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Minkowski problem - 2D Case

Example

A convex polygon P in ℝ
2 is determined by its edge lengths Ai

and the unit normal vectors ni .

Take any u ∈ ℝ
2 and project P

to u, then ⟨∑i Aini ,u⟩= 0,
therefore

∑
i

Aini = 0.

Ai

ni
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Minkowski problem - General Case

Minkowski Problem

Given k unit vectors n1, ⋅ ⋅ ⋅ ,nk not
contained in a half-space in ℝ

n

and A1, ⋅ ⋅ ⋅ ,Ak > 0, such that

∑
i

Aini = 0,

find a compact convex polytope P
with exactly k codimension-1 faces
F1, ⋅ ⋅ ⋅ ,Fk , such that

1 area(Fi) = Ai ,
2 ni ⊥ Fi .

ni

FiAi
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Minkowski problem - General Case

Theorem (Minkowski)

P exists and is unique up to
translations.

ni

FiAi
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Minkowski’s Proof

Given h = (h1, ⋅ ⋅ ⋅ ,hk ), hi > 0, define
compact convex polytope

P(h) = {x∣⟨x,ni⟩ ≤ hi ,∀i}

Let Vol : ℝk
+→ ℝ+ be the volume

Vol(h) = vol(P(h)), then

∂Vol(h)
∂hi

= area(Fi)

using Lagrangian multiplier, the solution
(up to scaling) to MP is the critical point
of Vol on {h∣hi ≥ 0,∑hiAi = 1}.
Uniqueness part is proved using
Brunn-Minkowski inequality, which
implies (Vol(h))

1
n is concave in h.

ni

FiAi
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Piecewise Linear Convex Function

A Piecewise Linear convex function

f (x) := max{⟨x,pi⟩+hi ∣i = 1, ⋅ ⋅ ⋅ ,k}

produces a convex cell decomposition
Wi of ℝn:

Wi = {x∣⟨x,pi⟩+hi ≥ ⟨x,pj⟩+hj ,∀j}

Namely, Wi = {x∣∇f (x) = pi}.

Ω

Wi

Fi

�j

uℎ(x)
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Alexandrov Theorem

Theorem (Alexandrov 1950)

Given Ω compact convex domain in
ℝ

n, p1, ⋅ ⋅ ⋅ ,pk distinct in ℝ
n,

A1, ⋅ ⋅ ⋅ ,Ak > 0, such that
∑Ai = Vol(Ω), there exists PL convex
function

f (x) := max{⟨x,pi⟩+hi ∣i = 1, ⋅ ⋅ ⋅ ,k}

unique up to translation such that

Vol(Wi) = Vol({x∣∇f (x) = pi}) = Ai .

Alexandrov’s proof is topological, not
variational.

Ω

Wi

Fi

�j

uℎ(x)
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Voronoi Decomposition
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Voronoi Diagram

Voronoi Diagram

Given p1, ⋅ ⋅ ⋅ ,pk in ℝ
n, the Voronoi cell

Wi at pi is

Wi = {x∣∣x−pi ∣
2 ≤ ∣x−pj∣

2
,∀j}.
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Power Distance

Power Distance

Given pi associated with
a sphere (pi , ri) the
power distance from
q ∈ ℝ

n to pi is

pow(pi ,q)= ∣pi−q∣2−r2
i .

pi
q

pow(pi, q) ri
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Power Diagram

Given p1, ⋅ ⋅ ⋅ ,pk in ℝ
n and power weights h1, ⋅ ⋅ ⋅ ,hk , the power

Voronoi cell Wi at pi is

Wi = {x∣∣x−pi ∣
2 +hi ≤ ∣x−pj∣

2 +hj ,∀j}.
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PL convex function vs. Power diagram

Lemma

Suppose f (x) = max{⟨x,pi⟩+hi} is a
piecewise linear convex function, then its
gradient map induces a power diagram,

Wi = {x∣∇f = pi}.

Proof.

⟨x,pi⟩+hi ≥ ⟨x,pj⟩+hj is equivalent to

∣x−pi ∣
2−2hi−∣pi ∣

2≤ ∣x−pj ∣
2−2hj−∣pj ∣

2
.

Ω

Wi

Fi

�j

uℎ(x)
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Variational Proof

Theorem (Gu-Luo-Sun-Yau 2012)

Ω is a compact convex domain in ℝ
n, p1, ⋅ ⋅ ⋅ ,pk distinct in ℝ

n,
s : Ω→ ℝ is a positive continuous function. For any
A1, ⋅ ⋅ ⋅ ,Ak > 0 with ∑Ai =

∫

Ω s(x)dx, there exists a vector
(h1, ⋅ ⋅ ⋅ ,hk ) so that

f (x) = max{⟨x,pi⟩+hi}

satisfies
∫

Wi∩Ω
s(x)dx = Ai , where Wi = {x∣∇f (x) = pi}.

