, bd}

- Similar documents will have many common shingles
- Changing words or order has minimal effect.
- In practice use 5 < k < 10

Goal: Convert documents to sets

Large enough that any given shingle appearing a document is highly unlikely (e.g. < .1% chance)

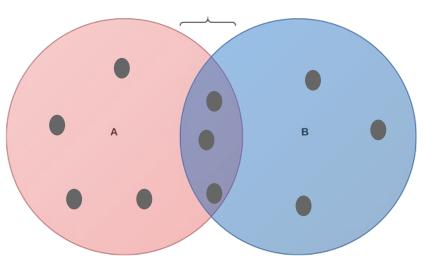
Can hash large singles to smaller (e.g. 9-shingles into 4 bytes)

Can also use words (aka n-grams).

• In practice use 5 < k < 10

Problem: Even if hashing, sets of shingles are large (e.g. 4 bytes => 4x the size of the document).

Goal: Convert sets to shorter ids, signatures


Goal: Convert sets to shorter ids, signatures

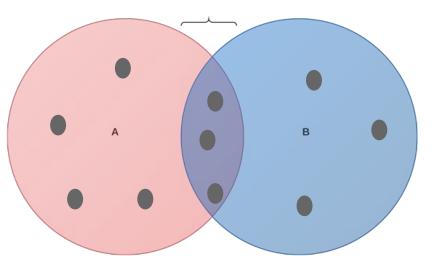
Characteristic Matrix:

Element	S_1	S_2	S_3	S_4
a	1	0	0	1
b	0	0	1	0
c	0	1	0	1
d	1	0	1	1
e	0	0	1	0

(Leskovec at al., 2014; http://www.mmds.org/)

$$sim(S_1, S_2) = \frac{S_1 \cap S_2}{S_1 \cup S_2}$$

Goal: Convert sets to shorter ids, signatures


Characteristic Matrix:

Element	S_1	S_2	S_3	S_4
a	1	0	0	1
b	0	0	1	0
c	0	1	0	1
d	1	0	1	1
e	0	0	1	0

(Leskovec at al., 2014; http://www.mmds.org/)

often very sparse! (lots of zeros)

$$sim(S_1, S_2) = \frac{S_1 \cap S_2}{S_1 \cup S_2}$$

Characteristic Matrix:

	<i>S</i> ₁	<i>S</i> ₂
ab	1	1
bc	0	1
de	1	0
ah	1	1
ha	0	0
ed	1	1
ca	0	1

$$sim(S_1, S_2) = \frac{S_1 \cap S_2}{S_1 \cup S_2}$$

Characteristic Matrix:

	<i>S</i> ₁	<i>S</i> ₂	
ab	1	1	* *
bc	0	1	*
de	1	0	*
ah	1	1	**
ha	0	0	
ed	1	1	**
са	0	1	*

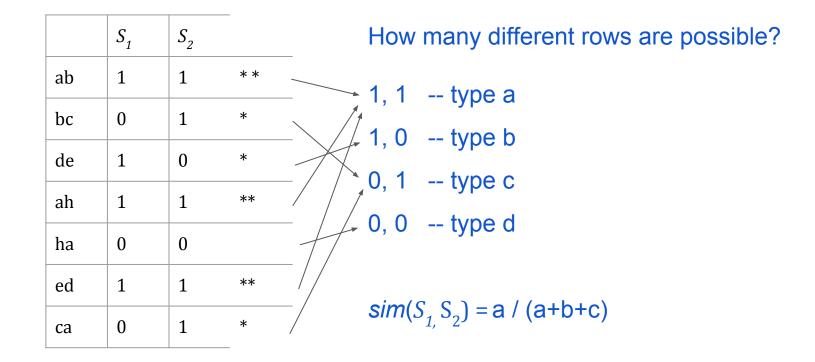
$$sim(S_1, S_2) = \frac{S_1 \cap S_2}{S_1 \cup S_2}$$

Characteristic Matrix:

	<i>S</i> ₁	<i>S</i> ₂	
ab	1	1	* *
bc	0	1	*
de	1	0	*
ah	1	1	**
ha	0	0	
ed	1	1	**
са	0	1	*

Jaccard Similarity:

$$sim(S_1, S_2) = \frac{S_1 \cap S_2}{S_1 \cup S_2}$$


 $sim(S_1, S_2) = 3 / 6$ (# both have / # at least one has)

Characteristic Matrix:

	<i>S</i> ₁	<i>S</i> ₂	
ab	1	1	* *
bc	0	1	*
de	1	0	*
ah	1	1	**
ha	0	0	
ed	1	1	**
са	0	1	*

How many different rows are possible?

Characteristic Matrix:

Problem: Even if hashing, sets of shingles are large (e.g. 4 bytes => 4x the size of the document).

Characteristic Matrix:

	<i>S</i> ₁	<i>S</i> ₂	<i>S</i> ₃	<i>S</i> ₄
ab	1	0	1	0
bc	1	0	0	1
de	0	1	0	1
ah	0	1	0	1
ha	0	1	0	1
ed	1	0	1	0
са	1	0	1	0

Characteristic Matrix:

	<i>S</i> ₁	<i>S</i> ₂	<i>S</i> ₃	<i>S</i> ₄
ab	1	0	1	0
bc	1	0	0	1
de	0	1	0	1
ah	0	1	0	1
ha	0	1	0	1
ed	1	0	1	0
са	1	0	1	0

Minhash function: *h*

• Based on permutation of rows in the characteristic matrix, *h* maps sets to first row where set appears.

