
MapReduce

Stony Brook University
CSE545, Fall 2016

Classical Data Mining

CPU

Memory

Disk

Classical Data Mining

CPU

Memory
(64 GB)

Disk

Classical Data Mining

CPU

Memory
(64 GB)

Disk

Classical Data Mining

CPU

Memory
(64 GB)

Disk

IO Bounded

Reading a word from disk versus main memory: 105 slower!

Reading many contiguously stored words
is faster per word, but fast modern disks
still only reach 150MB/s for sequential reads.

IO Bound: biggest performance bottleneck is reading / writing to disk.

(starts around 100 GBs; ~10 minutes just to read).

Classical Big Data Analysis

Often focused on efficiently utilizing the disk.

e.g. Apache Lucene / Solr

Still bounded when needing to process all of a large file.

CPU

Memory

Disk

IO Bound

How to solve?

Distributed Architecture (Cluster)

CPU

Memory

Disk

CPU

Memory

Disk

CPU

Memory

Disk

...

Switch
~1Gbps

CPU

Memory

Disk

CPU

Memory

Disk

CPU

Memory

Disk

...

Switch
~1Gbps ...

Switch
~10Gbps

Rack 1 Rack 2

Distributed Architecture (Cluster)
In reality, modern setups often have multiple cpus and disks
per server, but we will model as if one machine
per cpu-disk pair.

CPU

Disk

CPU

Disk

CPU

Memory

Disk

...

...

CPU

Disk

CPU

Disk

CPU

Memory

Disk

...

...

Switch
~1Gbps

...

Challenges for IO Cluster Computing

1. Nodes fail
1 in 1000 nodes fail a day

2. Network is a bottleneck
Typically 1-10 Gb/s throughput

3. Traditional distributed programming is often ad-hoc and
complicated

Challenges for IO Cluster Computing

1. Nodes fail
1 in 1000 nodes fail a day
Duplicate Data

2. Network is a bottleneck
Typically 1-10 Gb/s throughput
Bring computation to nodes, rather than data to nodes.

3. Traditional distributed programming is often ad-hoc and
complicated
Stipulate a programming system that can easily be distributed

Challenges for IO Cluster Computing

1. Nodes fail
1 in 1000 nodes fail a day
Duplicate Data

2. Network is a bottleneck
Typically 1-10 Gb/s throughput
Bring computation to nodes, rather than data to nodes.

3. Traditional distributed programming is often ad-hoc and
complicated
Stipulate a programming system that can easily be distributed

MapReduce to the rescue!

Common Characteristics of Big Data

Large files (i.e. >100 GB to TBs)

No need to update in place (append preferred)

Reads are most common

(e.g. web logs, social media, product purchases)

Distributed File System

(e.g. Apache HadoopDFS, GoogleFS)

C, D: Two different files

(Leskovec at al., 2014; http://www.mmds.org/)

chunk server 1 chunk server 2 chunk server 3 chunk server n

Distributed File System

(e.g. Apache HadoopDFS, GoogleFS)

C, D: Two different files

(Leskovec at al., 2014; http://www.mmds.org/)

chunk server 1 chunk server 2 chunk server 3 chunk server n

Distributed File System

(e.g. Apache HadoopDFS, GoogleFS)

C, D: Two different files

(Leskovec at al., 2014; http://www.mmds.org/)

chunk server 1 chunk server 2 chunk server 3 chunk server n

Components of a Distributed File System

Chunk servers (on Data Nodes)
File is split into contiguous chunks

Typically each chunk is 16-64MB

Each chunk replicated (usually 2x or 3x)

Try to keep replicas in different racks

Name node (aka master node)
Stores metadata about where files are stored

Might be replicated or distributed across data nodes.

Client library for file access
Talks to master to find chunk servers

Connects directly to chunk servers to access data

(Leskovec at al., 2014; http://www.mmds.org/)

Challenges for IO Cluster Computing

1. Nodes fail
1 in 1000 nodes fail a day
Duplicate Data (Distributed FS)

2. Network is a bottleneck
Typically 1-10 Gb/s throughput
Bring computation to nodes, rather than data to nodes.

3. Traditional distributed programming is often ad-hoc and
complicated
Stipulate a programming system that can easily be distributed

What is MapReduce?

1. A style of programming

input chunks => map tasks | group_by keys | reduce tasks => output

“|” is the linux “pipe” symbol: passes stdout from first process to stdin of next.

