Social Media Text Analysis

Stony Brook University CSE545, Fall 2016

Basics of Natural Language Processing

- Tokenization
 - Sentence
 - Word

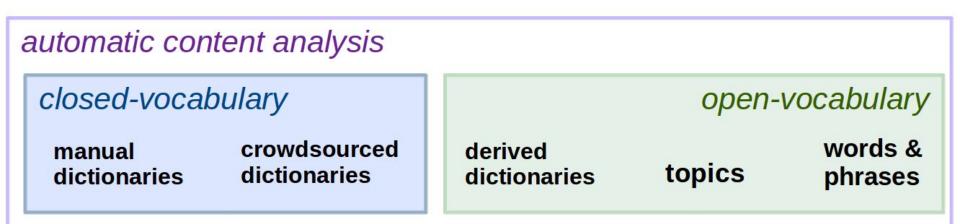
- Part of Speech Tagging
- Syntactic Parsing

From language to features

Feature encodings

- Count
- Relative Frequency
- TF-IDF
- Dimensionally Reduced

Features: Closed-to-Open Vocabulary



hand-driven

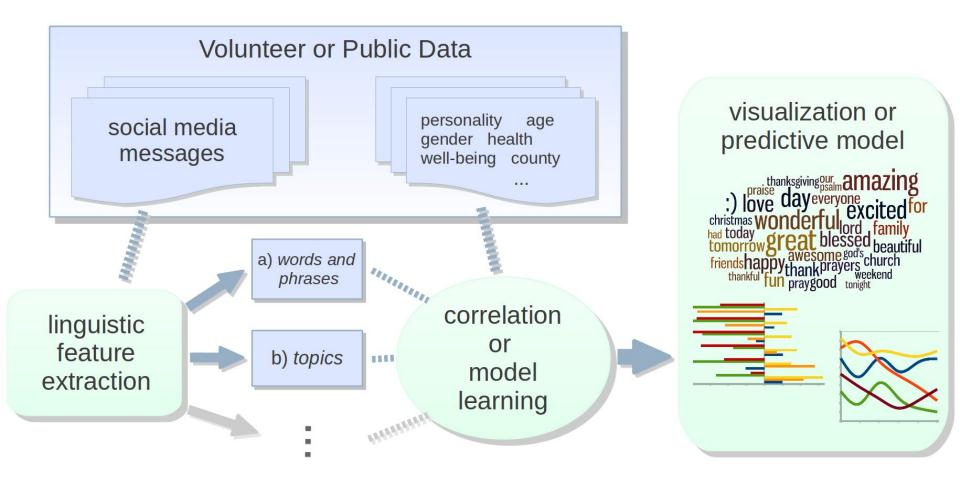
data-driven

Standard Tasks

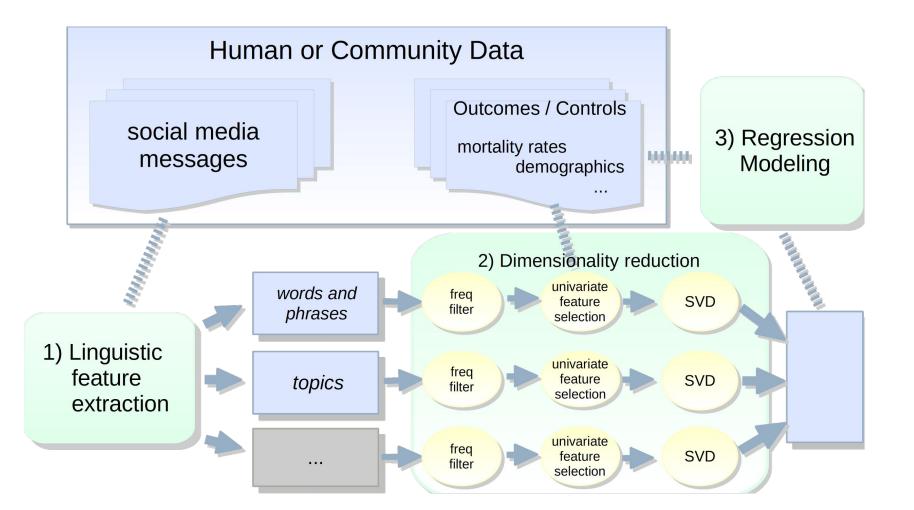
Insight

Prediction

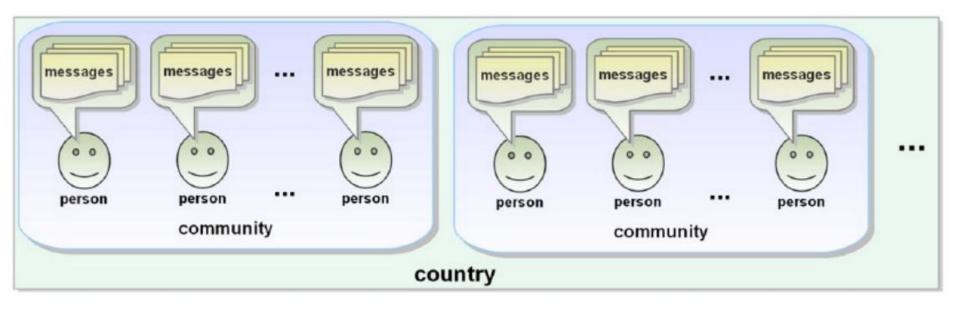