Characteristic Matrix:

	<i>S</i> ₁	<i>S</i> ₂	<i>S</i> ₃	<i>S</i> ₄
ab	1	0	1	0
bc	1	0	0	1
de	0	1	0	1
ah	0	1	0	1
ha	0	1	0	1
ed	1	0	1	0
са	1	0	1	0

permuted order 1 ha 2 ed 3 ab 4 bc 5 ca 6 ah 7 de

Minhash function: *h*

 Based on permutation of rows in the characteristic matrix, *h* maps sets to first row where set appears.

Characteristic Matrix:

		<i>S</i> ₁	<i>S</i> ₂	<i>S</i> ₃	<i>S</i> ₄
3	ab	1	0	1	0
4	bc	1	0	0	1
7	de	0	1	0	1
6	ah	0	1	0	1
1	ha	0	1	0	1
2	ed	1	0	1	0
5	са	1	0	1	0

permuted order 1 ha 2 ed 3 ab 4 bc 5 ca 6 ah 7 de

Minhash function: *h*

 Based on permutation of rows in the characteristic matrix, *h* maps sets to first row where set appears.

Characteristic Matrix:

		<i>S</i> ₁	<i>S</i> ₂	<i>S</i> ₃	<i>S</i> ₄
3	ab	1	0	1	0
4	bc	1	0	0	1
7	de	0	1	0	1
6	ah	0	1	0	1
1	ha	0	1	0	1
2	ed	1	0	1	0
5	са	1	0	1	0

permuted order 1 ha 2 ed 3 ab 4 bc 5 ca 6 ah 7 de

Minhash function: *h*

 Based on permutation of rows in the characteristic matrix, *h* maps sets to first row where set appears.

> $h(S_1) = ed #permuted row 2$ $h(S_2) = ha #permuted row 1$ $h(S_3) =$

Characteristic Matrix:

		<i>S</i> ₁	<i>S</i> ₂	<i>S</i> ₃	<i>S</i> ₄
3	ab	1	0	1	0
4	bc	1	0	0	1
7	de	0	1	0	1
6	ah	0	1	0	1
1	ha	0	1	0	1
2	ed	1	0	1	0
5	са	1	0	1	0

permuted order 1 ha 2 ed 3 ab 4 bc 5 ca 6 ah 7 de

(Leskovec at al., 2014; http://www.mmds.org/)

Minhash function: *h*

 Based on permutation of rows in the characteristic matrix, *h* maps sets to first row where set appears.

> $h(S_1) = ed #permuted row 2$ $h(S_2) = ha #permuted row 1$ $h(S_3) = ed #permuted row 2$ $h(S_4) =$

Characteristic Matrix:

		<i>S</i> ₁	<i>S</i> ₂	<i>S</i> ₃	<i>S</i> ₄
3	ab	1	0	1	0
4	bc	1	0	0	1
7	de	0	1	0	1
6	ah	0	1	0	1
1	ha	0	1	0	1
2	ed	1	0	1	0
5	са	1	0	1	0

permuted order 1 ha 2 ed 3 ab 4 bc 5 ca 6 ah 7 de

Minhash function: *h*

 Based on permutation of rows in the characteristic matrix, *h* maps sets to first row where set appears.

> $h(S_1) = ed$ #permuted row 2 $h(S_2) = ha$ #permuted row 1 $h(S_3) = ed$ #permuted row 2 $h(S_4) = ha$ #permuted row 1

Characteristic Matrix:

		<i>S</i> ₁	<i>S</i> ₂	<i>S</i> ₃	<i>S</i> ₄
3	ab	1	0	1	0
4	bc	1	0	0	1
7	de	0	1	0	1
6	ah	0	1	0	1
1	ha	0	1	0	1
2	ed	1	0	1	0
5	са	1	0	1	0

Minhash function: *h*

• Based on permutation of rows in the characteristic matrix, *h* maps sets to rows.

Signature matrix: M

• Record first row where each set had a 1 in the given permutation

	<i>S</i> ₁	<i>S</i> ₂	<i>S</i> ₃	<i>S</i> ₄
h ₁	2	1	2	1

 $h_1(S_1) = ed$ #permuted row 2 $h_1(S_2) = ha$ #permuted row 1 $h_1(S_3) = ed$ #permuted row 2 $h_1(S_4) = ha$ #permuted row 1

Characteristic Matrix:

		<i>S</i> ₁	<i>S</i> ₂	<i>S</i> ₃	<i>S</i> ₄
3	ab	1	0	1	0
4	bc	1	0	0	1
7	de	0	1	0	1
6	ah	0	1	0	1
1	ha	0	1	0	1
2	ed	1	0	1	0
5	са	1	0	1	0

Minhash function: *h*

• Based on permutation of rows in the characteristic matrix, *h* maps sets to rows.

