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Abstract

Surface parameterization is a fundamental problem in
graphics. Conformal surface parameterization is equiva-
lent to finding a Riemannian metric on the surface, such
that the metric is conformal to the original metric and in-
duces zero Gaussian curvature for all interior points. Ricci
flow is a theoretic tool to compute such a conformal flat met-
ric. This paper introduces an efficient and versatile parame-
terization algorithm based on Euclidean Ricci flow. The al-
gorithm can parameterize surfaces with different topologi-
cal structures in an unified way. In addition, we can obtain
a novel class of parameterization, which provides a confor-
mal invariant of a surface that can be used as a surface sig-
nature.

1. Introduction
Surface parameterization refers to the process of bijec-

tively mapping a region on the surface onto the plane. Pa-
rameterization plays a fundamental role in computer graph-
ics, including texture mapping, surface matching, remesh-
ing, and mesh spline conversion.

Since parameterization modifies the Gaussian curvature
on the surface, the distance on surface (Riemannian metric)
cannot be preserved and distortions will be introduced. For
the purposes of graphics applications, lower distortions are
important. In general, distortions can be separated as area
distortion and angle distortion.Conformal parameteriza-
tionscan completely eliminate the angle distortion. There-
fore, in practice, conformal parameterizations are highly
preferred.

Conformal parameterizations have been intensively stud-
ied recently and many nice methods have been developed.
Most conformal parameterization algorithms can be classi-
fied into the following categories according to their outputs;

• Map category:The output of the algorithm is a con-
formal mapτ (or a harmonic map) from the surfaceΣ
to the planeR2 [6, 19, 5] or to the sphereS2 [9, 13].

Sinceτ is bijective, this method requires that the sur-
face and the target parameter domain are homeomor-
phic to each other. This method cannot be applied to a
surface with non-zero genus, such as a torus.

• Differential 1-form category:This type of algorithm
computes differential forms on surfaces [11, 16, 8].
Locally, the differential forms are the gradient fields
of the desired conformal maps. The advantages of this
type of method are that it can handle a surface with
arbitrary topology and induces a tensor product struc-
ture, which is valuable for the purpose of remeshing
and mesh spline conversion. The disadvantages are
that there must be singularities on the 1-forms, where
the parameterization is no longer bijective and that the
number and positions of singularities cannot be con-
trolled.

• Angle structure category:Angle based flattening [25,
26] and circle patterns [17] focus on computing the
systems of angles on the surface, such that the angle
distortions are minimized and the whole surface is de-
formed to be flat. The advantage of the method is that
the boundary curvatures and singularity curvatures can
be designed to reduce the area distortion.

In this paper, we present a conformal surface parameter-
ization technique using Ricci flow. In the technique, a Rie-
mannian metric of a surface (edge lengths for a mesh) is
computed such that the surface can be flattened onto the
plane using the metric. Hence, this technique can be clas-
sified into a new category of conformal parameterization,
which we callmetric category. Ricci flow [3] provides a
mathematical tool to compute the desired metric that satis-
fies prescribed curvatures. The convergence and stability of
the Ricci flow algorithm have been proved in [3]. In this pa-
per, we use the discrete Euclidean Ricci flow to determine a
flat metric that induces zero Gaussian curvature for all inte-
rior vertices. By embedding the vertices onto the plane with
the metric, we can obtain a conformal parameterization of a
mesh.



Our metric category approach using Euclidean Ricci
flow has several advantages in conformal surface parame-
terization onto the plane. First, it can handle a surface with
arbitrary topology and genus, whether the surface is open
or closed. Second, the number, positions, and curvatures of
singularities can be completely controlled. If the surfaceis
with boundaries, our method can allocate all the curvatures
onto the boundaries and flatten the interior surface every-
where. Last and most importantly, our method can compute
a parameterization with a special metric, called theuniform
flat metric, where the boundaries are with constant geodesic
curvature and interior points are with zero Gaussian curva-
ture. To the best of our knowledge, this is the first practical
method to compute the uniform flat metrics for generic sur-
faces.

Under the uniform flat metric, each boundary of a sur-
face is mapped to a circle on the plane. For example, a sur-
face patch with two holes is parameterized onto a circle in-
cluding two small circles (see Fig. 5). The centers and radii
of these boundary circles are determined by the conformal
structure of the surface and can be used as the signature of
the surface. This introduces a novel application of parame-
terization, using conformal invariants as shape descriptors.

