
Online Submission ID: 0342

GPU-based Conformal Flow on Surfaces

Figure 1: A surface is morphed while fluid flows over it.

Abstract

Accurately simulating fluid dynamics on arbitrary surfaces is of sig-
nificance in graphics, digital entertainment, and engineering appli-
cations. This paper aims to improve the efficiency and enhance
interactivity of the simulation without sacrificing its accuracy. We
develop a GPU-based fluid solver that is applicable for curved ge-
ometry. We resort to the conformal (i.e., angle-preserving) structure
to parameterize a surface in order to simplify differential operators
used in Navier-Stokes and other partial differential equations. Our
conformal flow method integrates fluid dynamics with Riemannian
metric over curved geometry. Another significant benefit is that a
conformal parameterization naturally facilitates the automatic con-
version of mesh geometry into a collection of regular geometry im-
ages well suited for modern graphics hardware pipeline. Our algo-
rithm for mapping general genus zero meshes to conformal cubic
maps is rigorous, efficient, and completely automatic. performance.
The proposed framework is very general and can be used to solve
other types of PDEs on surfaces while taking advantage of GPU
acceleration.

Keywords: GPU, fluid simulation, conformal structure

1 Introduction

Simulating fluid dynamics with realistic physical behavior is im-
portant for interactive 3D graphics and other fields. With the rapid
advancement of modern hardware, accurate, physics-based simula-
tion of fluid is gaining momemtum and popularity. However, de-
spite the existing work in this field, performing such simulation
for realistically complex systems remains technically challenging
if real-time or interactive performance, flow over deformable sur-
faces, high-fidelity appearance, and intuitive user control are all
required simultaneously. This paper proposes a new approach to
interactive fluid dynamics over curved (and possibly deforming) ge-
ometry. Specifically, we design special coordinates on a surface in
a mathematically rigorous way to simplify the governing PDEs and
map any surface to a cube. With such cubic mapping, we can eas-
ily transform any curved surfaces to geometry images and exploit
the power of modern graphics hardware to maximize the efficiency,
accuracy, and interactivity.

Many efficient techniques exist for discretizing Navier-Stokes
equations (and other PDEs) and simulating their dynamics when
the flow occurs in a volumetric setting in R3. When the fluid moves
over a curved geometry, however, PDEs governing the flow must be
modified in order to properly take into account Riemannian metric

of the underlying surface. This requires a coordinate system for the
surface. Yet, typically no convenient global coordinate system for
the entire surface is immediately available and its parameterization
must be explicitly constructed. One natural approach involves cov-
ering the surface with a collection of local, possibly overlapping
charts, each with its own coordinate system. These coordinate sys-
tems are coupled through transformations called transition maps.
The PDEs are then solved on each of the local coordinate charts
and transition maps are used to propagate the results from one chart
to another in a globally consistent manner.

Because of its intrinsic physical nature, the solution of a PDE is
independent of the choice of surface parameterization. In practice,
however, the choice of local coordinates will undoubtedly affect the
stability and efficiency of the simulation process. According to the
theory of Riemannian geometry, among the infinite number of local
coordinate systems covering the same region on the surface, angle-
preserving conformal (a.k.a. iso-thermal) coordinates induce the
simplest form of differential operators used in most PDEs. For an
arbitrary surface, we will therefore seek a collection of local coordi-
nate charts (an atlas), such that all local coordinates are conformal
and all the transition maps between them are conformal. Such an
atlas is called Riemann surface structure of the surface.

General surfaces are typically represented as triangular meshes with
irregular connectivity. To take advantage of computing power of
modern GPUs, we convert such meshes into a more regular repre-
sentation such as a geometry image [Gu et al. 2002]. Combining the
benefits of conformal mapping and regular connectivity, we arrive
at a conformal cube map as a natural solution. In our algorithm, we
conformally map a genus zero closed surface to the unit sphere. We
also map a canonical cube with regular connectivity to the sphere.
Integrating these two spherical maps results in a conformal map-
ping between the surface and the cube. We then create a geometry
image from each face of the cube. Different geometry images share
the boundaries for fluid propagation.