Signature matrix: M

• Record first row where each set had a 1 in the given permutation

$$\begin{array}{|c|c|c|c|c|c|c|c|}\hline & S_1 & S_2 & S_2 & S_3 & S_4 \\ \hline & h_1 & 2 & 1 & 2 & 1 \\ \hline \end{array}$$

 $h(S_1) = ed #permuted row 2$ $h(S_2) = ha #permuted row 1$ $h(S_3) = ed #permuted row 2$ $h(S_4) = ha #permuted row 1$

Characteristic Matrix:

		<i>S</i> ₁	<i>S</i> ₂	<i>S</i> ₃	<i>S</i> ₄
3	ab	1	0	1	0
4	bc	1	0	0	1
7	de	0	1	0	1
6	ah	0	1	0	1
1	ha	0	1	0	1
2	ed	1	0	1	0
5	са	1	0	1	0

Minhash function: *h*

• Based on permutation of rows in the characteristic matrix, *h* maps sets to rows.

Signature matrix: M

$h(S_1) = ed$	#permuted row 2
$h(S_2) = ha$	#permuted row 1
$h(S_3) = ed$	#permuted row 2
$h(S_4) = ha$	#permuted row 1

Characteristic Matrix:

			<i>S</i> ₁	<i>S</i> ₂	<i>S</i> ₃	<i>S</i> ₄
4	3	ab	1	0	1	0
2	4	bc	1	0	0	1
1	7	de	0	1	0	1
3	6	ah	0	1	0	1
6	1	ha	0	1	0	1
7	2	ed	1	0	1	0
5	5	са	1	0	1	0

Minhash function: h

• Based on permutation of rows in the characteristic matrix, *h* maps sets to rows.

Signature matrix: M

	<i>S</i> ₁	<i>S</i> ₂	<i>S</i> ₃	<i>S</i> ₄
h_1	2	1	2	1
<i>h</i> ₂				

Characteristic Matrix:

			<i>S</i> ₁	<i>S</i> ₂	<i>S</i> ₃	<i>S</i> ₄
4	3	ab	1	0	1	0
2	4	bc	1	0	0	1
1	7	de	0	1	0	1
3	6	ah	0	1	0	1
6	1	ha	0	1	0	1
7	2	ed	1	0	1	0
5	5	са	1	0	1	0

Minhash function: *h*

• Based on permutation of rows in the characteristic matrix, *h* maps sets to rows.

Signature matrix: M

	<i>S</i> ₁	<i>S</i> ₂	<i>S</i> ₃	<i>S</i> ₄
h ₁	2	1	2	1
<i>h</i> ₂	2	1	4	1

Characteristic Matrix:

				S_1	<i>S</i> ₂	S_{3}	S _A
1	4	3	ab		0		0
3	2	4	bc	1	0	0	1
7	1	7	de	0	1	0	1
6	3	6	ah	0	1	0	1
2	6	1	ha	0	1	0	1
5	7	2	ed	1	0	1	0
4	5	5	са	1	0	1	0

Minhash function: h

• Based on permutation of rows in the characteristic matrix, *h* maps sets to rows.

Signature matrix: M

	<i>S</i> ₁	<i>S</i> ₂	S ₃	<i>S</i> ₄
h ₁	2	1	2	1
h ₂	2	1	4	1
h ₃				

Characteristic Matrix:

				<i>S</i> ₁	<i>S</i> ₂	<i>S</i> ₃	<i>S</i> ₄
1	4	3	ab	1	0	1	0
3	2	4	bc	1	0	0	1
7	1	7	de	0	1	0	1
6	3	6	ah	0	1	0	1
2	6	1	ha	0	1	0	1
5	7	2	ed	1	0	1	0
4	5	5	са	1	0	1	0

Minhash function: h

• Based on permutation of rows in the characteristic matrix, *h* maps sets to rows.

Signature matrix: M

 Record first row where each set had a 1 in the given permutation

	<i>S</i> ₁	<i>S</i> ₂	<i>S</i> ₃	<i>S</i> ₄
h ₁	2	1	2	1
<i>h</i> ₂	2	1	4	1
h ₃	1	2	1	2

Characteristic Matrix:

				<i>S</i> ₁	<i>S</i> ₂	<i>S</i> ₃	<i>S</i> ₄
1	4	3	ab	1	0	1	0
3	2	4	bc	1	0	0	1
7	1	7	de	0	1	0	1
6	3	6	ah	0	1	0	1
2	6	1	ha	0	1	0	1
5	7	2	ed	1	0	1	0
4	5	5	са	1	0	1	0

Minhash function: *h*

• Based on permutation of rows in the characteristic matrix, *h* maps sets to rows.

