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From Frequent to Recommended
Past User Ratings



Recommendation Systems

Why Big Data?

● Data with many potential features (and sometimes observations)

● An application of techniques for finding similar items
○ Locality sensitive hashing
○ Clustering / dimensionality reduction



Recommendation System: Example
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Recommendation Systems

Problems to tackle:

1. Gathering ratings

2. Extrapolate unknown ratings
a. Explicit: based on user ratings and reviews

(problem: only a few users engage in such tasks)
b. Implicit: Learn from actions (e.g. purchases, clicks)

(problem: hard to learn low ratings)

3. Evaluation

Common Approaches

1. Content-based

2. Collaborative

3. Latent Factor

Key Challenge:
New users have no 
ratings or history 
(a cold-start)
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Content-based Rec Systems

Based on similarity of items to past items that they have rated. 

1. Build profiles of items (set of features); examples:
shows: producer, actors, theme, review
people: friends, posts

2. Construct user profile from item profiles; approach:
average all item profiles
variation: weight by difference from their average

3. Predict ratings for new items; approach:

pick words with tf-idf

x

i
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Given user, x, item, i
1. Find neighborhood, N -- set of k users most similar to x

who have also rated i
Find similarity between all users
(need to handle missing values) : subtract user’s mean 

2. Predict utility (rating); options:
a. take average
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Collaborative Filtering Rec Systems

“User-User collaborative filtering”

Item-Item:

Flip rows/columns of utility matrix and use same methods. 

user
Game of 
Thrones

Fargo Ballers Silicon 
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Walking 
Dead

A 4 5 2 3

B 5 4 2

C 5 2
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Same as
cosine sim
when substracting
the mean
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CF: Example

utility(1, 5) = (0.41*2 + 0.59*3) / (0.41+0.59)



Item-Item v User-User

● Item-item often works better than user-user

Users tend to be more different than each other than items are from each 
other.
(e.g. user A likes jazz + rock, user B likes classical + rock,
        but user-A may still have same rock preferences as B;
        Users span genres but items usually do not)


