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Abstract

This work introduces the concepts and methods for Ricci flow for com-
puter scientists and engineers. Readers can understand thebackground the-
ories as well as the implementation details, such that they can make Ricci
flow software easily and find potential applications in graphics field.

First, the basic concepts from local differential geometryare briefly in-
troduced, the concepts of metric, curvature are explained in details. Then
different energies are defined to quantitative measure the distorison of para-
meterizations. The conformal parameterizations are emphasized.

Second, the theories from global differential geometry arethoroughly
explained, such as manifolds, affine atlas, Riemann surfaces, Riemann uni-
formization theorem. Then Ricci flow is introduced to conformally deform
surfaces, such that the solution surfaces have constant Gaussian curvatures.

Third, the concepts and methods from continuous geometry are system-
atically translated to the discrete setting via circle packing metric. The dis-
crete Ricci flow is thoroughly explained, the existence of the solution, the
exponential convergence, the variational energy, the Newton’s method are
explained.

Finally, discrete Ricci flow is implemented based a common mesh li-
brary. The details of the algorithms are illuminated. Experimental results
are illustrated and discussed.

Readers who are only interested in the implementation of Ricci flow can
skip the first two chapters.
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1 Introduction

Shape representation and deformation are fundamental problems in computer graph-
ics. Ricci flow is a theoretic solid and piratical simple method for tackling these
problems.

Ricci Flow was first introduced in differential geometry by Hamilton [3] in
1980′s. Later, Hamilton generalize Ricci flow for 3-manifolds. It has been broadly
studied and developed by pure mathematicians and has recently been applied to
prove the famous Poincare conjecture on the topology of 3-manifolds [7].

Circle packing was introduced by Thurston [9], which is a bridge to transfer
conformal mappings from smooth surface case to combinatorial graphs.

Chow and Luo [1] combined Ricci flow with circle packing and established
the theoretic foundations of combinatorial Ricci flow.

Gu and Luo [] implemented the Ricci flow algorithms and improved the ef-
ficiency by changing gradient flow to Newton’s method. The method has been
applied for global parameterizations, and further manifold splines.

In the following discussion, we briefly draw the big picturesin both continuous
setting and discrete setting. They are systematically ”dual” to each other.

1.1 Motivation

Shape representation and deformation are the central problems in computer graph-
ics and geometric modelling.

In engineering fields, triangular meshes are commonly used to represent shapes,
its connectivity models the topology, the edge lengths describes the metric (intrin-
sic geometry), the dihedral angles further determine the embedding of the mesh
in R

3.
The edge lengths determine the curvature on each vertex. Butthe inverse is

much more difficult,

Problem 1 Given curvature on the mesh, how to find compatible edge lengths?

This problem has fundamental importance. The solution to this problem will
allow the users to model the shapes by designing their curvature.

For example, surface parameterizations have played an important role in graph-
ics. Many real applications in graphics heavily rely on parameterizations, such as
texture mapping, shape comparison, fluid simulation, geometric morphing and so
on. Surface parameterization is equivalent to find a specialconfiguration of edge
lengths, such that the curvatures of vertices are zero, namely, the mesh is flat.
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Another example is for parametric surface, especially splines. In order to
model natural shapes with manifold structure, special parameter atlas need to be
constructed, such that all the chart transition functions are affine. Finding the
affine atlas is equivalent to find a flat metric of the mesh.

For surface fairing, it is desirable to distribute the curvature more uniformly
on vertices. It is straightforward to compute the resultingcurvature, but difficult
to find the edge length and the embedding of the mesh.

Ricci flow is the powerful tool to solve the problem. It offersthe freedom
to traverse the intrinsic shape space (all the admissible configurations of edge
lengths)that can be represented by a mesh, enable the users to model shapes by
designing their curvature distributions. The most direct real applications include
global surfaces parameterizations, manifold splines, surface fairing, shape match-
ing, shape morphing etc.

1.2 Continusing Setting

A surface in the Euclidean spaceR
3 has three level information,

• Topology,

• Riemannian Metric,

• Embedding.

Topology is determined by the number of boundaries and handles of the surface.
Metric is a structure such that the lengths and angles of tangent vectors can be
measured. Embedding is the way the surface sits inR

3.
Gaussian curvature is the measurement of how close a neighborhood of a point

on the surface to a plane, it is solely determined by the Riemannian metric, and
independent of the embedding of the surface. But, the Gaussican curvature is
confined by the topology of the surface.

A topological surface can be equipped with different Riemannian metrics.
Two metrics are conformal or angle preserving if for any two tangent vectors, the
angles between them are the same measured by the different metrics. Therefore,
all possible Riemannian metrics of a surface can be classified by this conformal
equivalence relation.

Any surface embedded inR3 has a unique metric induced by the Euclidean
metric ofR3. The surface can be equipped by a unique metric, which is conformal
equivalent to the induced metric, and it has constant Gaussican curvature. One can
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ask a much broader question:
Given a function satisfying the topological constraint, can one find a Riemannian
metric, such that the Gaussican curvature induced by the metric equals to the
function? If it exists, how to compute it?

The answer to these questions are the main focus of this tutorial, roughly
speaking,
The metric exists, it is unique in each conformal class. It can be computed using
Ricci flow.

The basic idea of Ricci flow is to deform the current metric conformally driven
by the difference between current Gaussian curvature and the target Gaussian cur-
vature pointwisely. The flow will converge to the desired metric, the curvature
error shrinks exponentially fast.

The above problem can be modelled as a variational problem, such that by
minimizing the energy, the desired metric can be reached. The energy function is
convex, therefore it has unique global optima. Ricci flow is just the gradient flow.
By using Newton’s method, the convergence speed can be further improved.

1.3 Discrete Setting

In computer graphics and geometric modeling, general surfaces inR
3 are repre-

sented as triangular meshes. Each mesh has three level information,

• Topology, indicated by the connectivity of the mesh.

• Riemannian Metric, the edge lengths.

• Embedding, the dihedral angles for edges.

The Gaussian curvature of a vertex is the measurement of the difference of its
one ring neighbor with the plane. It is defined as the difference between the sum-
mation of its adjacent angles and2π. The Gaussian curvature is solely determined
by the edge lengths. The total Gaussian curvature of all vertices equals to2πχ,
whereχ is the Euler number of the mesh.