Signature matrix: M

 Record first row where each set had a 1 in the given permutation

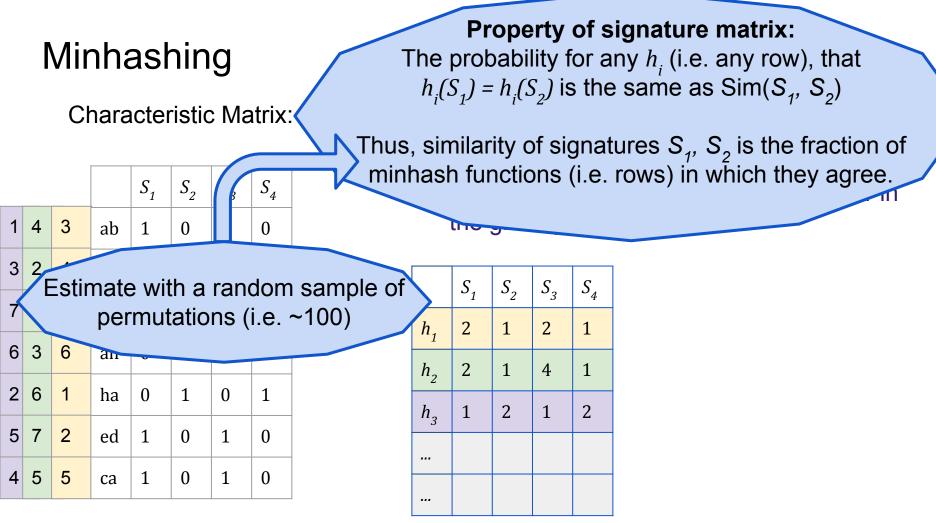
	<i>S</i> ₁	<i>S</i> ₂	<i>S</i> ₃	<i>S</i> ₄
h ₁	2	1	2	1
<i>h</i> ₂	2	1	4	1
h ₃	1	2	1	2

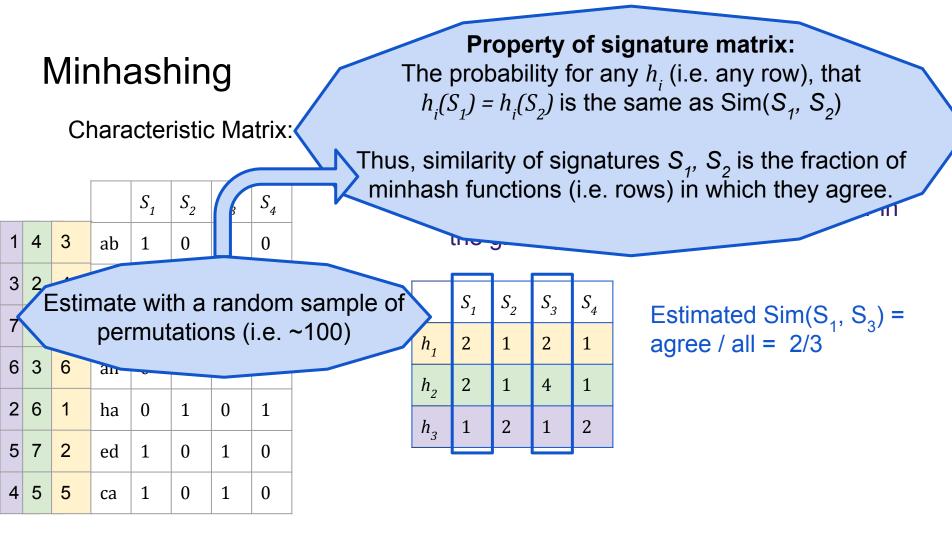
Characteristic Matrix:

Property of signature matrix: The probability for any h_i (i.e. any row), that $h_i(S_1) = h_i(S_2)$ is the same as $Sim(S_1, S_2)$

				<i>S</i> ₁	<i>S</i> ₂	<i>S</i> ₃	<i>S</i> ₄
1	4	3	ab	1	0	1	0
3	2	4	bc	1	0	0	1
7	1	7	de	0	1	0	1
6	3	6	ah	0	1	0	1
2	6	1	ha	0	1	0	1
5	7	2	ed	1	0	1	0
4	5	5	са	1	0	1	0

	<i>S</i> ₁	<i>S</i> ₂	<i>S</i> ₃	<i>S</i> ₄
h ₁	2	1	2	1
h ₂	2	1	4	1
h ₃	1	2	1	2


Characteristic Matrix:


				<i>S</i> ₁	<i>S</i> ₂	<i>S</i> ₃	<i>S</i> ₄
1	4	3	ab	1	0	1	0
3	2	4	bc	1	0	0	1
7	1	7	de	0	1	0	1
6	3	6	ah	0	1	0	1
2	6	1	ha	0	1	0	1
5	7	2	ed	1	0	1	0
4	5	5	са	1	0	1	0

Property of signature matrix: The probability for any h_i (i.e. any row), that $h_i(S_1) = h_i(S_2)$ is the same as $Sim(S_1, S_2)$

Thus, similarity of signatures S_1 , S_2 is the fraction of minhash functions (i.e. rows) in which they agree.

	<i>S</i> ₁	<i>S</i> ₂	<i>S</i> ₃	<i>S</i> ₄
h ₁	2	1	2	1
h ₂	2	1	4	1
h ₃	1	2	1	2

Characteristic Matrix:

				<i>S</i> ₁	<i>S</i> ₂	<i>S</i> ₃	<i>S</i> ₄
1	4	3	ab	1	0	1	0
3	2	4	bc	1	0	0	1
7	1	7	de	0	1	0	1
6	3	6	ah	0	1	0	1
2	6	1	ha	0	1	0	1
5	7	2	ed	1	0	1	0
4	5	5	са	1	0	1	0

Property of signature matrix: The probability for any h_i (i.e. any row), that $h_i(S_1) = h_i(S_2)$ is the same as $Sim(S_1, S_2)$

Thus, similarity of signatures $S_{1^{\prime}}$, S_{2} is the fraction of minhash functions (i.e. rows) in which they agree.