In practice it is frequently desirable to make a conformal cube map
consistent across different surfaces. For example, we may want to
map major feature points on several surfaces to corresponding lo-
cations on the cube. In this case, we use a Mobius transformation
to ensure the feature correspondence of up to three separate feature
points. A more theoretical issue is that the edges (and corners) of
the constructed cube map are not covered by any local charts. We
describe how to add special charts to cover these singularities, such
that all local parameters are still conformal and the transition func-
tions to other existing charts are conformal as well. In practice, we
found it was not necessary to actually use these extra charts but we
include the corresponding discussion in the interest of completeness
and theoretical rigorousness.

1

Online Submission ID: 0342

Our approach combines the benefits of several recent developments.
Most important novel contributions to computer graphics are:

• A new algorithm for computing conformal cube map of
curved geometry. This structure enables us to simplify
Navier-Stokes equation and other types of PDEs on surfaces
without losing accuracy;

• By using cubic conformal mapping combined with regular ge-
ometry image representation, we demonstrate how to adopt
off-the-shelf GPU-based fluid solvers with minimal modifica-
tions;

• By tightly coupling deformable geometry with fluid dynam-
ics, we develop to the best of our knowledge the first GPU-
based interactive fluid solver for arbitrary surfaces.

We tested our system on several surfaces with complex geometric
details. We demonstrate interactive user control and also conduct
fluid experiments over shape morphing sequences. In all our exam-
ples we achieve interactive performance, while preserving stability
and accuracy.

1.1 Previous Work

Floater and Hormann [2004] provide an extensive survey of the
state of the art in parameterization. We refer the reader to this paper
for a more detailed discussion of this subject and briefly mention
only the most related work below.

Geometry images were introduced By Gu et al. [2002], who repre-
sent geometric surfaces with a regular image format to enable GPU-
based geometric processing. Spherical parameterizations have been
discussed in [Praun and Hoppe 2003]. Conformal parameteriza-
tions for topological disks have been presented in [Lévy et al.
2002], [Desbrun et al. 2002], and [Sheffer and de Sturler 2001].

Stam [2003] introduced flows on surfaces to the graphics com-
munity. His technique uses the same underlying 2D Stable Fluid
solver [Stam 1999] as our method, but the parameterization he
chose leads to hundreds of charts for meshes of reasonable com-
plexity. Our conformal cubic parameterization can handle similar
meshes using only six charts. A fixed number of charts that can
handle many different models is a key factor in simplifying a GPU
implementation. A somewhat different approach to the flows on
surfaces problem was taken by later researchers [Shi and Yu 2004;
Fan et al. 2005]. Instead of using a parameterization to solve the
equations, they solve the system using an irregular discretization
based on the triangular mesh. Conformal parameterizations are also
popular in scientific computing (see [Lui et al. 2005] for an appli-
cation to flow on surfaces problem) but the goals in this case are
usually very different from those of computer graphics.

2 Background and Overview

We first present a brief summary of the theory of conformal parame-
terizations. More detailed information can be found in the literature
on differential geometry [Lang 1999].

Suppose S is a surface embedded in the Euclidean space R3 pa-
rameterized through variables (u,v). Then S can be represented as
a vector valued function r(u,v). The first fundamental form of S
is a differential form which measures the squared distance on the
surface:

ds2(u,v) = E(u,v)du2 +2F(u,v)dudv+G(u,v)dv2, (1)

with E =< ∂r
∂u , ∂r

∂u >,G =< ∂r
∂v , ∂r

∂v >,F =< ∂r
∂u , ∂r

∂v > . Here <,>

denotes the inner (dot) product in R3. The first fundamental form
is also called Riemannian metric. A parameterization with (u,v) is
called conformal if E = G and F = 0. Geometrically, this means
that the angle between any two intersecting lines on the surface is
the same as the angle between their images in (u,v)-plane, i.e. only
the area (but not the angles) is changed locally by the parameteri-
zation. Under conformal parameterization, we introduce notation

E = G = λ
2,

and refer to λ as conformal or stretching factor. λ 2 is equal to the
ratio of differential area on the surface to that in parametric domain.

