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Where are we today?

main-stream study being established
● Realization of what subfields are 

really doing “big data” (i.e. data 
mining, ML, Statistics, 
computational social sciences).

● Best practices being 
synthesized.
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What is Big Data? 

traditional 
computer scientists

data that will not fit 
in main memory.

data with a large 
number of observations 
and/or features.

statisticians

other fields

non-traditional sample size 
(i.e. > 100 subjects);  can’t 
analyze in stats tools (Excel). 
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What is Big Data? 

Short Answer: 

Big Data ≈ Data Mining ≈ Predictive Analytics ≈ Data Science (Leskovec et al., 2014)

This Class:

How to analyze data that is (mostly) 
too large for main memory.

Analyses only possible with a large 
number of observations or features.
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What is Big Data? 

Goal: Generalizations
A model or summarization of the data. 

E.g. 
● Google’s PageRank: summarizes web pages by a single number.
● Twitter financial market predictions: Models the stock market 

according to shifts in sentiment in Twitter. 
● Distinguish tissue type in medical images: Summarizes millions of 

pixels into clusters. 
● Mental Health diagnosis in social media: Models presence of 

diagnosis as a distribution (a summary) of linguistic patterns.
● Frequent co-occurring purchases: Summarize billions of purchases 

as items that frequently are bought together.  



What is Big Data? 

Goal: Generalizations
A model or summarization of the data. 

1. Descriptive analytics (insights)

2. Predictive analytics
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http://www3.cs.stonybrook.edu/~has/CSE545/

http://www3.cs.stonybrook.edu/~has/CSE545/
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Core Data Science Courses

CSE 519: Data Science Fundamentals

CSE 544: Prob/Stat for Data Scientists

CSE 545: Big Data Analytics

CSE 512: Machine Learning

CSE 537: Artificial Intelligence

CSE 548: Analysis of Algorithms

CSE 564: Visualization

Applications of Data Science

CSE 507: 
Computational Linguistics

CSE 527:
Computer Vision

CSE 549:
Computational Biology
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Core Data Science Courses

CSE 519: Data Science Fundamentals

CSE 544: Prob/Stat for Data Scientists

CSE 545: Big Data Analytics

CSE 512: Machine Learning

CSE 537: Artificial Intelligence

CSE 548: Analysis of Algorithms

CSE 564: Visualization

Applications of Data Science

CSE 507: 
Computational Linguistics

CSE 527:
Computer Vision

CSE 549:
Computational Biology

Key Distinction: 
Focus on scalability and algorithms / analyses not possible without large data. 



Big Data Analytics -- The Class

We will learn:

● to analyze different types of data:  
○ high dimensional  
○ graphs
○ infinite/never-ending  
○ labeled  

● to use different models of computation:  
○ MapReduce 
○ streams and online algorithms  
○ single machine in-memory 
○ Spark

J. Leskovec, A.Rajaraman, J.Ullman: Mining of Massive Datasets, www.mmds.org 



Big Data Analytics -- The Class

We will learn:

● to solve real-world problems  
○ Recommendation systems
○ Market-basket analysis
○ Spam and duplicate document detection
○ Geo-coding data 
○ Estimating financial risk

● uses of various “tools”:  
○ linear algebra
○ optimization
○ dynamic programming
○ hashing
○ Monte-Carlo simulations
○ functional programming

J. Leskovec, A.Rajaraman, J.Ullman: Mining of Massive Datasets, www.mmds.org 



Preliminaries

Ideas and methods that will repeatedly appear:

● Unstructured Data
● Bonferroni's Principle
● Normalization (TF.IDF)
● Hash functions
● IO Bounded (Secondary Storage)
● Power Laws



Data

Structured Unstructured

mysql table email header satellite imagery images

vectors matrices facebook likes text (email body)

● Unstructured ≈ requires processing to get what is of interest
● Feature extraction used to turn unstructured into structured
● Near infinite amounts of potential features in unstructured data
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Statistical Limits

Bonferroni's Principle

Roughly, calculating the probability of any of n findings being 
true requires n times the probability as testing for 1 finding.

https://xkcd.com/882/

In brief, one can only look for so many patterns (i.e. features) 
in the data before you find something just by chance. 

“Data mining” was originally a bad word! 

https://xkcd.com/882/
https://xkcd.com/882/
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Normalizing

Standardize: puts different sets of data (typically vectors or random variables) on 
the same scale.

● Subtract the mean (i.e. “mean center”)

● Divide by standard deviation
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Hash Functions and Indexes

Review: 

h: hash-key -> bucket-number                                                                                                                                                                                                                                                                                        

Objective: send the same number of expected hash-keys to each bucket

Example: storing word counts.

Data structures utilizing hash-tables (i.e. O(1) lookup; dictionaries, sets 
in python) are a friend of big data algorithms! Review further if needed. 

Indexes: Retrieve all records with a given value.
(also review if unfamiliar / forgot)



IO Bounded

Reading a word from disk versus main memory: 105 slower!

Reading many contiguously stored words 
is faster per word, but fast modern disks
still only reach 150MB/s for sequential reads.

IO Bound: biggest performance bottleneck is reading / writing to disk. 

(starts around 100 GBs; ~10 minutes just to read). 



Power Law

Many frequency patterns tend to follow a power law when ordered from most to 
least: 

County Populations [r-bloggers.com]

# links into webpages [Broader et al., 2000]

Sales of products [see book]

Frequency of words [Wikipedia, “Zipf’s Law”]

(many popularity based statistics, especially without limits) 

https://www.r-bloggers.com/visualizing-population-density/
https://www.r-bloggers.com/visualizing-population-density/
http://www.cis.upenn.edu/~mkearns/teaching/NetworkedLife/broder.pdf
http://www.cis.upenn.edu/~mkearns/teaching/NetworkedLife/broder.pdf
https://en.wikipedia.org/wiki/Zipf%27s_law
https://en.wikipedia.org/wiki/Zipf%27s_law


Power Law

Review

Power Law:

    raising to the natural log: 

where c is just a constant

Characterizes “the Matthew Effect” -- the rich get richer