Furthermore, h is the minimum point of the convex function

E(h) =
∫ h

0

k

∑
i=1

wi(η)dηi −
k

∑
i=1

Aihi ,

where wi(η) =
∫

Wi(η)∩Ω s(x)dx is the volume of the cell.
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Variational Proof

X. Gu, F. Luo, J. Sun and S.-T.
Yau, “Variational Principles for
Minkowski Type Problems,
Discrete Optimal Transport,
and Discrete Monge-Ampere
Equations”, arXiv:1302.5472
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Variational Proof

Proof.

For h = (h1, ⋅ ⋅ ⋅ ,hk ) in ℝ
k , define the PL convex function f as

above and let Wi(h) = {x∣∇f (x) = pi} and wi(h) = vol(Wi(h)),
1 H = {h ∈ℝ

k ∣wi(h)> 0,∀i} is non-empty open convex set in
ℝ

k .
2 ∂wi

∂hj
=

∂wj
∂hi
≤ 0 for i ∕= j . Thus the differential 1-form

∑wi(h)dhi is closed in H. Therefore ∃ a smooth F : H→ ℝ

so that ∂F
∂hi

= wi(h)

3 ∑ ∂wi(h)
∂hi

= 0, due to ∑wi(h) = vol(Ω). Therefore the
Hessian of F is diagonally dominated, F (h) is convex in H.

4 F is strictly convex in H0 = {h ∈ H∣∑hi = 0} so that
∇F = (w1, ⋅ ⋅ ⋅ ,wk ).

If F strictly convex on an open convex set Ω in ℝ
k then

∇F : Ω→ Rk is one-one. This shows the uniqueness part of
Alexandrov’s theorem.
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Variational Proof

Proof.

It can be shown that the convex function

G(h) = F (h)−∑Aihi

has a minimum point in H0, which is the solution to
Alexandrov’s theorem.
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Geometric Interpretation

One can define a cylinder through ∂Ω, the cylinder is truncated
by the xy-plane and the convex polyhedron. The energy term
∫ h ∑wi(η)dηi equals to the volume of the truncated cylinder.
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Computational Algorithm

Ω

Wi

Fi

�j

uℎ(x)

The convex energy is

E(h1,h2, ⋅ ⋅ ⋅ ,hk ) =
k

∑
i=1

Aihi −
∫ h

0

k

∑
j=1

Wjdhj ,

Geometrically, the energy is the volume beneath the parabola.

David Gu Surface Geometry



Computational Algorithm

Ω

Wi

Fi

�j

uℎ(x)

The gradient of the energy is the areas of the cells

∇E(h1,h2, ⋅ ⋅ ⋅ ,hk) = (A1−w1,A2−w2, ⋅ ⋅ ⋅ ,Ak −wk)
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Computational Algorithm

The Hessian of the energy is the length ratios of edge and dual
edges,

∂wi

∂hj
=
∣eij ∣

∣ēij ∣
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Computational Algorithm

1 Initialize h = 0
2 Compute the Power Voronoi diagram, and the dual Power

Delaunay Triangulation
3 Compute the cell areas, which gives the gradient ∇E
4 Compute the edge lengths and the dual edge lengths,

which gives the Hessian matrix of E , Hess(E)

5 Solve linear system

∇E = Hess(E)dh

6 Update the height vector

(h)← h−λdh,

where λ is a constant to ensure that no cell disappears
7 Repeat step 2 through 6, until ∥dh∥< ε .
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Optimal Mass Transport Mapping

David Gu Surface Geometry



Optimal Transport Problem

(Ω, �)

(D, �)

�

p

�(p)

Earth movement cost.
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Optimal Mass Transportation

Problem Setting

Find the best scheme of transporting one mass distribution
(µ ,U) to another one (ν ,V ) such that the total cost is
minimized, where U,V are two bounded domains in ℝ

n, such
that

∫

U
µ(x)dx =

∫

V
ν(y)dy ,

0≤ µ ∈ L1(U) and 0≤ ν ∈ L1(V ) are density functions.

(�, U) (�, V )

f

x f (x)
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Optimal Mass Transportation

For a transport scheme s ( a mapping from U to V )

s : x ∈ U → y ∈ V ,

the total cost is

C(s) =
∫

U
µ(x)c(x,s(x))dx

where c(x,y) is the cost function.

(�, U) (�, V )

f

x f (x)
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Cost Function c(x ,y)

The cost of moving a unit mass from point x to point y .

Monge(1781) : c(x ,y) = ∣x −y ∣.