It is practically important that for any local region on the surface a
conformal parameterization exists. The commonly used differential
operators, such as gradient or divergence can be generalized onto
surfaces by incorporating the Riemannian metric. It turns out that
most differential operators have their simplest forms when confor-
mal parameters are used, which is valuable for solving complicated
PDEs. This new operator form often uses conformal factor λ which
therefore plays a central role in our computation.

Suppose φ is a differentiable bijective mapping from surface S1 to
S2 and τ : S2 → (u,v) is an arbitrary conformal parameterization
of S2. φ is called conformal, if mapping φ ◦ τ : S1 → (u,v), with ◦
denoting composition operation, is a conformal parameterization of
S1. It is easy to validate that the inverse of a conformal map is con-
formal and the composition of two conformal maps is conformal.

According to Riemann mapping theorem [Lang 1999], any simply
connected surface with one boundary can be conformally mapped
to the unit disk D2. Such mapping is not unique. In fact, there are
3 degrees of freedom which can be used to achieve other desirable
properties. Similarly, any genus zero closed surface can be confor-
mally mapped to the unit sphere S2. This mapping has 6 degrees of
freedom. Furthermore, suppose φ : S →R3 is an arbitrary mapping
defined on S with components φ = (φ0,φ1,φ2). Then the harmonic
energy of φ is defined as

E(φ) =
2

∑
i=0

∫
S

< ∇φi,∇φi > dσ , (2)

where σ is the surface area. Intuitively, harmonic energy is pro-
portional to the elastic stretching energy of the surface due to its
distortion which is created by its mapping into another surface. It
has been proven that if φ : S→ S2 is conformal, then it has the min-
imal harmonic energy in all maps from S to the unit sphere. We will
compute conformal maps by minimizing this energy.

Harmonic energy minimizers (conformal maps) are not unique.
They form a 6-dimensional Möbius transformation group. In order
to obtain a unique solution, we need to apply additional constraints.
For example, we can set the “center of mass” of the resulting sur-
face to the origin by ensuring that∫

S
φi(p)dσ = 0, i = 1,2,3 (3)

This constraint will remove three degrees of freedom. The remain-
ing three are then equivalent to rotations. Alternatively, we can
choose positions of three arbitrary feature points on the surface.
This is used by Möbius transformation described below.

If the surface is a topological disk, we can use the conventional
double covering technique [Lang 1999] to turn it into a symmet-
ric closed surface by gluing two copies of the surface along their
boundaries. Therefore, in the following discussion, we only focus
on closed genus zero surfaces.

2

Online Submission ID: 0342

(a) David Surface (b) Conformal Spherical (c) Conformal Spherical (d) Conformal Cube
map of David of a cube map of David

Figure 2: Conformal Cube Map of David Head Surface. The Michelangelo’s David head surface (a) is conformally mapped to the unit
sphere (b). The unit cube is also mapped to the sphere (c). These two maps induce a conformal cube map of the David head surface (d).

3

1

2

2

1

1
2

3

12

3

w

z

Figure 3: Full conformal atlas of a cube map. Three face charts,
three edge charts and one corner chart are illustrated. The chart
transition map from face to corner is w = z

4
3 , which is conformal.

Suppose S1 is an arbitrary genus zero surface and we want to con-
struct its conformal mapping to another surface S2. In all our
examples S2 is a simple cube, which makes hardware implemen-
tation particularly simple (see Section 5), but it can be a poly-
cube to better represent the shape of S1. We first compute con-
formal maps φ1 : S1 → S2 and φ2 : S2 → S2. Then the composition
φ
−1
2 ◦φ1 : S1 → S2 is the sought conformal map from S1 to S2.