	<i>S</i> ₁	<i>S</i> ₂	<i>S</i> ₃	<i>S</i> ₄
h ₁	2	1	2	1
<i>h</i> ₂	2	1	4	1
h ₃	1	2	1	2

Estimated Sim(S₁, S₃) = agree / all = 2/3

Real Sim(S₁, S₃) = Type a / (a + b + c) = 3/4

Characteristic Matrix:

				<i>S</i> ₁	<i>S</i> ₂	<i>S</i> ₃	<i>S</i> ₄
1	4	3	ab	1	0	1	0
3	2	4	bc	1	0	0	1
7	1	7	de	0	1	0	1
6	3	6	ah	0	1	0	1
2	6	1	ha	0	1	0	1
5	7	2	ed	1	0	1	0
4	5	5	са	1	0	1	0

Property of signature matrix: The probability for any h_i (i.e. any row), that $h_i(S_1) = h_i(S_2)$ is the same as $Sim(S_1, S_2)$

Thus, similarity of signatures S_1 , S_2 is the fraction of minhash functions (i.e. rows) in which they agree.

	<i>S</i> ₁	<i>S</i> ₂	<i>S</i> ₃	<i>S</i> ₄
h ₁	2	1	2	1
<i>h</i> ₂	2	1	4	1
h ₃	1	2	1	2

Estimated Sim(S₁, S₃) = agree / all = 2/3

Real Sim(S₁, S₃) = Type a / (a + b + c) = 3/4

Try Sim(S $_2$, S $_4$) and Sim(S $_1$, S $_2$)

To implement

Problem:

- Can't actually do permutations (huge space)
- Can't randomly grab rows according to an order (random disk seeks = slow!)

To implement

Problem:

- Can't reasonably do permutations (huge space)
- Can't randomly grab rows according to an order (random disk seeks = slow!)

Solution: Use "random" hash functions.

- Setup:
 - Pick ~100 hash functions, hashes
 - Store M[i][s] = a potential minimum $h_i(r)$ #initialized to infinity (num hashs x num sets)

To implement

Problem:

- Can't reasonably do permutations (huge space)
- Can't randomly grab rows according to an order (random disk seeks = slow!)

Solution: Use "random" hash functions.

- Setup:
 - Pick ~100 hash functions, hashes
 - Store M[i][s] = a potential minimum $h_i(r)$ #initialized to infinity (num hashs x num sets)
- Algorithm:

```
for r in rows of cm: #cm is characteristic matrix
   compute h<sub>i</sub>(r) for all i in hashes #produces 100 precomputed values
   for each set s in row r:
        if cm[n][c] == 1;
```

```
if cm[r][s] == 1:
```

for i in hashes: #check which hash produces smallest value
 h_i(r) < M[i][s]: M[i][s] = h_i(r)

To implement

Problem:

- Can't reasonably do permutations (huge space)
- Can't randomly grab rows according to an order (random disk seeks = slow!)

Solution: Use "random" hash functions. -

- Setup:
 - Pick ~100 hash functions, hashes
 - Store M[i][s] = a potential minimum $h_i(r)$ #initialized to infinity (num hashs x num sets)
- Algorithm:

```
for r in rows of cm: #cm is characteristic matrix
compute h_i(r) for all i in hashes #produces 100 precomputed values
for each set s in row r:
```

```
if cm[r][s] == 1:
```

for i in hashes: #check which hash produces smallest value
 h_i(r) < M[i][s]: M[i][s] = h_i(r)

Known as "efficient minhashing".

What hash functions to use?

Start with a decent function

E.g. $h_1(x) = ascii(string) \% large_prime_number$

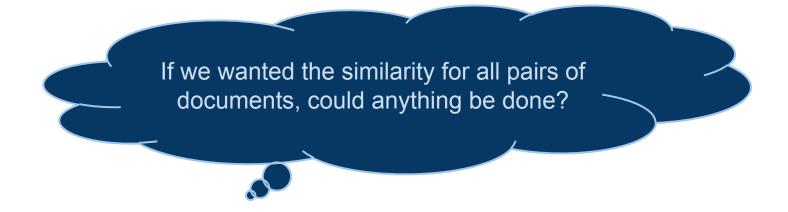
Add a random multiple and addition

E.g. $h_2(x) = (a^* \text{ascii}(\text{string}) + b) \% \text{ large_prime_number}$

Problem: Even if hashing, sets of shingles are large (e.g. 4 bytes => 4x the size of the document).

Problem: Even if hashing, sets of shingles are large (e.g. 4 bytes => 4x the size of the document).

New Problem: Even if the size of signatures are small, it can be computationally expensive to find similar pairs.


E.g. 1m documents; 1,000,000 choose 2 = 500,000,000,000 pairs

Goal: find pairs of minhashes likely to be similar (in order to then test more precisely for similarity).

Candidate pairs: pairs of elements to be evaluated for similarity.

Goal: find pairs of minhashes likely to be similar (in order to then test more precisely for similarity).

Candidate pairs: pairs of elements to be evaluated for similarity.