In smooth case, a conformal deformation has the following crucial properties,

1. It transform an infinitesimal circle to an infinitesimal circle.

2. It preserves the intersection angles among the infinitesimal circles.
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(a) (b)

(c) (d)

Figure 1: Conformal mapping and its properties. Conformal mappings pre-
serves angles, the right angles of checkers in are preservedin (b). Conformal
mapping transforms the infinitesimal circles on the textureplane to the infinitesi-
mal circles on the surface, it also preserves the tangency ofcircles.

A cone is associated with each vertex, such that the cone angle equals to the
curvature of the vertex, the boundary of each cone is a circle. Each edge connect-
ing 2 vertices, the corresponding2 circles intersect each other. The edge length
is determined by the radii of the circles and their intersection angle. We call this
kind of edge lengths acircle packing metricof the mesh.

One can change the circle radii, preserving the intersection angles of a circle
packing metric. This kind of deformation is the analogy of conformal deformation
in smooth case, and called the discrete conformal deformation.

Given a closed mesh equipped with a circle packing metric, one can con-
formally deform its metric such that the final metric can be realized in constant
Gaussican curvature spaces. Namely, a closed genus zero mesh can be embedded
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in a sphere, each edge is a geodesic, the length equals to the metric; a closed genus
one mesh can be embedded in the plane, each edge is realized bya line segment
with the length of the metric; a high genus closed mesh can be realized in the
hyperbolic disk, each edge is a geodesic with the length specified by the circle
packing metric.

One can ask a much broader question:
Given a function satisfying the topological constraint defined on the vertices, can
one find a circle packing metric, such that the Gaussican curvature induced by the
metric equals to the function? If it exists, how to compute it?

The answer to these questions are the main focus of this tutorial, roughly
speaking,
The curvature function has more constraints than topological constraint. If the
curvature function satisfies all the constraints, then the circle packing metric ex-
ists, it is unique in each conformal class. It can be computedusing discrete Ricci
flow.

The basic idea of discrete Ricci flow is to deform the vertex radii driven by the
difference between current Gaussian curvature and the target Gaussian curvature
on each vertex. The flow will converge to the desired metric, the curvature error
shrinks exponentially fast.

The above problem can be modelled as a variational problem, such that by
minimizing the energy, the desired metric can be reached. The energy function is
convex, therefore it has unique global optima. Ricci flow is just the gradient flow.
By using Newton’s method, the convergence speed can be further improved.

2 Smooth Ricci flow

This section introduces the concepts and theoretic resultsof smooth surface Ricci
flow.

We first introduce the major relevant concepts from local differential geome-
try, then from global differential geometry.

2.1 Local Differential Geometry

Suppose a surfaceS ⊂ R
3 has a parametric representation,

r(u, v) = (x(u, v), y(u, v), z(u, v))

for points(u, v) in some domain inR2. The parameterization isregular if
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1. x1(u, v), x2(u, v), x3(u, v) are smooth functions.

2. The tangent vectors

ru =
∂r

∂u
, rv =

∂r

∂v
,

are linearly independent at every point.

Therefore, thenormalvector

n(u, v) =
ru × rv

|ru × rv|

is well defined everywhere.
The first fundamental form ofS is defined as

ds2 = Edu2 + 2Fdudv + Gdv2,

where
E = ru · ru, F = ru · rv, G = rv · rv.

Suppose two tangent vectors at(u, v) are

dr1 = rudu1 + rvdv1, dr2 = rudu2 + rvdv2,

then the inner product of them is defined as

< dr1, dr2 >g=
(

du1 dv1

)

(

E F

F G

)(

du2

dv2

)

.

Thus, the length and angles of tangent vectors can be measured by the first funda-
mental form. First fundamental form is also called theRiemannian metricof the
surface. The geometry determined by the metric is called theintrinsic geometry,
which is independent of the embedding of the surface inR

3, such as the geodesics.
The surface embedding is described by the second fundamental form,

II = Ldu2 + 2Mdudv + Ndv2,

where
L = ruu · n, M = ruv · n, N = rvv · n.

First fundamental form and the second fundamental form together determines the
surface uniquely up to rotation and translation inR

3.
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The the map between the surfacer(u, v) to the normal vectorn(u, v) is called
Gauss map, its derivative mapW : dr(u, v) → dn(u, v) is called theWeingarten
map, which is a linear map, and can be represented easily asλru + µrv → λnu +
µnv,

W =

(

L M

M N

)(

E F

F G

)−1

The determinant of the matrixW represents the area distortion of the Gauss map,
and is defined asGaussian curvature,

K = |W | =
LN − M2

EG − F 2
.

By definition, Gaussian curvature requires the embedding ofthe surface (L, M, N),
but in fact, it can be computed solely using the metric(E, F, G), namely, it is in-
trinsic. The formula is

K = − 1√
EG

[(
(
√

E)v√
G

)v + (
(
√

G)u√
E

)u]

Consider a curve on surface(u(s), v(s)), assume the tangent direction of the
curve has an angleθ(s) with ru, then thegeodesic curvatureof the curve is defined
as

kg =
dθ

ds
− 1

2
√

G

∂ ln E

∂v
cos θ +

1

2
√

E

∂ ln G

∂u
sin θ.

Geodesic curvature is also intrinsic.
Suppose there are two surface patches,S1(u, v) and S2(u, v), the mapφ :

S1(u, v) → S2(u, v) is called aconformal mapping, if

E1(u, v)

E2(u, v)
=

F1(u, v)

F2(u, v)
=

G1(u, v)

G2(u, v)
= λ(u, v),

whereλ(u, v) is called theconformal factor. It can be easily verified that, any two
intersecting curves onS1 will be mapped toS2, and the intersection angle doesn’t
change. Therefore, conformal mapping is also calledangle preserving mapping.