We construct a conformal atlas in a manner similar to [Grimm
2002] and [Ying and Zorin 2004]. Each face, edge and corner ver-
tex are associated with its own local chart. Each face chart covers
only interior points of corresponding face and leaves off edges of
the face. Each edge chart covers interior points of the edge but
leaves off corner vertices. The corner vertices are covered by cor-
ner charts. Figure 3 demonstrates face, edge and corner charts of
a unit cube. The transition map from a face chart to an edge chart
is a planar rigid motion. The transition map from a face chart to a
corner chart is w = z

4
3 composed with a planar rigid motion, where

z is the complex coordinates on the face chart, and w is the complex
coordinates on the corner chart. Therefore, all transition maps are
conformal.

A constructed conformal atlas can be used to solve any partial dif-
ferential equations if theoretical correctness of the solution is re-
quired. In practice we found it sufficient for graphics applications
to compute and store only face charts with shared boundaries. This
does not lead to visually noticeable artefacts and simplifies data
structures and algorithms considerably.

Figure 2 illustrates the complete process of conformal cube map
creation. After the parameterization is computed, we use it in the
final step to resample the surface into a set of geometry images
using regular grid on each face of the cube. The collection of re-
sulting images forms a conformal cubic map of the entire surface

which can be used to solve differential equations on the surface as
described in Section 4.

3 Cube Parameterization

In this section, we explain in more detail our algorithm for con-
structing conformal cube maps for genus zero surfaces. All surfaces
are represented as piecewise planar polygonal meshes. We use no-
tation vi for vertices of the mesh and [vi,v j] to denote its edges.

3.1 Spherical Conformal Map

We need to construct conformal maps φk : Sk → S2,k = 1,2. First
we compute normals ni at each vertex vi of S1. We then define the
Gauss map parameterization

φ : S1 → S2,vi → ni.

which will serve as our initial map from S1 to S2. Note that it will be
more convenient for us to interpret φ(p) as a vector from the origin
to a point on the sphere (which is, of course, normal to the sphere)
rather than as the point itself. We adapt Polthier’s method [Polthier
2002] to approximate the harmonic energy defined by Equation 2:

E(φ) = ∑
[vi,v j]∈S1

1
2

wi j < φ(vi)−φ(v j),φ(vi)−φ(v j) >, (4)

here weight wi j is defined as

wi j =
< vi− vk,v j − vk >

|(vi− vk)× (v j − vk)|
+

< vi− vl ,v j − vl >

|(vi− vl)× (v j − vl)|
,

where vk and vl are the two vertices sharing a face with edge [vi,v j].
We will use a heat flow method [Schoen and Yau 1997] to minimize
harmonic energy. This technique updates φ(p) according to a vari-
ant of the heat equation:

dφ(p)
dt

=−∆
T

φ(p),∀φ ∈ S, (5)

where ∆ is the Laplacian-Beltrami operator and ∆T φ(p) represents
its tangential component. The purpose of updating the map along
the tangential direction of its Laplacian (rather than along the direc-
tion of full Laplacian) is to keep the image of point p on the target
surface (sphere) while minimizing the harmonic energy.

3

Online Submission ID: 0342

The discrete Laplacian of φ at vertex vi is the derivative of E(φ)
with respect to φ(vi):

∆φ(vi) = ∑
[vi,vk]∈S1

wi j(φ(vi)−φ(v j)). (6)

At each vertex, ∆φ(vi) can be split into the normal component
∆⊥φ(vi) =< ∆φ(vi),φ(vi) > φ(vi) and the tangential component
which we need for Equation 5:

∆
T

φ(vi) = ∆φ(vi)−∆
⊥

φ(vi).

The heat flow dynamics given by Equation 5 is approximated by up-
dating φ(vi) along the negative direction of this vector. The center
of mass constraint 3 is simplified to

∑
vi∈S1

φ(vi) = 0.

which is enforced by subtracting ∑i φ(vi) from all φ(vi)’s and re-
normalizing the result to unit length after each iteration.