With previous and our techniques, we can handle con-
formal parameterizations of arbitrary surfaces. In the fol-
lowing, we give an explicit recipe to parameterize a surface
Σ with Euler numberχ(Σ). Recall that the Euler number of
a genusg surface withb boundaries is2 − 2g − b.

• χ(Σ) > 0: In this case,Σ is a topological sphere or
a surface patch. Excellent algorithms have been devel-
oped for this case in the map and angle structure cate-
gories. Our metric category approach can also handle
this case.

• χ(Σ) = 0: In this case,Σ is topologically equivalent
to a torus or an annulus. It can be parameterized by
1-form techniques and circle pattern in the angle struc-
ture category. Our method can also handle this case.

• χ(Σ) < 0: In this case,Σ may have a complicated
topology with high genus and several boundaries. If
we allow the existence of interior singularities,Σ can
be parameterized using either circle pattern or our
method. If we do not allow interior singularities but
allow boundary singularities,Σ can only be parame-
terized using our metric category approach. If we al-
low neither interior nor boundary singularities,Σ can
only be parameterized onto a hyperbolic space [15].

In summary, this paper has the following contributions;

• We formulate surface parameterization as finding a
new metric which is conformal to the original metric
and induces the prescribed curvatures. With this ap-
proach, surfaces with different topological structures
can be parameterized in an unified way.

• We introduce the discrete Euclidean Ricci flow as an
effective tool for conformal surface parameterization.
It enables us to obtain a variety of parameterizations
with different curvature distributions.

• We introduce a novel class of parameterization with
the uniform flat metric. This provides us with new ap-
plications of parameterization, such as a surface signa-
ture.

2. Related Work

2.1. Mesh parameterization

Much research has been done on mesh parameterization
due to its usefulness in computer graphics applications. The
survey of [7] provides excellent reviews on various kinds of
mesh parameterization techniques. Here, we briefly discuss
the previous work on the conformal mesh parameterization.

Map categoryFloater [6] introduced a mesh parameteri-
zation technique based on convex combinations. For each
vertex, its 1-ring stencil is parameterized into a local pa-
rameterization space while preserving angles, and then the
convex combination of the vertex is computed in the local
parameterization space. The overall parameterization is ob-
tained by solving a sparse linear system.

Levy [19] applied the Cauchy-Riemann equation for
mesh parameterization and provided successful results on
the constrained 2D parameterizations with free boundaries.
Desbrunet al. [5] minimized the Dirichlet energy defined
on triangle meshes for computing conformal parameteriza-
tion. Both methods use the cotan-formula [21]. It has been
noted that the approach of [5] has the same expressional
power with [19].

1-Form categoryGu and Yau [11, 16] computed the con-
formal structure using the Hodge theory. A flat metric of the
given surface is induced by computing the holomorphic 1-
form with a genus-related number of singularities and used
for obtaining a globally smooth parameterization. Gortler
et al.[8] used discrete 1-forms for mesh parameterization.
Their approach provided an interesting result in mesh pa-
rameterization with several holes, but they cannot control
the curvatures on the boundaries. Rayet al. [22] used the
holomorphic 1-form to follow up the principle curvatures
on manifolds and computed a quad-dominated parameteri-
zation from arbitrary models.

Angle categorySheffer et al. [25, 26] presented a con-
strained minimization approach, so called angle-based flat-
tening (ABF), such that the variation of angles between the
original mesh and the 2D flatten version is minimized. In or-
der to obtain a valid and flipping-free parameterization, sev-
eral angular and geometric constraints are incorporated with
the minimization process. Lately, they improved the perfor-
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mance of ABF by using an advanced numerical approach
and a hierarchical technique [26].

Kharevychet al. [17] applied the theory of circle pat-
terns from [1] to globally conformal parameterization. They
obtain the uniform conformality by preserving intersection
angles among the circum-circles, each of which is defined
from a triangle on the given mesh. In their approach, the an-
gles are nonlinearly optimized first, and then the solution is
refined with cooperating geometric constraints. They pro-
vide several parameterization results, such as 2D parameter-
ization with predefined boundary curvatures, spherical pa-
rameterization, and globally smooth parameterization of a
high genus model with introducing singularity points.

2.2. Circle packing and circle pattern

Circle packing for conformal mapping was introduced
by Thurston [27]. In the limit of refinement, the contiguous
conformal maps are recovered [24]. Collins and Stephen-
son [4] have implemented these ideas in their software Cir-
clePack.