Goal: find pairs of minhashes likely to be similar (in order to then test more precisely for similarity).

Candidate pairs: pairs of elements to be evaluated for similarity.

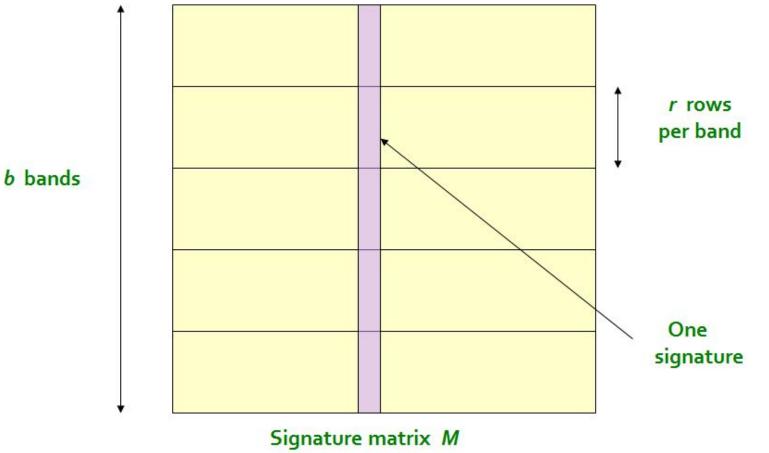
Approach: Hash multiple times: similar items are likely in the same bucket.

Goal: find pairs of minhashes likely to be similar (in order to then test more precisely for similarity).

Candidate pairs: pairs of elements to be evaluated for similarity.

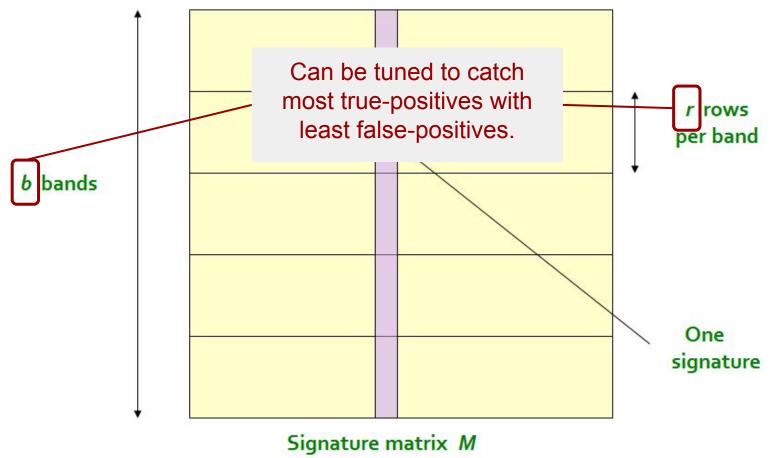
Approach: Hash multiple times: similar items are likely in the same bucket.

Approach from MinHash: Hash columns of signature matrix

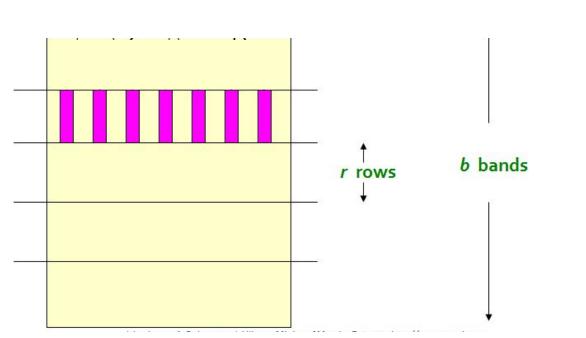


Candidate pairs end up in the same bucket.

(LSH is a type of near-neighbor search)