The process converges to a discrete conformal map from a surface
to the unit sphere. The convergence speed is determined mainly
by the geometric properties of the surface. For all models used in
this paper (tens of thousands of vertices) the heat flow computation
takes about 30 seconds. Figure 2 a and b illustrates the result of the
conformal spherical map of the David head surface. For more de-
tails on heat flow method, including a formal proof of convergence
of the constrained heat flow, we refer readers to [Schoen and Yau
1997]. The convergence of discrete Laplacian-Beltrami operator
has been extensively discussed in [Xu 2004].

The final piece of information we need for our PDE solver is the
conformal factor λ . For each vertex vi we compute the sum of
areas of all faces adjacent to vi (its one-ring) in R3 and the sum of
areas of one-ring neighbor faces in (u,v) plane. The ratio of these
quantities gives an approximation for conformal factor λ 2(vi).

3.2 Feature Alignment with Möbius Transformation

For some applications, such as morphing, we need to create con-
formal spherical parameterizations of several surfaces which align
their major features. For example, we might want to align the eyes
and the nose center of both David head model and the skull model
in their conformal cube maps.

First we separately conformally map both surfaces to the sphere,
with maps φ1,φ2. Then we conformally map the sphere to the plane
using stereographic projection,

τ : (x,y,z)→ (
2x

1− z
,

2y
1− z

),(x,y,z) ∈ S2.

We then use a special conformal map from the plane to itself, a
Möbius transformation, to move three arbitrary feature points into
any new desired positions. Suppose for the first surface, the three
feature points are z0,z1,z2. We first construct the Möbius transfor-
mation which takes them into 0,1,∞:

ψ1 =
(z− z0)(z1− z2)
(z− z2)(z1− z0)

.

We can construct ψ2 in a similar way. Then ψ
−1
1 ◦ψ2 maps the

feature points on the second surface into those on the first one. The
two conformal spherical parameterizations φ1 and

τ
−1 ◦ψ

−1
1 ◦ψ2 ◦ τ ◦φ2

are therefore two consistent conformal spherical parameterizations,
which align three feature points accurately on the sphere. Figure
4 demonstrates the alignment using Möbius transformation. The
three feature points used are centers of the eyes and the tip of the
nose for both skull and David head surface.

(a) Skull Surface (b) Conformal Spherical map

(c) Conformal Spherical (d) Conformal Spherical
after a Mobius transformation Map of David Head

Figure 4: Consistent Conformal Spherical Maps. The skull surface
(a) is conformally mapped to the unit sphere. A Möbius transfor-
mation is acted on the sphere to align eyes and nose tip with those
features on the conformal spherical image of the David head(d).

4 Conformal Flow

Our goal is to use the described parameterization as a tool for solv-
ing partial differential equations on surfaces. We are particularly
interested in solving Navier-Stokes equations for inviscid incom-
pressible fluid flow:

∂u
∂ t

=−(u ·∇)u− 1
ρ

∇p+ f; ∇ ·u = 0 (7)

where u and ρ are velocity and density of the fluid, p is pressure
and f is external body forces such as gravity.

For flows on surfaces, fluid velocity is restricted to the tangent
plane. Given a mapping of the surface to (u,v)-plane, we can at-
tempt to solve differential equations in this plane and then map
the result back onto the surface. This involves computation only
in two dimensions and therefore we can take advantage of fast
off-the-shelf 2D solvers, including those using graphics hardware.
However, we first need to express all differential operators in the
new domain taking into account any distortion caused by parame-
terization. Unfortunately, for most surface-to-plane mappings the
resulting equations in (u,v)-plane are significantly different from
being a simple 2D version of equations 7 above (including appear-
ance of new terms) and extensive non-trivial modification of exist-
ing solvers is required. The key advantage of using a conformal
mapping is that all differential operators can be obtained by simple
incorporation of conformal factor λ (u,v). We use subscript g to
emphasize that these operators are computed differently. Symbols
without subscripts refer to “standard” operators in corresponding
domain.