Especially, the parameterization(u, v) of S(u, v) is a conformal parameteri-
zation, if the metric can be represented as

ds2 = λ(u, v)2(du2 + dv2).
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Many geometric computations will be simplified using conformal parameter, such
as the Gaussian curvature

K(u, v) = ∆g ln λ(u, v).

where

∆g =
1

λ2
(

∂2

∂u2
+

∂2

∂v2
),

is the Laplace-Beltrami operator. Conformal mapping preserves theshapesof the
parameter domain, it is highly desirable to use conformal parameterization for
graphics applications, such as texture mapping.

Although, conformal parameterization has no angle distorsion, it will intro-
ducearea distortion. If conformal factor function equals to one everywhere, there
will be no area distortion at all, the resulting map is anisometric map. In gen-
eral two surfaces have an isometric map between them, share the same metric, so
the Gaussian curvature functions are equal. It is impossible, because surfaces are
usually curved, and the parameter plane is flat.

In order to measure the area distortion for a conformal parameterization, we
define the followingarea distortion energy

∫

S

(λ(u, v) − 1)2dA =

∫

S

(λ(u, v) − 1)2λ2(u, v)dudv,

with the assumption, both the parametric domain area equalsto the surface area
and equals to one, otherwise, we can normalize the surface first, namely

∫

S

dA = 1,

∫

D

dudv = 1.

whereD is the parameter domain.

2.2 Global Differential Geometry

General surfaces can not be covered by a single parameter domain, instead, they
may need many local parameters overlapping one another. Therefore, one region
on the surface may be covered by several parameter charts. All the geometric
meaningful quantities should be consistent under different parameterizations.

A manifoldof dimensionn is a connected Hausdorff spaceM for which every
point has a neighborhoodU that is homeomorphic to an open subsetV of R

2.
Such a homeomorphism

φ : U → V
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is called acoordinate chart. An atlas is a family of charts{(Uα, φα)} for which
Uα constitute an open covering ofM .

Suppose{(Uα, φα)} and{(Uβ, φβ)} are two charts on a manifoldM , Uα ∩
Uβ 6= ∅, the chart transition is

φαβ : φα(Uα ∩ Uβ) → φβ(Uα ∩ Uβ).

If all chart transition functions are affine maps onR
2, the atlas is called an

affine atlas.

Theorem 2 A surface admits an affine atlas, if and only if it has zero Euler num-
ber.

Affine atlas plays an crucial role for manifold splines. A surface admits a manifold
spline if and only if it admits an affine atlas. In practice, itis important to compute
an affine atlas. This can be accomplished by Ricci flow.

If all chart transition functions are holomorphic functions, the atlas is called
an conformal atlas. If a metric surface admits an conformal atlas, it is called a
Riemann surface.

Theorem 3 All metric surfaces are Riemann surfaces.

Therefore, we can use conformal parameter charts to cover the whole surface. Rie-
mann surface has special vector fields, the so-called holomorphic 1-forms, which
have zero curl and divergence, and have been applied for global conformal surface
parameterization [].

The global definition of a metric is as the following: on chart{Uα, φα}, the
metric has the form

(

gα
11 gα

12

gα
21 gα

22

)

on another chart{Uβ, φβ}, the metric is

(

g
β
11 g

β
12

g
β
21 g

β
22

)

=

(

∂uβ

∂uα

∂uβ

∂vα
∂vβ

∂uα

∂vβ

∂vα

)

(

gα
11 gα

12

gα
21 gα

22

)

(

∂uβ

∂uα

∂uβ

∂vα
∂vβ

∂uα

∂vβ

∂vα

)T

.

We simply use(M, g) to denote a manifoldM equipped with a Riemannian metric
g.

SupposeM is a manifold, it can be equipped with different metrics. Butall
metrics satisfy the following Gauss-Bonnet formula,
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Theorem 4 A surface with a Riemannian metric(M, g), then
∫

M

KdA +

∫

∂M

Kgds = 2πχ(M),

whereK is the Gaussican curvature induced byg, Kg is the geodesic curvature,
∂M is the boundary ofM , χ(M) is the Euler number ofM .

This means the metric has the topological constraints.
Any closed metric surface(M, g) has a special metric̄g, such that̄g is confor-

mal equivalent tog, andḡ has constant Gaussian curvature everywhere.

Theorem 5 Any closed metric surface(M, g) admits a canonical metric̄g, such
that

1. ḡ is conformally equivalent tog, ḡ = λg,

2. ḡ induces constant Gaussian curvature.

Namely, closed genus zero surface can be conformally deformed to a spherical
metric, with +1 curvature; genus one surface can be conformally deformed to
have flat metric, with0 curvature; high genus surfaces can have a hyperbolic met-
ric conformally equivalent to its original metric, with−1 curvature.

Suppose the desired Gaussian curvatureK̄ is assigned to the surfaceM , we
would like to find a desired metric̄g, such that it induces̄K. Ricci flow is able to
accomplish it.

Definition 6 A Ricci flow for a surface(M, g) is defined as

dgij

dt
= (K̄ − K)gij.

Basically, the metric is deformed by the difference betweenthe current curvature
and the target curvature.

Theorem 7 1. For all the time, the solution to the Ricci flow exists and unique.

2. The convergence is exponentially fast.

3. The metrics of the solutions are conformal equivalent to the original metric.

10



4. If K̄ ≡ 0, and the surface area is normalized to be a constant, then thefinal
metric will induce a constant curvature.

Basically, suppose(M, g) is a metric surface equipped with a Riemannian
metricg, λ > 0 is a positive functions defined onM . Then the Gaussian curvature
mapΠ : λg → K is a homeomorphism between the conformal metric space

G = {λg|λ : M → R
+},

and the curvature space

K = {K|K : M → R,

∫

M

KdA +

∫

∂M

Kgds = 2πχ(M)}.

The inverse mapΠ−1 : K → λg can be computed using Ricci flow.
The solution to the Ricci flow

gij

dt
= −Kgij ,

conformally deform the metric

gij(t) = gij(0)e−
R t

0
K(τ)dτ .

The conformal factorλ = e−
R
∞

0
K(τ)dτ is the global minimum of the following

energy,

E(λ) =

∫

M

KλgdA2
λg,

with the normalized area, such that
∫

M

dAλg = 1.

whereKλg is the Gaussian curvature under the metricλg, dAλg is the area element
under the metricλg.