E.g. counting words:

tokenize(document) | sort | uniq -C

What is MapReduce?

1. A style of programming

input chunks => map tasks | group_by keys | reduce tasks => output

“|” is the linux “pipe” symbol: passes stdout from first process to stdin of next.

E.g. counting words:

tokenize(document) | sort | uniq -C

2. A system that distributes MapReduce style programs across a
distributed file-system.

(e.g. Google’s internal “MapReduce” or apache.hadoop.mapreduce with hdfs)

What is MapReduce?

What is MapReduce?

Map

extract what
you care
about.

What is MapReduce?

Map

extract what
you care
about.

sort and
shuffle

What is MapReduce?

Map

extract what
you care
about.

Reduce

aggregate,
summarize

sort and
shuffle

(Leskovec at al., 2014; http://www.mmds.org/)

What is MapReduce?

The Map Step

(Leskovec at al., 2014; http://www.mmds.org/)

The Reduce Step

(Leskovec at al., 2014; http://www.mmds.org/)

What is MapReduce?

Map: (k,v) -> (k’, v’)*
(Written by programmer)

Group by key: (k1’, v1’), (k2’, v2’), ... -> (k1’, (v1’, v’, …),
(system handles) (k2’, (v1’, v’, …), …

Reduce: (k’, (v1’, v’, …)) -> (k’, v’’)*
(Written by programmer)

Example: Word Count

tokenize(document) | sort | uniq -C

Example: Word Count

tokenize(document) | sort | uniq -C

Map: extract
what you
care about.

Reduce:
aggregate,
summarize

sort and
shuffle

Example: Word Count

(Leskovec at al., 2014; http://www.mmds.org/)

Chunks

Example: Word Count (version 1)

def map(k, v):
for w in tokenize(v):

yield (w,1)

def reduce(k, vs):
return len(vs)

Example: Word Count (version 2)

def map(k, v):
counts = dict()
for w in tokenize(v):

try:
counts[w] += 1

except KeyError:
counts[w] = 1

for item in counts.iteritems()
yield item

def reduce(k, vs):
return sum(vs)

counts each word within the chunk
(try/except is faster than
“if w in counts”)

sum of counts from different chunks

Example: Relational Algebra

Select

Project

Union, Intersection, Difference

Natural Join

Grouping

Example: Relational Algebra

Select

Project

Union, Intersection, Difference

Natural Join

Grouping

Example: Relational Algebra

Select

R(A1,A2,A3,...), Relation R, Attributes A*

return only those attribute tuples where condition C is true

Example: Relational Algebra

Select

R(A1,A2,A3,...), Relation R, Attributes A*

return only those attribute tuples where condition C is true

def map(k, v): #v is list of attribute tuples
for t in v:

if t satisfies C:
yield (t, t)

def reduce(k, vs):

For each v in vs:

yield (k, v)

Example: Relational Algebra
Natural Join

Given R1 and R2 return Rjoin -- union of all pairs of tuples
that match given attributes.

Example: Relational Algebra
Natural Join

Given R1 and R2 return Rjoin -- union of all pairs of tuples
that match given attributes.

def map(k, v): #v is (R
1
=(A, B), R

2
=(B, C));B are matched attributes

for (a, b) in R
1
:

yield (b,(R
1,
a))

for (b, c) in R
2
:

yield (b,(R
2,
c))

Example: Relational Algebra
Natural Join

Given R1 and R2 return Rjoin -- union of all pairs of tuples
that match given attributes.

def map(k, v): #v is (R
1
=(A, B), R

2
=(B, C));B are matched attributes

for (a, b) in R
1
:

yield (b,(R
1,
a))

for (b, c) in R
2
:

yield (b,(R
2,
c))

def reduce(k, vs):

r1, r2 = [], []

for (S, x) in vs: #separate rs

if S == r1: r1.append(x)

else: r2.append(x)

for a in r1: #join as tuple

for each c in r2:

yield (R
join’

, (a, k, c)) #k is

b

Data Flow

Data Flow: In Parallel

(Leskovec at al., 2014; http://www.mmds.org/)

hash

Data Flow: In Parallel

(Leskovec at al., 2014; http://www.mmds.org/)

Programmed

Programmed

hash

Data Flow

DFS Map Map’s Local FS Reduce DFS

Data Flow

MapReduce system handles:

● Partitioning

● Scheduling map / reducer execution

● Group by key

● Restarts from node failures

● Inter-machine communication

Data Flow

DFS MapReduce DFS

● Schedule map tasks near physical storage of chunk
● Intermediate results stored locally
● Master / Name Node coordinates

Data Flow

DFS MapReduce DFS

● Schedule map tasks near physical storage of chunk
● Intermediate results stored locally
● Master / Name Node coordinates

○ Task status: idle, in-progress, complete
○ Receives location of intermediate results and schedules with reducer
○ Checks nodes for failures and restarts when necessary

■ All map tasks on nodes must be completely restarted
■ Reduce tasks can pickup with reduce task failed

Data Flow

DFS MapReduce DFS

● Schedule map tasks near physical storage of chunk
● Intermediate results stored locally
● Master / Name Node coordinates

○ Task status: idle, in-progress, complete
○ Receives location of intermediate results and schedules with reducer
○ Checks nodes for failures and restarts when necessary

■ All map tasks on nodes must be completely restarted
■ Reduce tasks can pickup with reduce task failed

DFS MapReduce DFS MapReduce DFS

Data Flow

Skew: The degree to which certain tasks end up taking much
longer than others.

Handled with:

● More reducers than reduce tasks
● More reduce tasks than nodes

Data Flow

Key Question: How many Map and Reduce jobs?

Data Flow

Key Question: How many Map and Reduce jobs?

M: map tasks, R: reducer tasks

A: If possible, one chunk per map task.

and M >> |nodes|

(better handling of node failures, better load balancing)

R < M

(reduces number of files stored in DFS)

Communication Cost Model

How to assess performance?

(1) Computation: Map + Reduce + System Tasks

(2) Communication: Moving key, value pairs

Communication Cost Model

How to assess performance?

(1) Computation: Map + Reduce + System Tasks

(2) Communication: Moving key, value pairs

Ultimate Goal: wall-clock Time.

Communication Cost Model

How to assess performance?

(1) Computation: Map + Reduce + System Tasks

(2) Communication: Moving key, value pairs

Ultimate Goal: wall-clock Time.

● Mappers and reducers often single pass O(n) within node
● System: sort the keys is usually most expensive
● In any case, can add more nodes

Communication Cost Model

How to assess performance?

(1) Computation: Map + Reduce + System Tasks

(2) Communication: Moving key, value pairs

Ultimate Goal: wall-clock Time.

Often dominates computation.
● Connection speeds: 1-10 gigabits per sec;

HD read: 50-150 gigabytes per sec
● Even reading from disk to memory typically takes longer than

operating on the data.

Communication Cost Model

How to assess performance?

(1) Computation: Map + Reduce + System Tasks

(2) Communication: Moving key, value pairs

Ultimate Goal: wall-clock Time.

Often dominates computation.
● Connection speeds: 1-10 gigabits per sec;

HD read: 50-150 gigabytes per sec
● Even reading from disk to memory typically takes longer than

operating on the data.

Communication Cost = input size +
(sum of size of all map-to-reducer files)

Communication Cost Model

How to assess performance?

(1) Computation: Map + Reduce + System Tasks

(2) Communication: Moving key, value pairs

Ultimate Goal: wall-clock Time.

Often dominates computation.
● Connection speeds: 1-10 gigabits per sec;

HD read: 50-150 gigabytes per sec
● Even reading from disk to memory typically takes longer than

operating on the data.
● Output from reducer ignored because it’s either small (finished

summarizing data) or being passed to another mapreduce job.

Communication Cost = input size +
(sum of size of all map-to-reducer files)

Example: Natural Join

R1, R2: Relations (Tables)

= |R| + |S| + (|R| + |S|)

= O(|R| + |S|)

Communication Cost = input size +
(sum of size of all map-to-reducer files)

Exercise:

Calculate Communication Cost for “Matrix Multiplication with
One MapReduce Step”
(see MMDS section 2.3.10)

Last Notes

● Performance Refinements:
○ Backup tasks (aka speculative tasks)

■ Schedule multiple copies of tasks when close to the end to mitigate
certain nodes running slow.

○ Combiners (like word count version 2)
■ Do some reducing from within map before passing to reduce
■ Reduces communication cost

○ Override partition hash function
E.g. instead of hash(url) use hash(hostname(url))