4

Online Submission ID: 0342

Gradient of a scalar function φ is expressed as:

∇gφ =
1

λ 2

[
∂φ

∂u
∂φ

∂v

]
=

∇φ

λ 2 (8)

and its Laplacian:

∆gφ =
1

λ 2

(
∂ 2φ

∂u2 +
∂ 2φ

∂v2

)
=

∆φ

λ 2 (9)

Given fluid velocity in (u,v)-plane u = (u1(u,v),u2(u,v)), the di-
vergence operator becomes:

∇g ·u =
1

λ 2

(
∂
(
λ 2u1

)
∂u

+
∂
(
λ 2u2

)
∂v

)
(10)

Since we will be using solvers based on Stam’s stabe fluid algo-
rithm [Stam 1999], it is useful to explicitly present here expressions
for major steps of this technique (see original paper for details). In
particular, advection equation becomes:

∂u
∂ t

=− 1
λ 2 (∇ ·u)u (11)

For projection operation, 1/λ 2 terms cancel leading to :

∂ 2 p
∂u2 +

∂ 2 p
∂v2 =

∂
(
λ 2u1

)
∂u

+
∂
(
λ 2u2

)
∂v

(12)

We also make use of a vorticity confinement force [Fedkiw et al.
2001] to reduce numerical dissipation.

5 GPU Implementation

A nice property of the conformal parameterization is that it re-
quires only minor changes to an existing solver. To demonstrate
this, we modified the GPU implementation of the Stable Fluid
method [Stam 1999] described in [Harris 2004]. We will limit our
discussion to the changes we have made to support conformal flow.
For a detailed description of the GPU-based solver itself, please
refer to [Harris 2004].

The mesh and parameterization data are input into the system as 6
geometry images [Gu et al. 2002] using the standard cube layout
shown in Figure 5. In addition to position in R3, each pixel also
contains the squared conformal factor λ 2 at this point. This infor-
mation is precomputed using the procedure described in section 3.
The fluid solver also stores velocity in texture memory using the
same cube map layout. This arrangement allows to query λ 2 in the
same manner as velocity. This makes it easy to modify fragment
programs used by original solver according to expressions in the
previous section. For example, relevant fragment of the original
(written in Cg language) advection procedure might be

float2 pos = coords - dt * rdx * f2texRECT(u, coords);
xNew = f4texRECTbilerp(x, pos);

To modify it for the conformal solver according to Equation 11, we
simply add a texture lookup for λ 2 and a few other operations:

half rlambda_sqr = 1.0 / h1texRECT(stretch, coords);
float2 pos = coords -

dt * rdx * f2texRECT(u, coords) * rlambda_sqr;
xNew = f4texRECTbilerp(x, pos);

Modifications to other parts of the solver are similarly straightfor-
ward.

Figure 5: Left: Cubic map. Right: full texture layout with boundary
regions added. Colors correspond to those on the left and show
which faces of the cube map provide the data for corresponding
part of the texture. Texture is setup to wrap back over the edges.

5.1 Boundary Conditions

As in [Stam 2003], we maintain a layer of boundary cells around the
perimeter of the domain. Values are copied from the outer row of
the adjoining face into this layer. This allows the differential opera-
tors to be evaluated without special handling of the boundary. Note
that for vector fields, we have to transform the vector appropriately.

The most challenging aspect of the implementation is dealing with
the boundary conditions for semi-Lagrangian advection procedure
which involves tracing current position back in time using a velocity
field. If a trace crosses the boundary of the cube, we need to return
a valid value. The trace, however, can easily go beyond the size
one boundary layer, requiring some special handling. Stam [2003]
detects boundary crossings as part of the trace routine. We chose to
seek an alternative approach for two reasons. First, this procedure
involves a recursive while loop which, although it certainly is pos-
sible to implement in a fragment program, would lead to significant
additional complexity of the system and extensive modification to
any off-the-shelf GPU solver. This goes against our fundamental
goals. Second, loops and branches in fragment programs are ex-
pensive operations. This additional cost would be incurred for all
trace operations, not just those that cross a boundary.