The first variational principle for circle packing was pre-
sented by Colin de Verdiére [28]. Different variational prin-
ciples for circle packing and circle patterns [23, 18] were
discovered. The formulation of Bobenko and Springborn [1]
is applied for surface parameterization in [17].

3. Ricci Flow
Surface Ricci flow was presented in a seminal paper of

Hamilton [12]. Chow and Luo [3] connected Ricci flow with
circle packing and generalized the variational principle for
circle packing from tangent circles to intersecting circles.
Jin et al. [15] generalized the Ricci flow method in [3] for
hyperbolic surface parameterizations without singularities
for arbitrary surfaces with negative Euler numbers. In this
paper, we adapt the method in [3] and [15] for parameteriz-
ing arbitrary surfaces onto the Euclidean plane. In this sec-
tion, we briefly introduce the theoretic background of Ricci
flow. For details, we refer the readers to [12, 3, 15].

3.1. Surface Ricci flow

SupposeΣ is a surface embedded in the Euclidean space
R

3. It has a Riemannian metric (first fundamental form) in-
duced from the Euclidean metric ofR

3, denoted asg =
(gij)2×2.

The Gaussian curvature on interior points and the
geodesic curvature on boundary points are determined
by the Riemannian metricg. The total curvature of sur-
faceΣ is determined by the topology ofΣ as described by
the Gauss-Bonnet formula,

∫

Σ

KdA +

∫

∂Σ

kgds = 2πχ(Σ), (1)

where ∂Σ represents the boundary ofΣ and kg is the
geodesic curvature.χ(Σ) is the Euler number ofΣ.

Supposeu : Σ → R is a function defined on the surface
Σ. Then,ḡ = e2u

g is a new metric and it is easy to ver-
ify that any angle measured byg equals to that measured
by e2u

g. Therefore,e2u
g is said to beconformalto g and

e2u is theconformal factor, which measures the area distor-
tion. The Gaussian curvature and geodesic curvature under
ḡ are

K̄ = e−2u(−∆u + K) (2)
k̄g = e−u(∂nu + kg), (3)

wheren is the tangent vector orthogonal to the boundary.
Suppose the target curvaturesK̄ and k̄g are prescribed.

In order to find the conformal factore2u, the above partial
differential equations need to be solved. These equations are
highly non-linear and a conventional finite element method
cannot be applied directly. Ricci flow is a powerful tool to
find the desired conformal metric for prescribed curvatures.

AssumeΣ is a closed surface with a Riemannian met-
ric g. K̄ is the target curvature, satisfying the Gauss-Bonnet
formula (i.e., Eq. (1)). Then, Ricci flow is defined as

dgij

dt
= (K̄ − K)gij , (4)

preserving the total area
∫

Σ

dA(t) ≡ const, (5)

wheredA(t) is the area element under the metricg(t). The
theoretic proofs for the convergence and error estimation
can be found in [12].

3.2. Discrete Euclidean Ricci flow

In practice, a surface is represented as a triangular mesh,
which is a simplicial complex embedded inR3. The ver-
tex, edge, and face sets are denoted byV , E, andF , respec-
tively. We denote a vertex asvi, an edge connectingvi and
vj aseij , a face with verticesvi, vj , andvk asfijk.

The Riemannian metric is approximated by discrete met-
rics, which are the lengths of edges,l : E → R. On each
trianglefijk, the edge lengthslij , ljk, andlki satisfy the tri-
angle inequality. The discrete curvatures are defined as a
function on the vertices,K : V → R. Supposevi is an in-
terior vertex with surrounding facesfijk, where the corner
angle offijk atvi is θ

ij
i . Then, the discrete Gaussian curva-

ture ofvi is defined as

Ki = 2π −
∑

fijk∈F

θ
jk
i , vi 6∈ ∂Σ

Ki = π −
∑

fijk∈F

θ
jk
i , vi ∈ ∂Σ.
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Similar to the smooth case, discrete curvatures also satisfies
the Gauss-Bonnet formula,

∑

vi∈M/∂M

Ki +
∑

vj∈∂M

Kj = 2πχ(M).

