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Minkowski problem - 2D Case

A convex polygon P in R? is determined by its edge lengths A,
and the unit normal vectors n;.

Take any u € R? and project P f
to u, then (3 Ainj,u) =0, "
therefore

An; =0.
IZ (U
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Minkowski problem - General Case

Minkowski Problem

Given k unit vectors ny,---,ng not
contained in a half-space in R"
and Aq,---,A¢ > 0, such that

=
=l L

find a compact convex polytope P
with exactly k codimension-1 faces
Fi,---,Fx, such that

Q area(F) =A,
Q n; LF.
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Minkowski problem - General Case

translations.

Theorem (Minkowski) “&
P exists and is unique up to
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Minkowski’'s Proof

Given h = (hla' o ,hk)1 hi > 01 define
CompaCt convex p0|yt0pe

P(h) = {x|(x,n;) < h;,Vi}

Let Vol : RK. — R, be the volume )
Vol (h) = vol (P (h)), then “&
ovol(h) _
o area(F) a;a
using Lagrangian multiplier, the solution “

(up to scaling) to MP is the critical point
of Vol on {h|h; >0,y hjA; =1}.
Uniqueness part is proved using
Brunn-Minkowski inequality, which
implies (Vol(h))% is concave in h.
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Piecewise Linear Convex Function

A Piecewise Linear convex function

£(x) = max{ (x,pi) + hili = L, k} C‘-V%J/W

produces a convex cell decomposition 77@
W; of R™:

Wi = {x[(x,pi) +h; > (x,p;) +h;,Vj}

Namely, W; = {x|0f (x) = p; }
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Alexandrov Theorem

Theorem (Alexandrov 1950)

Given © compact convex domain in
R", p1,---,pk distinct in R",
Aq,---,A¢ >0, such that

s A = Vol(Q), there exists PL convex AR
function

f(x) :=max{(x,pi)+hj[i=1,--- |k}

unique up to translation such that

Vol (W;) = Vol ({x|Of (x) = pi }) = Ai.

Alexandrov’s proof is topological, not
variational.

David Gu Surface Geometry



Voronoi Decomposition




Voronoi Diagram

Voronoi Diagram

Given pq,---,pk in R", the Voronoi cell
W, at p; is

Wi = {x||x —pi|* < |x — p;|%, Vi }.
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Power Distance

Power Distance

Given p; associated with
a sphere (pj,r;) the
power distance from

g €R"topjis

pow (pi,a) = [pi —q|* 1. |
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Given pq,---,px in R" and power weights hy,--- , hy, the power
Voronoi cell W; at p; is

W; = {x||x — p;i|? + hi < |x —pj|* +h;,¥j}.




PL convex function vs. Power diagram

Lemma

Suppose f(x) = max{(x,p;j) + h;} is a
piecewise linear convex function, then its
gradient map induces a power diagram,

Wi = {x|0f = pi}.

Proof.
(x,pi) +hi > (x,p;) + h; is equivalent to

X —pi]? —2h;i — |pi|? < [x —p; > — 2h;j — |p; *.

O
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Variational Proof

Theorem (Gu-Luo-Sun-Yau 2012)

Q is a compact convex domain in R", py,---,px distinct in R",
s:Q — R is a positive continuous function. For any
Ag,---,Ag >0 with 3 A; = [, s(x)dX, there exists a vector
(hy,---,hg) so that

f(x) = max{(x,pi) +hi}

satisfies [y, qS(X)dXx = A;, where W; = {x|Uf (x) = p;}.
Furthermore, h is the minimum point of the convex function

h k k
Eh)= [ 3 wn)dni~ 3 A

where wi(1) = fw,(7)ne S(X)dx is the volume of the cell.

-
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Variational Proof

X. Gu, F. Luo, J. Sun and S.-T.
Yau, “Variational Principles for
Minkowski Type Problems,
Discrete Optimal Transport,
and Discrete Monge-Ampere
Equations”, arXiv:1302.5472
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Variational Proof

For h = (hy,---,hy) in RX, define the PL convex function f as
above and let W;(h) = {x|Of (x) = p;j} and w;(h) = vol (W;(h)),
Q H = {h e R¥|w;(h) > 0,Vi} is non-empty open convex set in
Rk

(%) ‘;‘;}V' - ‘;‘m < 0fori #j. Thus the differential 1-form
zw,( )dh; is closed in H. Therefore 3a smooth F : H — R
so that 9 = w;(h)
Q5% ‘?W'(h =0, due to Y w;(h) = vol(Q). Therefore the

HeSS|an of F is diagonally dominated, F (h) is convex in H
© F is strictly convex in Hp = {h € H| $ h; = 0} so that

0OF = (W17 300 ,Wk).
If F strictly convex on an open convex set Q in R¥ then

OF : Q — RK is one-one. This shows the uniqueness part of
Alexandrov’'s theorem.
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Variational Proof

Proof.
It can be shown that the convex function

G(h)=F(h) -5 Aih;

has a minimum point in Hy, which is the solution to
Alexandrov’s theorem. O
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Geometric Interpretation

One can define a cylinder through 02, the cylinder is truncated
by the xy-plane and the convex polyhedron. The energy term
fh Y wi(n)dn; equals to the volume of the truncated cylinder.
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Computational Algorithm

The convex energy is
k h k
E(hy,h2,---,he) = ZAihi—/ Y Wdh,

i=1 0=

Geometrically, the energy is the volume beneath the parabola.
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Computational Algorithm

The gradient of the energy is the areas of the cells

DE(hl,hZa"' ahk) = (A17W15A27W2,"' aAk 7Wk)
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Computational Algorithm