Our alternative approach is to extend the boundary layer as far as
possible. Figure 5, right, shows the full layout of our texture map
with embedded original cube faces along with the boundary layer.
In regions with two adjoining faces, we split the domain into two
triangles and copy values from the appropriate region. Areas out-
side original cube faces are updated from corresponding cube face
prior to each time step. Near corners where several faces meet,
there is still potential for errors to be introduced as traces may sam-
ple from the wrong region but we found such cases not to cause
serious problems for reasonably sized time steps. For graphics ap-
plications, we believe that this tradeoff of accuracy for simplicity is
acceptable.

6 Examples

This section and accompanying video present the results of our ap-
proach for several meshed of genus zero. We used an Intel Pentium
1.8GHz PC with a 128MB NVIDIA GeForce 6800 GT graphics
card. Each face of the cube has resolution 128x128 (512x512 total
texture size) in all the examples. At this resolution, the system runs
at approximately 15fps. Off-line preprocessing step to create geom-
etry images and compute conformal mapping takes tens of seconds

5

Online Submission ID: 0342

Figure 6: The user can place internal boundaries (shown in white)
on the mesh. The first two images demonstrate the effect of the
added boundary on the flow and the third presents final appearance.

Figure 7: Left: A simple reaction-diffusion texture synthesized with
our approach. Contrast uniform feature size on the surface to that
in the texture space. Right: The same texture computed without tak-
ing into account surface metric (using unmodified R-D equation).

for our 104−105 vertex meshes. Our first two video examples show
fluid flowing over two surfaces of different geometric complexity -
a sphere and a skull. In the second case, there are multiple sources
introducing fluid.

One of the benefits of significant performance gain owed to imple-
menting the system in hardware is that the user can directly interact
with the flow. Our system allows users to introduce force on the
surface using the mouse, as well as draw new internal boundaries.
This allows to interactively manipulate the flow to create a desired
effect. Figure 6 shows several frames from a session where the user
has added internal boundaries (in white) preventing fluid from en-
tering face area of the model. Internal boundaries can also serve
to create regions on the surface forbidden for fluid flow. With ap-
propriate (absorbing) boundary conditions this can be used to im-
plement simple “holes” in the surface without resorting to solving
equations on a non-genus zero surface.

If a surface is modified, it might be important to see how editing
operations affect the fluid flow over the surface. Since surface ge-
ometry is changing, this would, strictly speaking, require to recom-
pute the conformal parameterization which is prohibitively slow for
interactive applications. However, for small changes it might be
possible to use the original parameterization and stretching factors
modifying only the geometry. One special case involves key frame
based morphing of surfaces. For this case, we can compute neces-
sary information for the end positions (and, if needed, for several
other key frames) and simply interpolate stretching factors at run-
time. The resulting mapping is no longer conformal for in-between
frames. For large changes in geometry, this can lead to visible arte-
facts as demonstrated by an example included in the video. Figure
1 shows an example of successful application of this technique.

Other PDEs can also be solved using our approach. Figure 7 shows
a model with a simple texture that was generated using reaction-
diffusion technique [Turk 1991]. Note the non-uniform size of spots
in the texture domain which is corrected by the inverse mapping.
Simply running the unmodified solver in texture domain creates
uniform size spots leading to distorted pattern on the surface.

7 Conclusion

We have articulated a new approach to solving Navier-Stokes equa-
tions and other PDEs on surfaces for computer graphics, based on
unique properties of conformal cube maps. The algorithm con-
structs such map for an arbitrary surface of genus zero and then
converts surface into a collection of regular geometry images. This
allows one to use existing solvers, including GPU-based ones, with
minimal code modification. The system achieves visually com-
pelling and physically accurate results at interactive frame rates.
Several practical applications are demonstrated, including surface-
with-flow morphing and direct interaction with the flow through
adding additional forces and internal boundaries.