Given a mesh, we fix the connectivity and consider all
possible metrics (systems of edge lengths) and the corre-
sponding curvatures. A curvatureK = {Ki} is called ad-
missible, if and only if there exists a metricl : E → R

which inducesK. All admissibleK ’s should satisfy a group
of linear inequalities as described in Appendix.

v1

v2 v3

γ1

γ2

γ3
φ12

φ23

φ31

l12
l23

l31

Figure 1. Circle packing metric.

Conformal metrics are approximated by conformal cir-
cle packing metrics. We associate each vertexvi with a cir-
cle whose radius isγi (see Fig. 1). The circles associated
with the end vertices of an edgeeij intersect at an angle
φij , which is called the weight of the edge. The edge length
is represented as

l2ij = γ2
i + γ2

j + 2γiγj cosφij . (6)

The circles are on the mesh. In fact, each circle is a cone
centered at a vertex and the cone angle for vertexvi equals
to 2π − Ki. Then, the radiiΓ = {γi} and the edge weights
Φ = {φij} determine the metric of the mesh.(Γ, Φ) is
called a circle packing metric of the mesh.

Conformal maps transform infinitesimal circles to in-
finitesimal circles and preserve the intersection angles
among the circles. Therefore, discrete conformal map-
pings modify the radii but preserve edge weights. Two cir-
cle packing metrics for the same mesh,(Γ1, Φ1) and
(Γ2, Φ2), are conformal to each other if and only if
Φ1 = Φ2.

For a mesh with circle packing metric(Γ, Φ), given the
target curvaturēK for each vertex, we want to compute a
conformal circle packing metric(Γ̄, Φ) which induces the
prescribed curvaturēK. Similar to Eq. (4), the discrete Eu-
clidean Ricci flow is defined asdγi

dt = (K̄i − Ki)γi, where
φij are always fixed. Letui = ln γi. Then the discrete Eu-
clidean Ricci flow is simply

dui

dt
= K̄i − Ki, (7)

Figure 2. Parameterization of genus 1 closed
surfaces.

which is the negative gradient flow of the function

F (u) = −
∫

u

0

∑

i

(K̄i − Ki)dui, (8)

whereu = (u1, u2, · · · , un). It has been proven thatF (u)
is well defined, independent of the choice of the integration
path [3].F (u) is called Ricci energy.

The Hessian matrix ofF (u)

∂2F (u)

∂ui∂uj
=

∂Ki

∂uj
(9)

is positive definite. Hence Ricci energyF (u) has a unique
global minimum and we can use Newton’s method to min-
imize it. WhenF (u) has the minimum, the Ricci flow in
Eq. (7) is in the equilibrium state and we obtain the desired
metric for the prescribed curvaturēK.

4. Parameterization Using Ricci Flow
In this section, we first describe the process of confor-

mal parameterization based on the discrete Euclidean Ricci
flow. Then, we explain how surfaces with different Euler
numbers can be parameterized with the process.

4.1. Parameterization process
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Initialize a circle packing metric.To parameterize a given
mesh onto the plane, we first compute a circle packing met-
ric (Γ, Φ), which approximates the original induced Eu-
clidean metric on the mesh as close as possible. Based on
Eq. (6), we use a constrained optimization method to com-
pute(Γ, Φ) by minimizing

E(Γ, Φ) =
∑

eij∈E

(l2ij−γ2
i −γ2

j−2γiγj cosφij)
2, φij ∈ [0,

π

2
],

wherelij is the given edge length of the mesh. We use New-
ton’s method [14] to minimize this nonlinear energy. If the
initial triangulation does not contain many highly skewed
triangles, we can obtain a circle packing metric close to the
original Euclidean metric. Otherwise, we refine skewed tri-
angles to improve the quality of the triangulation.

Compute the desired metric using Ricci flow.As described
in Section 3.2, computing the desired metric for a prescribed
curvatureK̄ is equivalent to minimizing the Ricci energy in
Eq. (8). We use Newton’s method to minimize the energy,
where the key step is to iteratively compute the following
Hessian matrix until convergence;

∂Ki

∂uj
=



















γi

∑

k
Aij

k
Dij

k
−Bij

k
Cij

k

Aij

k

√
(Aij

k
)2−(Bij

k
)2

i = j

0 i 6= j, eij 6∈ E

γj

∑

k
Aij

k
F ij

k
−Bij

k
Eij

k

Aij

k

√
(Aij

k
)2−(Bij

k
)2

i 6= j, eij ∈ E

where

A
ij
k = 2lij lki

B
ij
k = l2ij + l2ki − l2jk

C
ij
k = 2(γi + γj cosφij)

lki

lij
+ 2(γi + γk cosφki)

lij

lki

D
ij
k = 2 (2γi + γj cosφij + γk cosφki)

E
ij
k = 2(γj + γi cosφij)

lki

lij

F
ij
k = 2 (γi cosφij − γk cosφjk)

Embed the mesh with the computed metric.After comput-
ing the desired circle packing metric(Γ, Φ), we embed the
mesh onto the plane. In the following steps,τ : Σ → R

2 de-
notes the embedding map.