General "Insight" Framework



Prediction Framework



Levels of Analysis



Example Tasks

1. Text-based Geolocation

- 2. Community Health Prediction (Handling many features, few observations)
- 3. Human Temporal Orientation (Sophisticated Features)

1. Text-based Geolocation

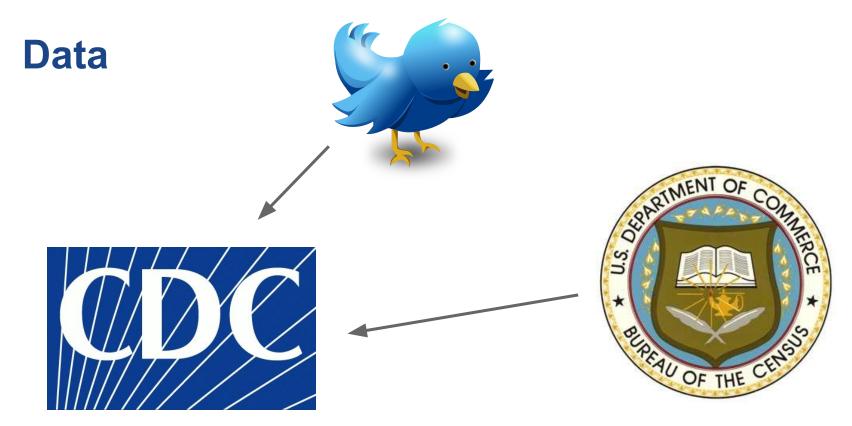
GOAL: Determine where a given user lives.

Versions

- 1. Based on posts (e.g. status updates, tweets)
- 2. Based on profile information

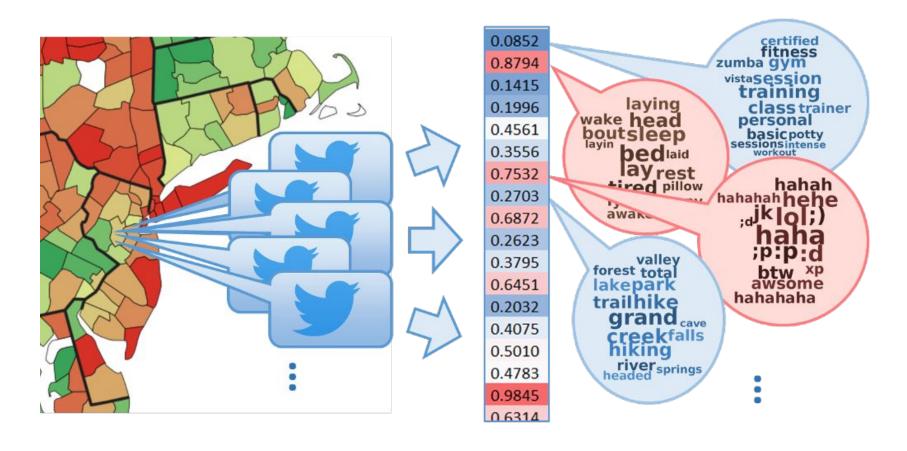
Gold-Standard: Geo-coordinates (lat+lon)