Possible directions for future work include developing more effi-
cient algorithms for conformal map construction, extending present
system to handle surfaces of arbitrary genus, and designing better
ways of controlling flows on surfaces.

References

DESBRUN, M., MEYER, M., AND ALLIEZ, P. 2002. Intrinsic parameterizations of
surface meshes. Comput. Graph. Forum 21, 3.

FAN, Z., ZHAO, Y., KAUFMAN, A., AND HE, Y. 2005. Adapted unstructured LBM
for flow simulation on curved surfaces. In SCA ’05: Proceedings of the 2005 ACM
SIGGRAPH/Eurographics symposium on Computer animation, 245–254.

FEDKIW, R., STAM, J., AND JENSEN, H. W. 2001. Visual simulation of smoke. In
Proceedings of SIGGRAPH 2001, E. Fiume, Ed., 15–22.

FLOATER, M. S., AND HORMANN, K. 2004. Surface parameterization: a tutorial and
survey. In Advances on multiresolution in geometric modelling, Springer-Verlag,
Heidelberg, M.S.F.N.Dodgson and M.Sabin, Eds.

GOTSMAN, C., GU, X., AND SHEFFER, A. 2003. Fundamentals of spherical param-
eterization for 3d meshes. ACM Trans. Graph. 22, 3, 358–363.

GRIMM, C. 2002. Simple manifolds for surface modeling and parameterization. In
Shape Modeling International, 237–246.

GU, X., GORTLER, S. J., AND HOPPE, H. 2002. Geometry images. ACM Trans.
Graph. 21, 3, 355–361.

HARRIS, M. 2004. Fast fluid dynamics simulation on the GPU. In GPU Gems,
R. Fernando, Ed. Addison Wesley.

LANG, S. 1999. Fundamentals of Differential Geometry. Springer.

LÉVY, B., PETITJEAN, S., RAY, N., AND MAILLOT, J. 2002. Least squares confor-
mal maps for automatic texture atlas generation. In SIGGRAPH, 362–371.

LUI, L. M., WANG, Y., AND CHAN, T. F. 2005. Solving pdes on manifolds with
global conformal parameterization. In VLSM, 307–319.

POLTHIER, K. 2002. Computational aspects of discrete minimal surfaces. In Pro-
cessing of the Clay Summer School on Global Theory of Minimal Surface, J. Hass,
D. Hoffman, A. Jaffe, H. Rosenberg, R. Schoen, and M. Wolf, Eds.

PRAUN, E., AND HOPPE, H. 2003. Spherical parametrization and remeshing. ACM
Trans. Graph. 22, 3, 340–349.

SCHOEN, R., AND YAU, S.-T. 1997. Lectures on Harmonic Maps. International
Press.

SHEFFER, A., AND DE STURLER, E. 2001. Parameterization of faceted surfaces for
meshing using angle-based flattening. Eng. Comput. (Lond.) 17, 3, 326–337.

SHI, L., AND YU, Y. 2004. Inviscid and incompressible fluid simulation on triangle
meshes: Research articles. Comput. Animat. Virtual Worlds 15, 3-4, 173–181.

STAM, J. 1999. Stable fluids. In Proceedings of SIGGRAPH ’99, 121–128.

STAM, J. 2003. Flows on surfaces of arbitrary topology. ACM Transaction on Graph-
ics. 22, 3, 724–731.

TURK, G. 1991. Generating textures on arbitrary surfaces using reaction-diffusion. In
SIGGRAPH ’91: Proceedings of the 18th annual conference on Computer graphics
and interactive techniques, ACM Press, New York, NY, USA, 289–298.

XU, G. 2004. Discrete laplace-beltrami operators and their convergence. In Computer
Aided Geometric Design, 767–784.

YING, L., AND ZORIN, D. 2004. A simple manifold-based construction of surfaces
of arbitrary smoothness. ACM Trans. Graph. 23, 3, 271–275.

6