Step 1: Add bands

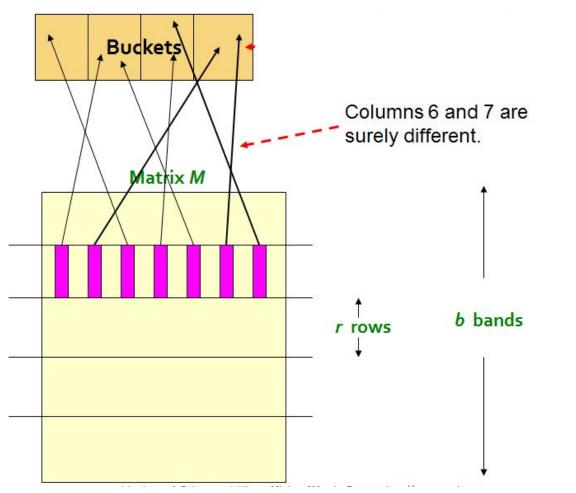
Locality-Sensitive Hashing

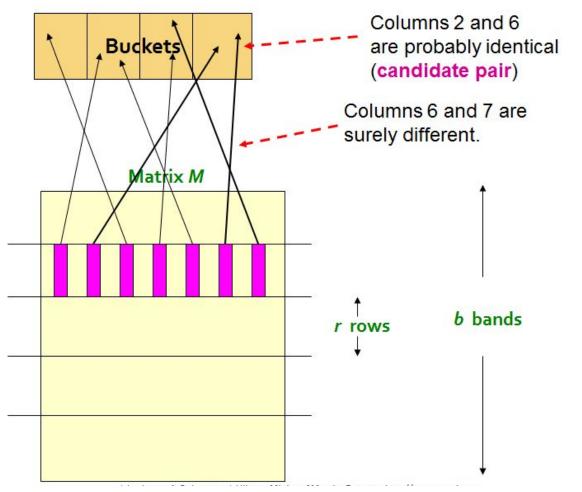

Step 1: Add bands

Locality-Sensitive Hashing

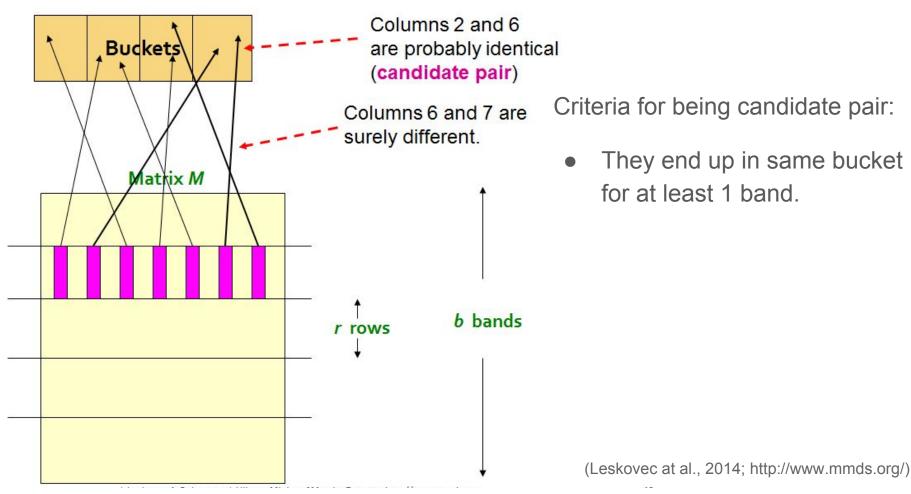
Step 2: Hash columns within bands

Locality-Sensitive Hashing

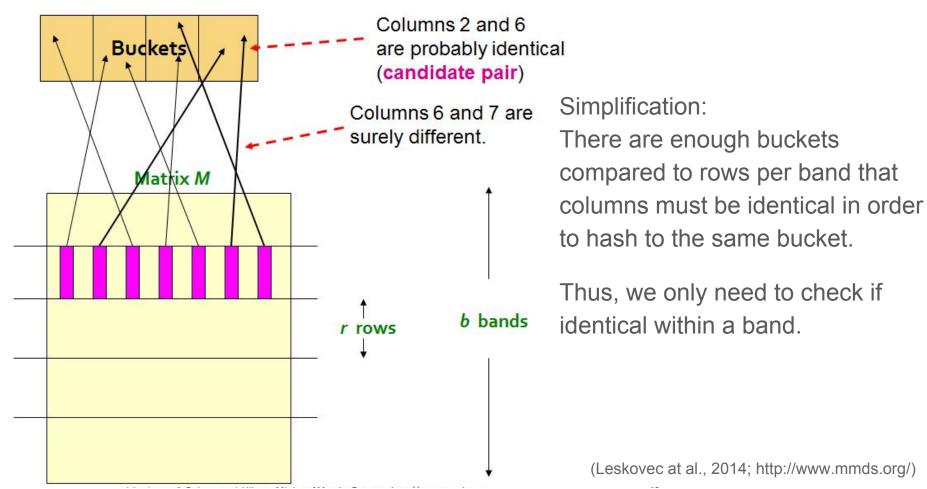

(Leskovec at al., 2014; http://www.mmds.org/)


- -

Step 2: Hash columns within bands


(Leskovec at al., 2014; http://www.mmds.org/)

Locality-Sensitive Hashing



Step 2: Hash columns within bands

Step 2: Hash columns within bands

Step 2: Hash columns within bands

- 100,000 documents
- 100 random permutations/hash functions/rows
 => if 4byte integers then 40Mb to hold signature matrix
 => still 100k choose 2 is a lot (~5billion)
- 20 bands of 5 rows
- Want 80% Jaccard Similarity

- 100,000 documents
- 100 random permutations/hash functions/rows
 => if 4byte integers then 40Mb to hold signature matrix
 => still 100k choose 2 is a lot (~5billion)
- 20 bands of 5 rows
- Want 80% Jaccard Similarity

 $P(S_1 = S_2 | b)$: probability S1 and S2 agree within a given band

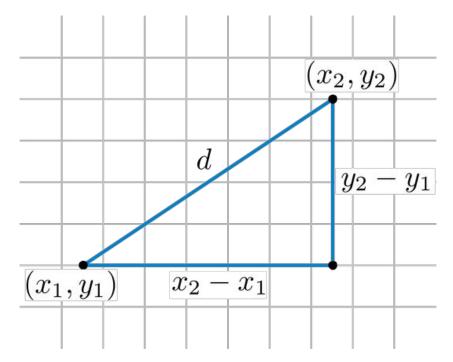
- 100,000 documents
- 100 random permutations/hash functions/rows
 => if 4byte integers then 40Mb to hold signature matrix
 => still 100k choose 2 is a lot (~5billion)
- 20 bands of 5 rows
- Want 80% Jaccard Similarity ; for any row $p(S_1 == S_2) = .8$