2. Community Health Prediction

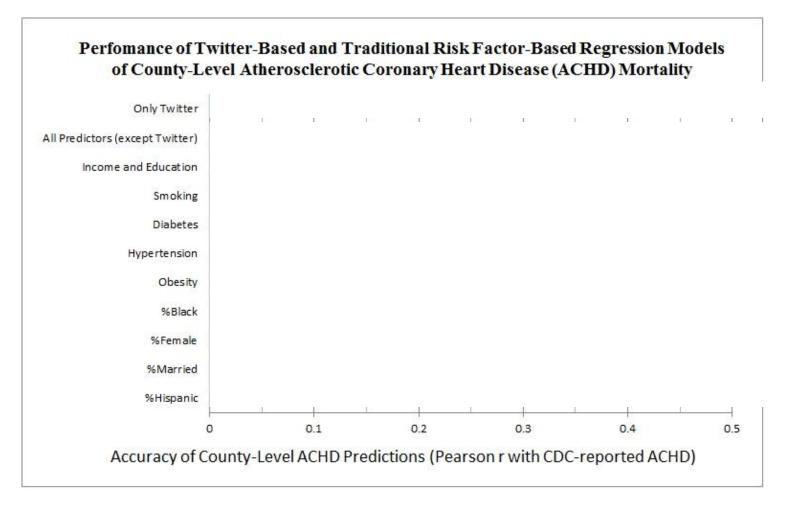


Atherosclerotic heart disease mortality

Encoding a community

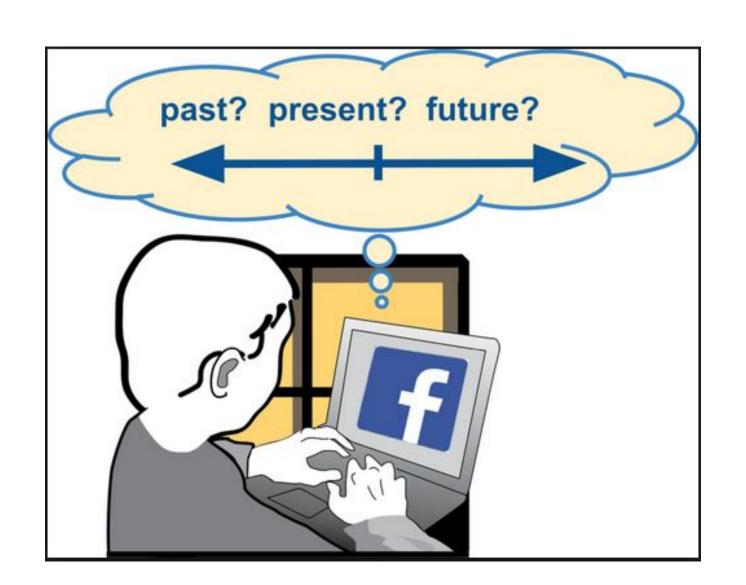


Twitter Predicts Heart Disease

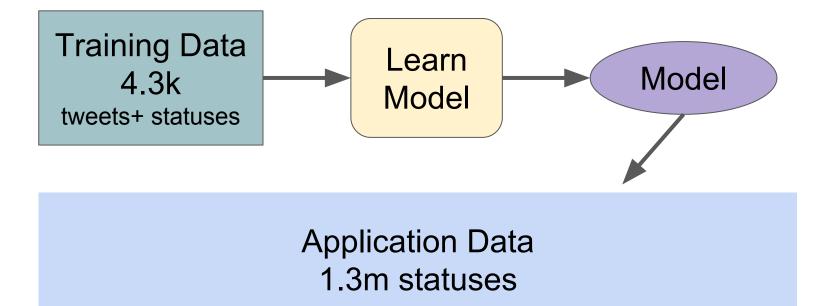


Eichstaedt, J. C., Schwartz, H. A., Kern, M. L., Park, G.,..., Ungar, L. H., & Seligman, M. E. (2015). Psychological Language on Twitter Predicts County-Level Heart Disease Mortality. *Psychological Science* 26(2), 159-169