3 Discrete Ricci Flow
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Continuous Surface Discrete Mesh
Metric (First fundamental form) edge length
Second fundamental form dihedral angle
For convex surfaces, metric For convex meshes, edge lengths
determines the embedding determine the dihedral angles
Gaussian curvature Discrete Gaussian curvature

K = − 1√
EG

[( (
√

E)v√
G

)v + ( (
√

E)u√
E

)u] Ki = 2π −∑fijk∈F θ
jk
i

Geodesic Curvature Discrete geodesic curvature
Ki = π −∑fijk∈F θ

jk
i , vi ∈ ∂M

Conformal equivalent metrics circle packing metrics based on(M, Φ)
λ : M → R

+, {λg} {(M, Φ, Γ)}
conformal mapping a mapping between(M, Φ, Γ1)

and(M, Φ, Γ2), preserves edge anglesΦ
Gauss-Bonnet formulae Discrete Gauss-Bonnet formulae
∫

M
KdA +

∫

∂M
Kgds = 2πχ

∑

vi 6∈∂M Ki +
∑

vi∈∂M Ki = 2πχ

None Combinatorial constraints
for Gaussian curvature on vertices

Ricci flow discrete Ricci flow
dgij

dt
= (K̄ − K)gij

dγi

dt
= (K̄i − Ki)γi

Ricci flow energy discrete Ricci flow energy
∫

M
K2

λgdAλg

∫
∑

i Kidlnγi

The solution to Ricci flow exists, the solution to discrete Ricci flow exists
unique. The flow exponentially converges.unique. The flow exponentially converges.
The flow dgij

dt
= −Kgij with normalized The flow dγi

dt
= −Kiγi with normalized

total area leads to a metric with total area leads to a metric with
constant Gaussian curvature constant Gaussian curvature.

Table 1: Concepts and theories in continuous setting and discrete setting
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(a) genus one mesh (b) A flat circle packing metric

Figure 2:A flat circle packing metric for a genus one mesh.

(a) circle packing metric (b) Zoomed in of (a)

Figure 3:Circle packing metric.

The major theoretic results of Ricci flow for smooth surfacescan be systemat-
ically translated to the discrete setting. The bridge from smooth surface to trian-
gular mesh is the so calledcircle packingmetric [9].

In this section, we explain the theoretical background of discrete Ricci Flow
and show its exponential convergence rate. Theoretic proofs can be found in [1].
Conventional Ricci flow is a gradient flow of some energy form,we introduce a
novel algorithm based on the Newton’s method, it converges much faster.

A two dimensional simplicial complex (triangular mesh) is denotedM =
(V, E, F ), whereV is the set of all vertices,E is the set of all non-oriented edges
andF the set of all faces. We usevi, i = 1, · · · , n to denote its vertices,eij to
denote an oriented edge fromvi to vj , andfijk to denote an oriented face with
verticesvi, vj, vk which are ordered counter-clockwise such that the face normals
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v1

v2 v3

e12
e23

e31

r1

r2

r3
φ12

φ23

φ31

Figure 4:Circle packing metric for a triangle . Triangle[v1, v2, v3] has vertices
v1, v2, v3, and edgese12, e23, e31. Three circles centered atv1, v2, andv3, with
radii γ1, γ2 andγ3 intersect one another, with intersection angles ofΦ12, Φ23 and
Φ31, which are the weights associated with the edges. The edge lengths of the
triangle are determined byγi andΦij by the cosine law.

toward outside.

3.1 Circle Packing

The following key observation plays vital role for systematically translating smooth
Ricci flow to discrete Ricci flow,

Observation 8 A conformal mapping has the following two properties,

1. It transform infinitesimal circles to infinitesimal circles.

2. It preserves the intersection angles between two infinitesimal circles.

Figure 1 illustrates these properties of a conformal mapping. In order to trans-
late conformal mappings from smooth surface category to discrete mesh category,
Thurston definedcircle packingas the followings,

1. Change infinitesimal circles to circles with finite radii.

2. Each circle is centered at a vertex like a cone, the radius is denoted asγi for
vertexvi.

14



l

rK0

K1

K2

V0

V1

V2

V3

Figure 5: Circle packing metric and curvature. For a canonical tetrahedron,
the edges lengths are alll = 1.0, and the radius at each vertex isr = 0.5. The
curvature on each vertex equals toKi = π. The weights on all edges areΦ = 0.

γ0

γ∞
Π

K0

K∞

Circle packing metric space,Curvature Space

Figure 6:Gaussian curvature is a homeomorphism between the circle packing
metric space and the curvature space. The inverse map can be computed
using Ricci Flow. Starting from the known metricγ0 and the known curvature
k0, using Ricci Flow, as we flow to the target curvatureK∞, the metric flows to
the corresponding metricγ∞ = Π−1(K∞).

3. An edge has two vertices, the two circles intersect each other with an inter-
section angle, the angle is denoted asΦij for edgeeij , and called theweight.

The way to determine the radiiγi and the intersection angleΦij is to make
themcompatibleto the induced metric fromR3.

Definition 9 A mesh with circle packing(M, Γ, Φ), whereM represents the trian-
gulation (connectivity),Γ = {γi, vi ∈ V } are the vertex radii,Φ = {Φij , eij ∈ E}
are the angles associated with each edge. Adiscrete conformal mapping

τ : (M, Γ, Φ) → (M, Γ̄, Φ),

solely changes the vertex radiiΓ, but preserves the intersection anglesΦ.
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In really, a discrete conformal mappings can approximate a smooth conformal
mapping with arbitrary accuracy. If we keep subdividing themesh and construct
refiner and refiner circle packing, the discrete conformal mappings will converge
to the smooth conformal mapping. For a rigorous proof, we refer the readers to
[8].

In graphics and geometric modeling applications, meshes are usually embed-
ded inR3, and the metrics are induced from those ofR3. We can find the optimal
weightΦ with initial circle radii Γ, such that the circle packing metric(M, Φ, Γ)
is as close as possible to the Euclidean metric in the least square sense.

Namely, we want to find(M, Φ, Γ) by minimizing the following functional

min
Γ,Φ

∑

eij∈E

|lij − l̄ij |2, (1)

wherel̄ij is the edge length ofeij in R
3.