1. Compute the edge lengthslij using Eq. (6).

2. Select an arbitrary facef012 as the first face to em-
bed and compute the corner angles,θ0, θ1, andθ2. Set
τ(v0) to be(0, 0), τ(v1) to be(l01, 0), andτ(v2) to be
l02(cos θ0, sin θ0). Put all faces sharing an edge with
f012 into a queue.

3. Pop the first facefijk from the queue. If all verticesvi,
vj , andvk of fijk have already been embedded, con-
tinue. Otherwise, assume thatvk has not been embed-
ded yet. In this case, bothvi andvj must have been em-
bedded already. Then, there are two intersection points
of the two circles centered atvi and vj whose radii

arelki = |τ(vk) − τ(vi)| andljk = |τ(vk) − τ(vj)|,
respectively.τ(vk) is the intersection point such that
(τ(vj) − τ(vi)) × (τ(vk) − τ(vi)) > 0. Put all faces
that have not been embedded and share one edge with
fijk into the queue.

4. Repeat Step 3 until the queue is empty.

4.2. Surfaces with zero Euler number

For a surface with zero Euler number, the total Gaussian
curvature of the surface is zero from the Gauss-Bonnet for-
mula. In this case, we can find a special metric such that
both the interior and the boundary vertex curvatures are ze-
ros. There are two kinds of surfaces with zero Euler num-
ber, the torii and the annuluses.

For a genus one closed mesh, we can periodically flatten
the mesh onto the plane using such a metric. The following
is the algorithm to compute the metric and the embedding
for a meshΣ.

1. Set the target curvaturēK to be zero everywhere.

2. Compute the conformal metric and flatten the surface
as described in Section 4.1. The flattening slicesΣ to
be open along a set of seams, the so called cut graph in
[10]. The open mesh is called a fundamental domain
and denoted bȳΣ. The embedding is denoted byτ :
Σ̄ → R

2.

3. Supposeγ is an arc on the cut graph. Then it corre-
sponds to two boundary segmentsγ̄+ and γ̄− on the
fundamental domain. Compute the unique translation
g : R

2 → R
2 to align γ̄+ with γ̄−, i.e.,g(γ̄+) = γ̄−.

Find all such translations for each arc on the cut graph
and denote them asG = {g1, g2, · · · , gn}

4. Shift the copies of the embedded fundamental domains
using the translations generated byG and glue them to-
gether along the aligned boundary segments. This pro-
cess induces a tessellation of the plane.

Fig. 2 illustrates the process. The top row shows the orig-
inal surface with the cut graph (yellow curves). The middle
row is the embedded fundamental domain. The tessellation
is shown in the bottom row.

For a topological annulus, we can set the target curvature
as zero for interior vertices as well as boundary vertices.
Again, we can use Ricci flow to compute the desired met-
ric. The surface can be embedded periodically on a stripe
with parallel straight boundaries.

The cut graph is automatically generated by the embed-
ding process. In practice, it may be preferred to cut the sur-
face along a prescribed cut graph. We can use a set of canon-
ical homology basis [2] for the cut graph.
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4.3. Surface with non-zero Euler numbers

If a surfaceΣ is with a non-zero Euler number, according
to Gauss-Bonnet formula, the parameterization must con-
tain some singularities at either interior or boundary ver-
tices, where the curvatures are not zero. The total curvature
at singularities equals to2πχ(Σ). There are two types of
target curvature in this case. One isstatic target curvature,
where the curvatures at singularities can be pre-determined
and keep unchanged in the metric computation process by
Ricci flow. The other isdynamic target curvature, where the
target curvatures are evolved during the process.