This is the natural cost function. Other cost functions include

c(x ,y) = ∣x −y ∣p,p ∕= 0
c(x ,y) = − log ∣x −y ∣
c(x ,y) =

√

ε + ∣x−y ∣2,ε > 0

Any function can be cost function. It can be negative.
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Optimal Transportation Map

Problem

Is there an optima mapping T : U → V such that the total cost
C is minimized,

C (T ) = inf{C (s) : s ∈S }

where S is the set of all measure preserving mappings,
namely s : U → V satisfies

∫

s−1(E)
µ(x)dx =

∫

E
ν(y)dy ,∀ Borel set E ⊂ V
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Applications

Economy: producer-consumer problem, gas station with
capacity constraint,

Probability: Wasserstein distance

Image processing: image registration

Digital geometry processing: surface registration
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Image Registration

A. Tannenbaum: Medical image registration
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Resource Allocation

Determine the locations of gas stations {p1,p2, ⋅ ⋅ ⋅ ,pk} with
capacities {c1,c2, ⋅ ⋅ ⋅ ,ck} in a city with gasoline consumption
density µ , such that the total square of distances from each
family to the corresponding gas station is minimized.
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Surface Registration

Z. Su, W. Zeng, R. Shi, Y. Wang, J. Sun, J. Gao, X. Gu, “Area
Preserving Brain Mapping”, CVPR, June, 2013.
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Solutions

Three categories:
1 Discrete category: both (µ ,U) and (ν ,V ) are discrete,
2 Semi-continuous category: (µ ,U) is continuous, (ν ,V ) is

discrete,
3 Continuous category: both (µ ,U) and (ν ,V ) are

continuous.
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Kantorovich’s Approach

Both (µ ,U) and (ν ,V ) are discrete. µ and ν are Dirac
measures. (µ ,U) is represented as

{(µ1,p1),(µ2,p2), ⋅ ⋅ ⋅ ,(µm,pm)},

(ν ,V ) is
{(ν1,q1),(ν2,q2), ⋅ ⋅ ⋅ ,(νn,qn)}.

A transportation plan f : {pi} → {qj}, f = {fij}, fij means how
much mass is moved from (µi ,pi) to (νj ,qj), i ≤m, j ≤ n. The
optimal mass transportation plan is:

min
f

fijc(pi ,qj)

with constraints:
n

∑
j=1

fij = µi ,

m

∑
i=1

fij = νj .

Optimizing a linear energy on a convex set, solvable by linear
programming method.
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Kantorovich’s Approach

Kantorovich won Nobel’s prize in economics.

min
f

∑
ij

fijc(pi ,pj),

such that

∑
j

fij = µi ,∑
i

fij = νj .

mn unknowns in total. The
complexity is quite high.

(�1, p1)

(�2, p2)

(�m, pm)

(�1, q1)

(�2, q2)

(�n, qn)

fij
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Brenier’s Approach

Theorem (Brenier)

If µ ,ν > 0 and U is convex, and the cost function is quadratic
distance,

c(x,y) = ∣x−y∣2

then there exists a convex function f : U → ℝ unique upto a
constant, such that the unique optimal transportation map is
given by the gradient map

T : x→ ∇f (x).
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Brenier’s Approach

Continuous Category: In smooth case, the Brenier potential
f : U→ ℝ statisfies the Monge-Ampere equation

det
(

∂ 2f
∂xi∂xj

)

=
µ(x)

ν(∇f (x))
,

and ∇f : U → V minimizes the quadratic cost

min
f

∫

U
∣x−∇f (x)∣2dx.
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Semi-Continuous Category: Discrete Optimal
Transportation Problem

Wi

Ω

T

(pi, Ai)

Given a compact convex domain U in ℝ
n and p1, ⋅ ⋅ ⋅ ,pk in ℝ

n

and A1, ⋅ ⋅ ⋅ ,Ak > 0, find a transport map T : Ω→{p1, ⋅ ⋅ ⋅ ,pk}
with vol(T−1(pi)) = Ai , so that T minimizes the transport cost

∫

U
∣x−T (x)∣2dx.

David Gu Surface Geometry



Alexandrov Map vs Optimal Transport Map

Theorem (Aurenhammer-Hoffmann-Aronov 1998)

Alexandrov map ∇f is the optimal transport map.

u u∗

∇u

Wi
pi

�i
�∗
i

Ω, T
Ω
∗, T ∗

proj
proj∗
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Optimal Transport Map Examples
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Optimal Transport Map Examples
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Normal Map
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Visualization

Conformal mapping Area-preserving mapping
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Visualization
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Visualization

X. Zhao, Z. Su, X. Gu, A. Kaufman, J. Sun, J. Gao, F. Luo,
“Area-preservation Mapping using Optimal Mass Transport”,
IEEE TVCG, 2013.
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Visualization
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Visualization
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Visualization
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Visualization
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