3. Human Temporal Orientation

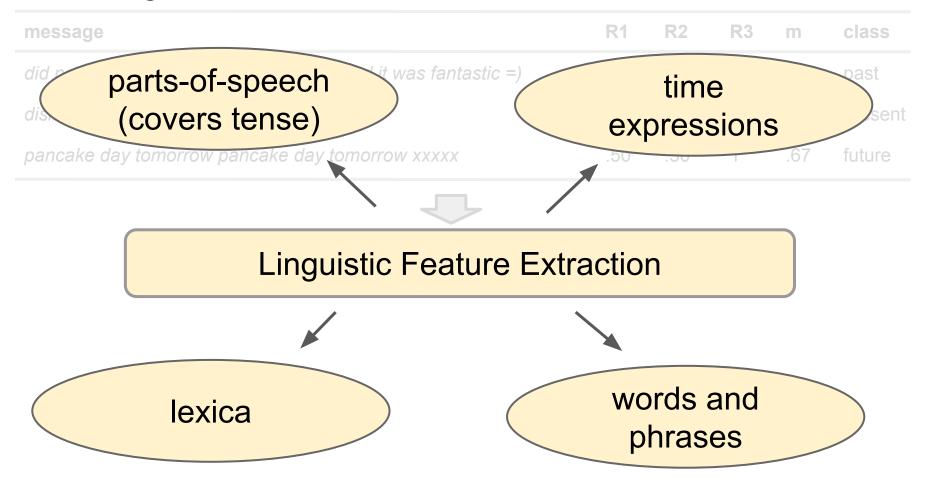


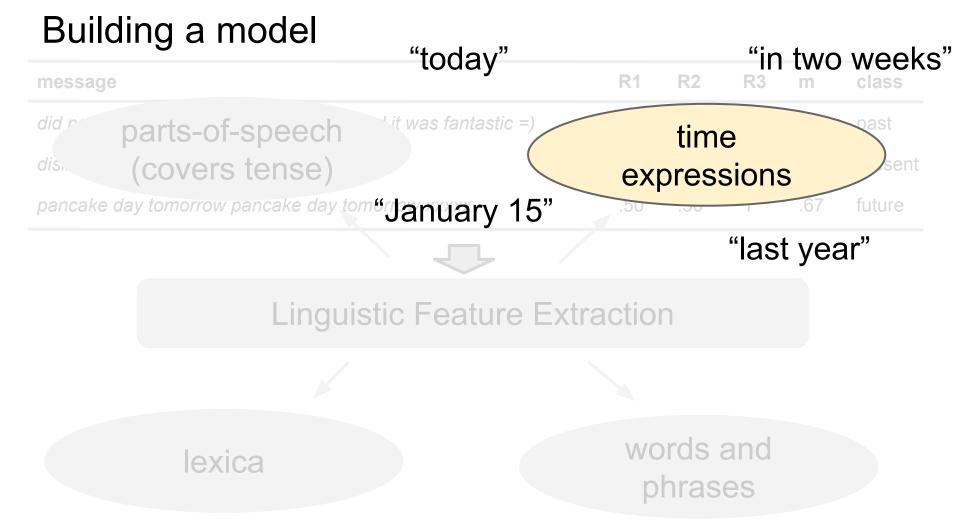
message	R1	R2	R3	m	class
did nothing this morning but watch TV and it was fantastic =)	67	50	50	55	past
dislikes being sick and misses her bf	0	0	0	0	present
pancake day tomorrow pancake day tomorrow xxxxx	.50	.50	1	.67	future

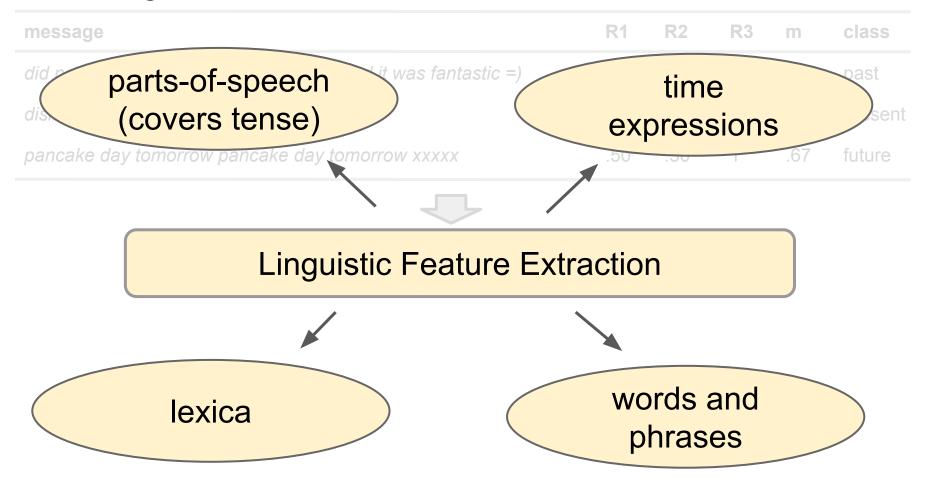


message	R1	R2	R3	m	class
did nothing this morning but watch TV and it was fantastic =)	67	50	50	55	past
dislikes being sick and misses her bf	0	0	0	0	present
pancake day tomorrow pancake day tomorrow xxxxx	.50	.50	1	.67	future