Static target curvatureIn this case, the Ricci flow algo-
rithm in Section 4.1 can be applied directly. When the Eu-
ler number is positive, the static target curvature setting
is similar to conventional parameterizations, where the pa-
rameter domain is a sphere or a polygon. The top row of
Fig. 3 shows a parameterization example onto a given cir-
cle. When the Euler number is negative, the process be-
comes more complicated. Similar to the torus case in Sec-
tion 4.2, all singularities need to be on the cut graph in or-
der to obtain a valid parameterization. Fig. 7 shows an ex-
ample, where there are two interior singularities with cur-
vatureπ.

Dynamic target curvatureWe emphasize two types of dy-
namic target curvature cases; the natural boundary and the
uniform flat metric. Natural boundary curvature allows the
boundary curvature evolves freely to minimize the area dis-
tortion. In the uniform flat metric, the target curvature can-
not be defined in advance, as will be discussed in Section 5.

The following steps summarize the metric computation
process for natural boundary curvature.

1. Set the target curvature on interior vertex as zero.

2. Use Ricci flow in Eq. (7) to update only the interior
vertex radii. The radii of boundary vertices are not
modified.

3. Normalize all the vertex radii so that the total area of
the mesh is preserved.

4. Repeat Steps 2 and 3 until the interior vertex curva-
tures are close to zero within a predetermined thresh-
old.

The bottom row of Fig. 3 shows an example of the parame-
terization with a natural boundary.

5. Uniform Flat Metric
Given a surfaceΣ with boundaries∂Σ, there exists a

unique metric, called theuniform flat metric, which in-
duces zero Gaussian curvature on interior points and con-
stant geodesic curvatures on boundary points. The param-
eter domain induced by the uniform flat metric conveys
rich intrinsic geometric information of the original surface.

Figure 3. Parameterizations with circular
boundary condition and with free boundary
condition.

Figure 4. Uniform flat metrics for a topolog-
ical annulus with different boundary condi-
tions.

Therefore, the shape of the parameter domain can be used
as a shape descriptor of a surface.

It is challenging to compute the uniform flat metric. If
we use Dirichlet boundary conditions to fix the boundaries
to circles and use a harmonic map to flatten the interior, the
result is not the desired parameterization. Because the cen-
ters of the circles and the radii are determined by the surface
geometry, harmonic maps with Dirichlet boundary condi-
tions are not conformal. On the other hand, sometimes, uni-
form flat metric induces an immersion (locally bijective but
globally there might be overlaps), not an embedding. For
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such kind of surfaces, harmonic maps cannot be used.
Another challenge is that the boundary target curvature

cannot be prescribed directly. Let us consider the topologi-
cal disk case. Let the boundary vertices bev0, v1, . . . , vn−1.
Then the target curvature atvi should satisfy

K̄(vi) = π
l̄j−1,j + l̄j,j+1
∑n−1

j=0 l̄j,j+1

,

where l̄ij is the target edge length ofeij . The target edge
lengths are unknown until the final parameterization is ob-
tained. Hence, at the beginning, the target boundary curva-
tures cannot be determined.

5.1. Parameterization with uniform flat metric

Let Σ be a surface withb boundaries. Suppose that the
boundary ofΣ is a set of loops,∂Σ = C1 ∪ C2 ∪ · · · ∪ Cb.
The following steps summarize the process to obtain a pa-
rameterization with uniform flat metric.

1. Set the total curvature for eachCk as2mkπ, mk ∈ Z,
so that

∑b
k=1 mk = χ(Σ). mk can be positive, nega-

tive, or zero.

2. Set the target curvatures on boundary vertices. For a
vertexv ∈ Ck,

K̄(v) =
2mkπ

|Ck|
,

where|Ck| represents the number of vertices onCk.

3. Set the target curvature for interior vertices to be zero.

4. Optimize the Ricci energy to compute a metric.

5. Update the target curvatures on boundary vertices. Let
Ck consist of edges,e1, e2, . . . , en, where a vertexvi

connectsei andei+1. Let l̄i be the length of edgeei

updated by the metric computed in Step 4. For a vertex
v ∈ Ck, the updated target curvature is

K̄(vi) = mπ
l̄i + l̄i+1
∑n

j=1 l̄j
.

6. Repeat Steps 4 and 5 until in Step 5, the updated target
curvature is close to the current one within a threshold
for every boundary vertex.