After finding the optimal circle packing(M, Φ, Γ), we will use discrete Ricci
flow to adjust the vertex radiiΓ to deform the mesh, therefore, the deformation is
discrete conformal.

3.2 Discrete Metric and Gaussian Curvature

We first define the circle packing metric and the Gaussian curvature for the mesh.

Definition 10 A metricon the triangular meshM is an edge length function

l : E → R
+,

satisfying the triangle inequality, namely for each facefijk,

lij + ljk > lki.

The intersection angle associated with each edge is defined as the weight of
the edge,

Definition 11 Aweighton the mesh is a function defined on edgesΦ : E → [0, π
2
].

Definition 12 A radiusfunction assigns to each vertexvi a positive numberγi,
Γ : V → R+.

A circle packing(M, Φ, Γ) uniquely determines a metric, defined as
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Definition 13 A circle packing(M, Φ, Γ) deduces a metric. The edge lengthlij is
associated with the edgeeij is computed using the Cosine law,

lij =
√

γ2
i + γ2

j + 2γiγj cos Φij . (2)

This metric is called thecircle packing metricof (M, Φ, Γ). The metrics deduced
from Φ, Γ using the Cosine Law are called thecircle-packing metricsbased on
(M, Φ).

Figure 4 illustrates a circle packing metric for a trianglefijk. The triangle is
formed by the centers of three circles of radiiγi, γj andγk intersecting at angles
Φij , Φjk andΦki.

The discrete Gaussian curvature is defined as the differencebetween the one-
ring neighbor of the vertex and the plane.

Definition 14 Given a metric, let the angle of vertexvi in fijk be denoted byθjk
i .

Then the discrete Gaussian curvatureKi at an interior vertexvi is defined as

Ki = 2π −
∑

fijk∈F

θ
jk
i , vi 6∈ ∂M, (3)

while the discrete Gaussian curvature for a boundary vertexvi is defined as

Ki = π −
∑

fijk∈F

θ
jk
i , vi ∈ ∂M. (4)

Figure 5 demonstrates the circle packing metric for mesh formed by a tetrahe-
dron, where all the edge weights are zero, all the vertex radii are0.5, and all the
vertex curvatures areπ.

The Gaussian curvature at each individual vertex is arbitrary, but thetotal
curvature is determined by the topology of the surface, as indicated by the Gauss-
Bonnet theorem:

Theorem 15 (Gauss-Bonnet)SupposeM is a mesh, the total discrete Gaussian
curvature equals to the product of2π and its Euler number,

∑

Ki = 2πχ. (5)

whereχ = |V | + |F | − |E|.
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Furthermore, for any circle packing metric(M, Φ, Γ), Φ : E → [0, φ

2
] and any

proper subsetI of verticesV ,

∑

i∈I

Ki(r) > −
∑

(e,v)∈Lk(I)

(π − Φ(e)) + 2πχ(FI), (6)

whereFI is the set of all faces inM whose vertices are inI, Lk(I) is the link of
I, the set of pairs(e, v) of an edgee and a vertexv satisfying

1. the end points ofe are not inI,

2. the vertexv is in I, and(3) e andv form a triangle.

The following fundamental theorem states that the map between the vertex
radii Γ and the discrete Gaussian curvatureK is a homeomorphism(a one to one
continuous map, the inverse is also continuous):

Theorem 16 (Vertex Radii and Curvature) LetP be the set of normalized ver-
tex radii, such that the product of the radii is one

P = {γ = (γ1, γ2, · · · , γn) ∈ R
n
>0|Πn

i=1γi = 1}

The Gaussian curvature map
Π : P → R

n

sends the vertex radiiγ to its curvature

Π(γ) = (K1(γ), K2(γ), · · · , Kn(γ)).

By the Gauss-Bonnet Theorem, its image lies in the convex polytopeY defined by
the set of all linear Inequalities 6 on the hyperplane definedby Equation 5. The
mapΠ : P → Y is a homeomorphism.

This theoretic result is very useful for practical applications. It allows the user
to design surfaces by designing their vertex curvatures first, then finding the corre-
sponding edge lengths using discrete Ricci flow, and finally finding the positions
of vertices.
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3.3 Ricci Flow

One can assign discrete values for Gaussian curvatureK̄ for a weighted mesh
(M, Φ) as long asK̄ satisfies the Conditions 5 and 6. Having done so, we wish to
find the unique circle packing metric̄γ which induces the curvaturēK. For this
purpose, we introduce the discrete Ricci Flow.

Definition 17 (Discrete Ricci Flow) We define the discrete Ricci Flow as

dγi

dt
= (K̄i − Ki)γi, (7)

whereK̄i is the desired discrete Gaussian curvature at vertexvi.

Definition 18 (convergence)A solution to Equation 7 exists and isconvergentif

1. limt→∞ Ki(t) = K̄i for all i,

2. limt→∞ γi(t) = γ̄i ∈ R+ for all i.

A convergent solutionconverges exponentiallyif there are positive constants
c1, c2, so that for all timet ≥ 0

|Ki(t) − K̄i| ≤ c1e
−c2t,

and
|γi(t) − γ̄i| ≤ c1e

−c2t.

In theory, the discrete Ricci Flow is guaranteed to be exponentially convergent.

Theorem 19 Suppose(M, Φ) is a closed weighted mesh. Given any initial circle-
packing metric based on the weighted mesh, the solution to the discrete Ricci
Flow 7 in the Euclidean geometry with the given initial valueexists for all time
and converges exponentially fast. The solution converges to the metricΠ−1(K̄).

The basic idea to show the convergence is to use variational approach. Special
energy form is constructed, Ricci flow is the neigative gradient flow of the energy.
The energy form is convex (namely, the Hessian matrix is positive definite every-
where), therefore, global minima exists and unique. For detailed theoretic proof,
we refer the readers to [1].
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3.4 Variational Approach

Discrete Ricci Flow is the solution to a variational problem, namely, it is the neg-
ative gradient flow of some convex energy, and therefore we can use Newton’s
method to further improve the convergence.