 $P(S_1 == S_2 | b): \text{ probability S1 and S2 agree within a given band}$ $= 0.8^5 = .328 \implies P(S_1 != S_2 | b) = 1 - .328 = .672$ $P(S_1 != S_2): \text{ probability S1 and S2 do not agree in any band}$

- 100,000 documents
- 100 random permutations/hash functions/rows
 => if 4byte integers then 40Mb to hold signature matrix
 => still 100k choose 2 is a lot (~5billion)
- 20 bands of 5 rows
- Want 80% Jaccard Similarity ; for any row $p(S_1 == S_2) = .8$

$$\begin{split} \mathsf{P}(\mathsf{S}_1 == \mathsf{S}_2 \mid \mathsf{b}): \text{ probability S1 and S2 agree within a given band} \\ &= 0.8^5 = .328 \quad => \quad \mathsf{P}(\mathsf{S}_1 != \mathsf{S}_2 \mid \mathsf{b}) = 1..328 = .672 \\ \mathsf{P}(\mathsf{S}_1 != \mathsf{S}_2): \text{ probability S1 and S2 do not agree in any band} \\ &= .672^{20} = .00035 \end{split}$$

- 100,000 documents
- 100 random permutations/hash functions/rows
 => if 4byte integers then 40Mb to hold signature matrix
 => still 100k choose 2 is a lot (~5billion)
- 20 bands of 5 rows
- Want 80% Jaccard Similarity ; for any row $p(S_1 == S_2) = .8$

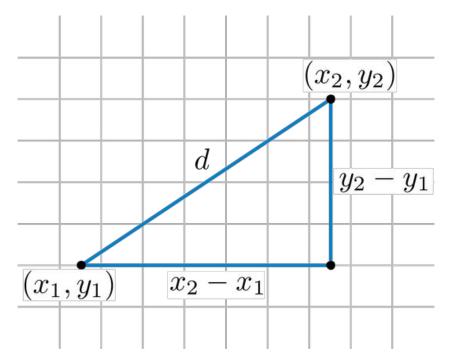

$$\begin{split} \mathsf{P}(\mathsf{S}_1 == \mathsf{S}_2 \mid \mathsf{b}): \text{ probability S1 and S2 agree within a given band} \\ &= 0.8^5 = .328 \quad => \quad \mathsf{P}(\mathsf{S}_1 != \mathsf{S}_2 \mid \mathsf{b}) = 1 - .328 = .672 \\ \mathsf{P}(\mathsf{S}_1 != \mathsf{S}_2): \text{ probability S1 and S2 do not agree in any band} \\ &= .672^{20} = .00035 \end{split}$$

What if wanting 40% Jaccard Similarity?

Document Similarity Pipeline

Pipeline gives us a way to find *near-neighbors* in *high-dimensional space* based on Jaccard Distance (1 - Jaccard Sim).

(http://rosalind.info/glossary/euclidean-distance/)


Pipeline gives us a way to find *near-neighbors* in *high-dimensional space* based on Jaccard Distance (1 - Jaccard Sim).

Typical properties, d: distance metric

d(x, x) = 0

d(x, y) = d(y, x)

 $d(x, y) \le d(x,z) + d(z,y)$

(http://rosalind.info/glossary/euclidean-distance/)

Pipeline gives us a way to find *near-neighbors* in *high-dimensional space* based on Jaccard Distance (1 - Jaccard Sim).

There are other metrics of similarity. e.g:

- Euclidean Distance
- Cosine Distance

...

- Edit Distance
- Hamming Distance

Pipeline gives us a way to find *near-neighbors* in *high-dimensional space* based on Jaccard Distance (1 - Jaccard Sim).

There are other metrics of similarity. e.g.

• Euclidean Distance

$$distance(X,Y) = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}$$
 ("L2 Norm")

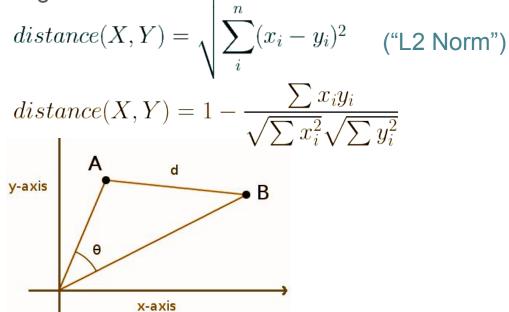
• Cosine Distance

. . .

Edit Distance

Hamming Distance

Pipeline gives us a way to find *near-neighbors* in *high-dimensional space* based on Jaccard Distance (1 - Jaccard Sim).


There are other metrics of similarity. e.g.

- Euclidean Distance
- Cosine Distance

. . .

Edit Distance

Hamming Distance

Locality Sensitive Hashing - Theory

LSH Can be generalized to many distance metrics by converting output to a probability and providing a lower bound on probability of being similar.

Locality Sensitive Hashing - Theory

LSH Can be generalized to many distance metrics by converting output to a probability and providing a lower bound on probability of being similar.

E.g. for euclidean distance:

- Choose random lines (analogous to hash functions in minhashing)
- Project the two points onto each line; match if two points within an interval