Linguistic Feature Extraction



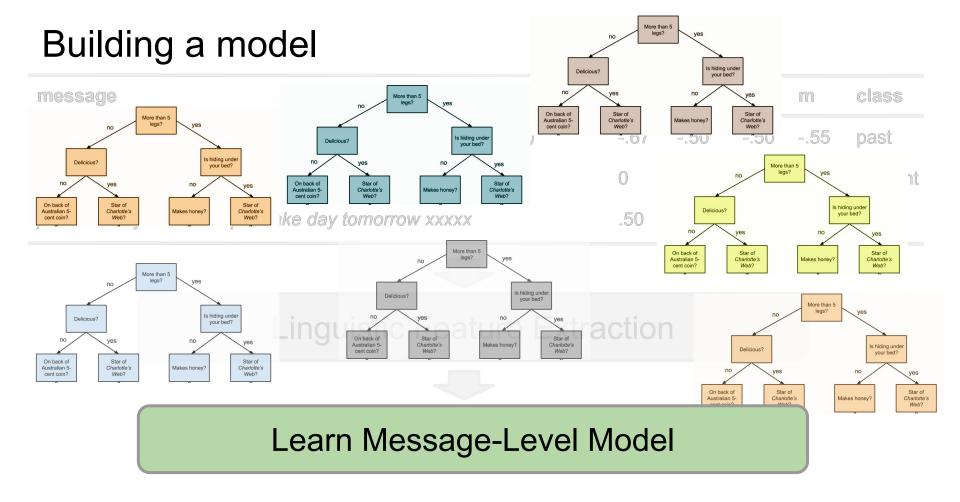




message	R1	R2	R3	m	class
did nothing this morning but watch TV and it was fantastic =)	67	50	50	55	past
dislikes being sick and misses her bf	0	0	0	0	present
pancake day tomorrow pancake day tomorrow xxxxx	.50	.50	1	.67	future

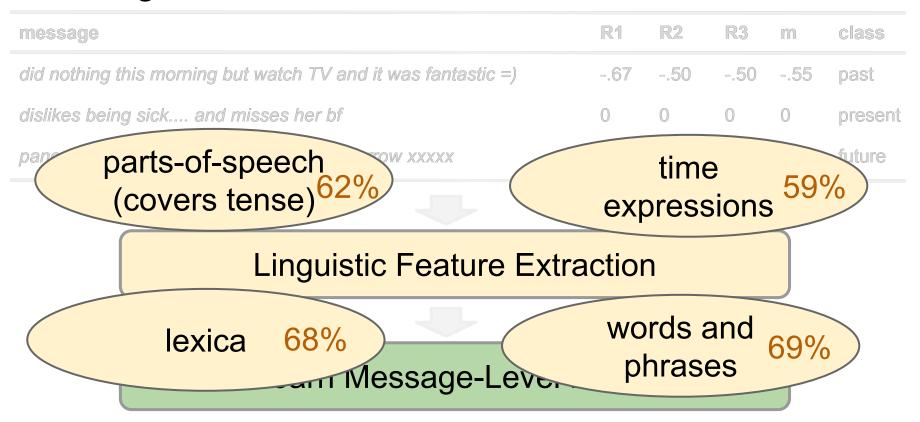
Linguistic Feature Extraction

Learn Message-Level Model



Accuracy over a held-out set: 72%; baseline: 53%

Schwartz, H. A., Park, G., Sap, M., ..., & Ungar, L. (2015). Extracting Human Temporal Orientation from Facebook Language. *NAACL-2015:* Conference of the North American Chapter of the Association for Computational Linguistics



Accuracy over a held-out set: 72%; baseline: 53%

Schwartz, H. A., Park, G., Sap, M., ..., & Ungar, L. (2015). Extracting Human Temporal Orientation from Facebook Language. *NAACL-2015:* Conference of the North American Chapter of the Association for Computational Linguistics