AN,
"Ynaé%%’»!d‘%"‘ 5

e
SRS

The Hessian of the energy is the length ratios of edge and dual
edges,
ow; _ el

oh;  |gj
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Computational Algorithm

O Initialize h=0

© Compute the Power Voronoi diagram, and the dual Power
Delaunay Triangulation

© Compute the cell areas, which gives the gradient OE

© Compute the edge lengths and the dual edge lengths,
which gives the Hessian matrix of E, Hess(E)

@ Solve linear system
OE = Hess(E)dh
© Update the height vector
(h) < h —Adh,

where A is a constant to ensure that no cell disappears
@ Repeat step 2 through 6, until ||dh|| < «.
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Optimal Mass Transport Mapping |
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Optimal Transport Problem

(D,v)

Earth movement cost.
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Optimal Mass Transportation

Find the best scheme of transporting one mass distribution
(u,U) to another one (v,V) such that the total cost is
minimized, where U,V are two bounded domains in R", such

that
[, peodx= [ viyyay,

O<ue LY(U)and 0 < v € L1(V) are density functions.

R )
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Optimal Mass Transportation

For a transport scheme s ( a mapping from U to V)
s:xeU—-yeV,

the total cost is

where c(x,y) is the cost function.
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Cost Function c(x,y)

The cost of moving a unit mass from point x to pointy.
Monge(1781):c(x,y) =[x —Y]|.
This is the natural cost function. Other cost functions include

C(X7y) = ’X_y’p7p#o
c(x,y) = —log|x—y|

c(x,y) = Vet+x-y[*e>0

Any function can be cost function. It can be negative.
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Optimal Transportation Map

Problem
Is there an optima mapping T : U — V such that the total cost
% is minimized,

¢(T)=Inf{€(s) :se.”}

where . is the set of all measure preserving mappings,
namely s : U — V satisfies

/ p(x)dx :/ v(y)dy,V Borel set E C V
s~1(E) E
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Applications

@ Economy: producer-consumer problem, gas station with
capacity constraint,

@ Probability: Wasserstein distance
@ Image processing: image registration
@ Digital geometry processing: surface registration
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Image Registration

A. Tannenbaum: Medical image registration
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Resource Allocation

Determine the locations of gas stations {p1,p2,---,Pk } with
capacities {cy,Cp,--,Cx } in a city with gasoline consumption
density u, such that the total square of distances from each
family to the corresponding gas station is minimized.
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Surface Registration

(c) APP map #1 (d) APP map #2

(e) Conformal map #1 (f) Conformal map #2

Z. Su, W. Zeng, R. Shi, Y. Wang, J. Sun, J. Gao, X. Gu, “Area
Preserving Brain Mapping”, CVPR, June, 2013.
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Three categories:
© Discrete category: both (i,U) and (v,V) are discrete,

@ Semi-continuous category: (u,U) is continuous, (v,V) is
discrete,

@ Continuous category: both (u,U) and (v,V) are
continuous.

David Gu Surface Geometry



Kantorovich’s Approach

Both (u,U) and (v,V) are discrete. 4 and v are Dirac
measures. (U,U) is represented as
{(ula pl), (I‘lZa p2), Tty (Uma pm)}a
(v,V)is
{(Vlaql)? (VZ’qZ)a Ty (Vn,Qn)}-
A transportation plan f : {p;} — {q;}, f = {f;}, fj means how
much mass is moved from (i, p;) to (v;,q;), i <m,j <n. The
optimal mass transportation plan is:
mfinfijC(Pi,Qj)
with constraints:
n m
> fij=m, > fj=v.
=1 i=1

Optimizing a linear energy on a convex set, solvable by linear
programming method.
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Kantorovich’s Approach

Kantorovich won Nobel's prize in economics.

(111, p1)

(112, p2)

mfin 2 fic(pi, py);
j
such that
>fi=w 3 fij =y
] i

mn unknowns in total. The
complexity is quite high.

(u?!”p"},) )
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Brenier's Approach

Theorem (Brenier)

If u,v > 0 and U is convex, and the cost function is quadratic
distance,

c(x,y)=x—y[?
then there exists a convex function f : U — R unique upto a

constant, such that the unique optimal transportation map is
given by the gradient map

T :x — Of (x).
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Brenier's Approach

Continuous Category: In smooth case, the Brenier potential
f : U — R statisfies the Monge-Ampere equation

o’f \ _ p(x)
det ((?xi(?xj> ~V(OfX)’

and Of : U — V minimizes the quadratic cost

min/ [x — Of (x)|?d x.
f Ju
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Semi-Continuous Category: Discrete Optimal
Transportation Problem

Given a compact convex domain U in R" and pq,---,px in R"
and Ap,--- ,A¢ >0, find atransportmap T : Q — {p1, -+, Pk}
with vol (T ~1(p;)) = A;, so that T minimizes the transport cost

/ X — T (x)[2dx.
)
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Alexandrov Map vs Optimal Transport Map

Theorem (Aurenhammer-Hoffmann-Aronov 1998)
Alexandrov map f is the optimal transport map.
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Optimal Transport Map Examples
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Optimal Transport Map Examples
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Normal Map
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Visualization

Conformal mapping Area-preserving mapping
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Visualization
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Visualization

X. Zhao, Z. Su, X. Gu, A. Kaufman, J. Sun, J. Gao, F. Luo,
“Area-preservation Mapping using Optimal Mass Transport”,
IEEE TVCG, 2013.
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Visualizatio

(a) Front view (b) Angle-preserving (c) Area-preserving (d) Back view
Angle-perserving parameterization vs. area-preserving parameterization

(c) 4x (d) 6x
Importance driven parameterization. The Buddha's head region is magnified by different factors
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Visualization
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Visualization
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Visualization
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