Let ui = ln γi. Under this change of variable, the Ricci Flow in Equation 7
takes the following form:

dui

dt
= −(Ki − K̄i),

The corresponding energy form is defined as

f(u) =

∫

u

u0

n
∑

i=1

(Ki − K̄i)dui,

whereu = (u1, u2, · · · , un), u0 is (0, 0, · · · , 0).
Thus ∂f

∂ui
= Ki − K̄i, that is, the Ricci Flow 7 is the negative gradient flow of

the energyf .
The Heissian matrix of the energyf is

∂2f

∂ui∂uj

=
∂Ki

∂uj

,

∂Ki

∂uj

= γj

∂Ki

∂γj

=



















γj

∑

k

B
ij
k√

1−(Aij
k

)2
i = j

0 i 6= j, eij 6∈ E

γj

∑

K

C
ij
k√

1−(Aij

k
)2

i 6= j, eij ∈ E

where
A

ij
k = 1 − 2γjγk

(γi+γk)(γi+γj)

B
ij
k =

2γjγk(γi+γk+2γj)

(γi+γk)2(γi+γj)2

C
ij
k = − 2γiγ

2

j

(γi+γk)(γi+γj)2

which can be verified to be positive definite. Asf is strictly convex, it there-
fore has a unique global minimum, so both the Gradient Descent method and
Newton’s method can be used to stably find this minimum.
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4 Implementation

Discrete Ricci flow can be easily implemented using common mesh libraries
based on halfedge data structure, such as OpenMesh, CGAL etc. The imple-
mentation is very simple, it takes a graduate student15 minutes for coding.

4.1 Data structure

First, we define the following traits for vertices, edges, half-edges,

• Corner angle, representing the angles. Suppose a corner connecting vertex
vi, and in facefijk, then the corner angle is denoted asθ

jk
i . Each half-edge

represents a corner. Corner angle is a trait associated withhalf-edges.

• Edge weightΦ, representing the intersection angles of circle packing, de-
noted asΦij for edgeeij .

• Edge length, representing the discrete metric on the mesh, denoted aslij for
edgeeij.

• Vertex radiusγ, denoted asγi for vertexvi.

• Vertex Gaussian curvature, denoted asKi for vertexvi.

• The parameter for a vertex, denotedpi for vertexvi.

4.2 Ricci flow algorithm

The Ricci Flow algorithm is summarized as the following steps:

1. Assign the weight for each edge and the radii for each vertex by minimizing
the energy in Equation 1. If the faces of the initial mesh are close to right
angles, or the application does not require conformality, we can instead
simply set

Φ(eij) ≡ 0, ∀eij ∈ E, γi ≡ 1, ∀vi ∈ V.

2. Compute the current metriclij , using the Cosine law

l2ij = γ2
i + γ2

j + 2γiγj cos Φij .

davidxgu
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3. Compute corner angles for all corners of the mesh,

θ
ij
k = cos−1

l2jk + l2ki − l2ij

2ljklki

4. Compute the discrete Gaussian curvature for each vertex,

Ki = 2π −
∑

fijk∈F

θ
jk
i ,

5. Update the vertex radii using

γi = γi + ǫ × (K̄i − Ki) × γi (8)

whereǫ is a step length. In practice, the step length can be varied dynami-
cally to improve the efficiency.

6. Normalize the vertex radii, such that the product of allγi is equal to one.

p = Πn
i γi, γi =

γi

n
√

p
,

7. Check the deviation between eachKi andK̄i, and find the maximum error

error = max
i

|Ki − K̄i|

If the error is less than a predetermined threshold, stop. Otherwise, goto
Step2.

The procedure converges fast. By fixing a vertexvi, the error curve

y(t) = |Ki(x) − K̄i(x)|
is an exponential curve, as depicted in figure 7.

5 Global parameterizations

Discrete Ricci flow gives engineers the freedoms to model thesurfaces by design
curvatures first. In many applications, it is straightforward to find the desired
curvature first, then find the metric and the embedding.

Global surface parameterization problem can be interpreted as finding a spe-
cial metric, such that the curvature is zero at every vertex except for several sin-
gularities or boundary vertices.
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Figure 7:Curvature error curve.

5.1 Pipeline

In conventional global conformal surface parametrizationa special metric is com-
puted on the mesh such that at2g − 2 singularities, the curvature is equal to−2π,
and at all other vertices, the curvature is zero. The positions of the singularities
can not be assigned arbitrarily, as they are determined by the geometry of the
surface—see Figure??, for example. The singularities are the centers of the oc-
tagons. Their positions are determined by the conformal structure of the surface
and the cohomologous type of the holomorphic 1-form. For detailed explanation,
we refer readers to [?].

The Ricci Flow method allows the user to freely assign singularities for global
parameterizations, as long as they satisfy the Gauss-Bonnet Theorem 5 and the
connectivity condition 6.

We formulate theconstraint global parameterization problemas the follow-
ing,

Definition 20 Given a meshM , a set of singular vertices{v1, v2, · · · , vm}, the
target Gaussian curvature of the singularities are given{K̄1, K̄2, · · · , K̄m}, the
constraint global parameterizationis to find a metric, such that it induces the
Gaussian curvatureKi,

1. For a singular vertexvi, Ki = K̄i.

2. For a nonsingular vertexvi, Ki = 0.

An affine atlas can be deduced from a flat metric, the atlas can be used for real
applications, such as texture mapping, texture synthesis,geometry images, and
manifold splines.
The wholepipeline of constructing the affine atlascan be summarized as
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(a) Singularity Selection (b) Local connectivity Modification

(c) Chartification (cut graph) (d) Planar Embedding

Figure 8:3 holes model with10k faces, one singularity with curvature−8π.

1. Singularity selection.

2. Connectivity Modification.

3. Ricci flow.

4. Mesh chartification.

5. Planar Embedding of each chart.

5.2 Singularity selection

The choice of the singularities will affect the quality of the global parameteriza-
tions. Because Ricci flow deforms the metric conformally, the final parameteri-
zation has no angle distorsion, but the area distorsion energy 9 varies very much.
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Figure 19 demonstrates that the choice of the position of thesingularity affect the
area distortion energies.

The discrete area distortion energy is an analogy of the smooth area distortion
energy 9,

E(Φ, Γ) =
∑

fijk∈M

(
Āijk

Aijk

− 1)2Aijk, (9)

whereĀij is the area of facefijk using the flat metric,Aijk is the area of the face
using original metric induced from the EuclideanR

3 metric,

s =
1

2
(lij + ljk + lki), Aijk =

√

s(s − lij)(s − ljk)(s − lki).

It is a challenging problem to adjust the singularities to minimize the area
distortion,

Problem 21 Given a mesh embedded inR3, how to determine the number, the
positions and the curvature distributions of singularities in order to minimize the
area distortion energy 9.

If the surface is a closed genus one mesh, then no singular vertex is needed.
For high genus mesh, we could select only one singular vertexand concentrate all
the curvature at it. If the mesh is open, we can assign target curvatures of zero to
all interior vertices and only update the radii at interior vertices. In this way, the
curvature will be automatically distribute itself along the boundary. We call this a
free boundary condition.

5.3 Local Connectivity modifications

In order to determine the desired flat metric, the combinatorial constraints for the
curvature in Equation 6 have to be satisfied.

If both the initial curvature configuration and the target curvature configuration
satisfy these constraints, any intermediate curvature configuration during the Ricci
Flow will also satisfy the constraints. Thus, it is enough toonly consider the target
curvature.

If some singularities violate the combinatorial constraits, we need to modify
the local connectivity in their neighborhood. The mesh connectivity can be easily
modified using conventional mesh operations, such asedge collapse, edge swap,
edge split[5].

In practice, we use the following heuristic method to modifythe connectivity
around each singular vertex, such that the following criteria are met:
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1. The topological valence of a singular vertexv is no less than4− 2K̄(v)
π

, thus
the average corner angle aroundv is less thanπ

2
.

2. For all the vertices in the firstn-rings of neighbors of the singular vertex,
their valences are no less than6. n is a small integer, which in our imple-
mentation is choose to be between1 and3.

The Figure?? illustrates the connectivity of the 2-ring neighborhood ofthe
singular vertex on a genus3 mesh.

5.4 Mesh chartification

Mesh chartificaion refers to find an open covering of the mesh,such that differ-
ent charts overlap each other. The basic idea is to find a set ofcurvesG, which
go through all the singularities, such that the meshM can be sliced open along
the curves to form a topological disk. Such curves form acut graph, as intro-
duced in the work ongeometry images[2]. If there is only one singularity, the cut
graphG can be constructed using a set of canonical homology bases through the
singularity [4].

The mesh is now cut open along the cut graph to form a chartM̄ , which is
called thecentral chart. Vertices on the cut graph with valence6= 2 are called
the nodes. All the singularities are also nodes. The cut graph is separated into
segments, each of which connects two nodes:G = ∪ksk, wheresk denotes a
segment. We cover each segmentsk by a chart

Uk = ∪vi∈sk
Ni, Ni = ∪fijk.

whereNi represents the one ring neighborhood of vertexvi. We callUk’s bound-
ary charts. Then the central chart̄M covers all the faces of the mesh, the boundary
charts covers the boundaries of the central chart, the wholemesh is covered by all
the charts. The transition functions among the charts are just translation and rota-
tion in R

2.
The algorithm for computing an open covering ofM is as follows:

1. Compute a cut graphG using a canonical homology basis or e.g. the method
used for constructing geometry images.

2. Slice the mesh along the cut graph to form a topological disk M̄ .

3. Find the nodes in the cut graph, and separate the cut graph into segments.
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4. For segment, compute the union of the one ring neighborhoods of all its
vertices.

5. The open covering ofM is formed byM̄ andUk, where

M ⊂ M̄ ∪k Uk.

5.5 Planar embedding

Each chart can be flattened on the plane face by face using the flat metric.
The algorithm is straight forward: Suppose a circle packingmetric lij based

on (M, Φ, Γ) is known, then

1. Compute the dual graph of the mesh, each node represents a face in the
mesh.

2. Compute a minimal spanning tree of all the nodes in the dualgraph.

3. Suppose the root of the tree is a facefijk, then embed this face onto the
planeR

2,

pi = (0, 0),pj = (lij , 0),pk = (lik cos θ
jk
i , lik sin θ

jk
i ).

4. Use breadth-first-searching method to traverse the tree,once a nodefijk is
accessed, embedfijk on to the plane. Supposevi andvj has been embedded
in R

2 already,pk can be computed easily,

pk =
like

√
−1θ

jk
i

lij
(pj − pi) + pi,

where all the vertex planar parameterspi,pj,pk are treated as complex
numbers.

Figure?? demonstrates a planar layout of a flat metric of a genus one closed
mesh. If we shift the planar parameter domain, the left boundary will fit to
the right boundary, the top boundary will fit the bottom boundary consistently.
Namely, we canperiodicallyflatten the mesh with the flat metric.
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6 Global Parameterizations Examples

Our implementation is based on a generic half edge mesh library [6], using at-
tributes to represent edge lengths, vertex radii and curvature. In the following, we
demonstrate the experimental results.

6.1 Data Structure

class Mesh : public PosGraph::Modeling::OMTriMeshBase<M eshTraits>
{

// custom property

// vertex radius
OpenMesh::VPropHandleT<double> VPropRadius;
// vertex target curvature
OpenMesh::VPropHandleT<double> VPropTargetCurvature;
// vertex current curvature
OpenMesh::VPropHandleT<double> VPropCurvature;
// edge length
OpenMesh::EPropHandleT<double> EPropLength;
// edge weight
OpenMesh::EPropHandleT<double> EPropWeight;
// corner angle
OpenMesh::HPropHandleT<double> HPropAngle;

public:
typedef PosGraph::Modeling::OMTriMeshBase<MeshTraits > Base;

public:
Mesh(void);
˜Mesh(void);

virtual void SetEdgeWeight();
virtual void SetVertexRadius();
virtual void SetVertexTargetCurvature();
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virtual void RicciFlow( double step_length = 1e-4, double c urvature_error_threshold

protected:

//compute edge lengths
void calcEdgeLengths();
//compute corner angles
void calcCornerAngles();
//compute vertex curvature
void calcVertexCurvature();
//compute vetex radius
void calcVertexRadius( double step_length = 1e-4 );

//compute vertex curvature error
double calcVertexCurvatureErr();

};

6.2 Methods

void Mesh::calcEdgeLengths() {
EdgeIter e_it;

for ( e_it=edges_begin(); e_it!=edges_end(); ++e_it)
{

double a = property(VPropRadius, to_vertex_handle( halfe dge_handle(e_it,0)));
double b = property(VPropRadius, to_vertex_handle( halfe dge_handle(e_it,1)));
double C = property(EPropWeight, e_it );

property( EPropLength,e_it) = sqrt( a * a + b * b + 2 * a * b *
}

} void Mesh::calcCornerAngles() {
HalfedgeIter h_it;
for ( h_it = halfedges_begin(); h_it != halfedges_end(); ++ h_it)
{

HalfedgeHandle phe = prev_halfedge_handle( h_it );
HalfedgeHandle nhe = next_halfedge_handle( h_it );
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double a = property( EPropLength, edge_handle( h_it ) );
double b = property( EPropLength, edge_handle( phe ) );
double c = property( EPropLength, edge_handle( phe ) );
double angle = acos(( a * a + b * b - c * c )/(2 * a * b ));
property( HPropAngle, h_it ) = angle;

}
}

void Mesh::calcVertexCurvature() {
VertexIter v_it;
for ( v_it = vertices_begin(); v_it != vertices_end(); ++v_ it)
{

VertexIHalfedgeIter vh_it;

double curvature = 2 * 3.1415926535;

for( vh_it = vih_iter( v_it ); vh_it ; ++ vh_it )
{

curvature -= property( HPropAngle, vh_it );
}

property( VPropCurvature, v_it ) = curvature;
}

}

void Mesh::calcVertexRadius( double step_length ) {
VertexIter v_it;
for ( v_it = vertices_begin(); v_it != vertices_end(); ++v_ it)
{

double K = property( VPropCurvature, v_it );
double TK = property( VPropTargetCurvature, v_it );
double r = property( VPropRadius, v_it );

double dr = 2.0 * ( TK - K ) * r * step_length;
r += dr;

property( VPropRadius, v_it ) = r;
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}
}

void Mesh::RicciFlow( double step_length, double
curvature_error_threshold ) {

double curvature_err;

while( true )
{

calcEdgeLengths();
calcCornerAngles();
calcVertexCurvature();
calcVertexRadius();

curvature_err = calcVertexCurvatureErr();
if( curvature_err < curvature_error_threshold )

break;
}

}

double Mesh::calcVertexCurvatureErr() {
VertexIter v_it;

double max_error = -1;
for ( v_it = vertices_begin(); v_it != vertices_end(); ++v_ it)
{

double current_curvature = property( VPropCurvature, v_i t );
double target_curvature = property( VPropTargetCurvatur e, v_it
double error = fabs( target_curvature - current_curvature );
max_error = ( error > max_error )? error : max_error;

}
return max_error;

}
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(a) (b)

Figure 9:David Head model with15k faces, with boundary singularities, each
with curvature 2π

m
, where m is the number of boundary vertices. The area

distortion is0.960747.
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(a) (b)

(c) (d)

Figure 10:David Head model with 15k faces, with2 singularities, each with
curvature π. The center of the red regions are singularities. The blue curves are
the cut graph. The area distortion is0.351826.
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(a) (b)

(c) (d)

Figure 11:David Head model with 15k faces, with4 singularities, each with
curvature π

2
. The center of the red regions are singularities. The blue curves are

the cut graph. The area distortion is0.330786.
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Figure 12:Ipheginia model with 30k faces,4 singularities, each withπ curva-
ture, area distortions are1.075546 and 0.740751 respectively.35



Figure 13:Ipheginia model with 30k faces,8 singularities, each with π
2

curva-
ture, area distortions is0.571903.
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(a) Domain Mesh (b) Flat metric

(c) Control Net (d) Manifold Spline

(e) Spline surface
with domain triangles

Figure 14: Manifold spline for an open surface. The bunny mesh has three
boundaries, two are at the ear tips, one is at the bottle. The affine atlas is computed
using Ricci Flow under free boundary condition.
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(a) Rocker Arm Model (b) planar layout

Figure 15: Rocker arm model with 1k faces and5k faces, no singularities.
The area distortions are0.554323,0.576723 respectively. Planar layout of a flat
metric on a genus one closed mesh.

(a) Domain Mesh (b) Control Net

(c) Manifold Spline (d) Spline surface

Figure 16: Manifold spline for a genus one surface, rocker arm model.
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(a) singularity vertex (b) Flat circle packing metric

(c) one ring neighborhood (d) Central chart and the one ring neighbor

(e) Open covering (f) Open covering
front view back view

(g) Central chart (h) boundary charts

Figure 17:Affine atlas using Ricci Flow.
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(a) Domain Mesh (b) Control Net (c) Manifold Spline (d) Spline surface

Figure 18: Manifold spline for a genus two surface.
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(a) Center singular Vertex (b) flat metric of (a)

(c)Singularity on side (d) flat metric of(c)

Figure 19:The position of a singular vertex will affect the flat metric dras-
tically. (a) and (b) shows the flat metric when the singular vertex is selected in
the center region, the metric is very uniform. (c) and (d) show the flat metric
when the singular vertex is selected on the side of the mesh, the metric is highly
nonuniform. Also (d) shows that the flat metric induces an immersion (locally
embedding ) but not an global embedding.
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(a) Sculpture Model (b) planar layout

Figure 20:Sculpture model with2k faces, one singularity with curvature−8π,
the area distortion is0.658119.

(a) original mesh (b) central chart

(c) zoomed in of (b) (d) further zoomed in of (b)

Figure 21: Sculpture model with 10k faces, one singularity with curvature
−8π, area distortion is 1.000959.
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(a) mesh with singularities (b) central chart, which is an
immersion, not an embedding

(c) segmentation and cut graph (d) charts

Figure 22: Genus six buddaha model with10k faces, five singularity with
curvature −4π, area distortion is 1.467170.
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