Uniform flat metrics are demonstrated in Figs. 4, 5, 6,
and 8. In Fig. 9, we demonstrate our algorithm using a genus
3 sculpture model. The surface has one boundary, where the
different positions of the boundary are marked in green in
the top and bottom rows. We set the total boundary curva-
ture to2πχ(Σ) = −10π and calculate its uniform flat met-
ric. Then we select a set of homology basis shown in the first
three columns as blue curves. The surface is sliced along the

blue curves and embedded onto the plane using the flat met-
ric as shown in the fourth column. The last column magni-
fies local regions and shows more details. In general, uni-
form flat metric induces an immersion, which may not be
an embedding.

5.2. Intrinsic conformal mesh signature

The uniform flat metric induces an immersion,τ : Σ →
R

2, from a surfaceΣ to the plane. The shape ofτ(Σ) on the
plane conveys much geometric information ofΣ.

Two surfaces are conformally equivalent if there exists
a conformal (angle preserving) map between them; the in-
verse map is also conformal. Then we say they share the
same conformal structure. The shape ofτ(Σ) is determined
by the conformal structure ofΣ.

Suppose all the boundaries ofΣ are mapped to circles.
Then the centers and the radii of these circles are conformal
invariants. If some boundaries are mapped to straight lines,
then the surface is periodically mapped to the plane. In this
case, each period (fundamental polygon) is a rectangle. The
aspect ratio of the fundamental polygon is also a conformal
invariant.

Fig. 4 demonstrates the uniform flat metric with a topo-
logical annulus. One is with circle boundaries and the other
is with straight boundaries. The radius of the inner circle
and the aspect ratio of the rectangle (one fundamental do-
main) are the conformal invariants.

Conformal invariants can be used as the intrinsic confor-
mal mesh signature, as shown in Fig. 5. The four surfaces
are topologically equivalent, but conformally different.The
center of circles and the radii induced by their uniform flat
metrics indicate their conformal structures.

Different boundary conditions induce different uniform
flat metrics. The David head surface with3 boundaries in
Fig. 5 is parameterized in Fig. 6 with different boundary
conditions. Assume the three boundaries are labeled asC1,
C2, andC3; C1 is on the neck,C2 is on the left side of
the head, andC3 is on the right. The total curvature for
Ci is 2miπ, mi ∈ Z. The boundary condition is denoted
as (m1, m2, m3), wherem1 + m2 + m3 = −1. The first
row is the periodic embedding of the surface using the flat
metric with the boundary condition(−1, 0, 0). The bound-
ary condition for the second row is(0, 0,−1). For the third
row, the condition is(0,−1, 0). Different boundary condi-
tions determine different metrics and different signatures.
Therefore, in practice, the conformal signatures are associ-
ated with the combinatorics of the boundary conditions.

Fig. 8 shows an example for a genus one surface with
three boundaries. The surface is flattened onto the plane
using the uniform flat metric as shown in the second left
frame, where three boundaries are mapped to three circles.
The signatures of this surface are the centers and radii of
three boundary circles. The texture in the second right frame

7



Figure 5. Surface signatures induced by the uniform flat metr ics. The center of circles and the radii
are surface signatures, which are conformal invariants.

can be mapped onto the surface as shown in the rightmost
frame. In the texture mapping, the parts of the texture corre-
sponding to the interiors of the circles are not mapped onto
the surface.

6. Performance
We tested our algorithm on the Windows platform with

3.6 GHz CPU and 3.00 GB of RAM. In the implementation,
we did not use any software package for optimization and
built the software tools from scratch. As provided with the
theory of Ricci flow, for all models in our experiments, the
computational process is convergent and stable, where the
maximum curvature error decreases exponentially.

The computation time heavily depends on the geome-
tries and the boundary conditions. If the area distortion is
high, the process is more time consuming. We believe that
the relation between the time cost and the area distortion is
non-linear. For example, computing the uniform flat metric
of the David head (30k faces) with zero boundary curvature
in Fig. 4 takes90 seconds and the embedding takes2.5 sec-
onds. On the other hand, computing the flat metric for the
rocker arm model with30K faces in Fig. 2 takes300 sec-
onds and the embedding takes2.5 seconds.

The setting of Ricci flow makes it feasible to improve the
computational efficiency using a hierarchical method. In the
future, we will test this approach.

7. Discussion and Future Work
Comparisons with other methodsBoth 1-form method and
Ricci flow can handle surfaces with arbitrary topologies. A
1-form method is a linear method, while Ricci flow is a non-
linear method. The singularities on 1-forms cannot be con-
trolled, whereas Ricci flow can control the position and cur-

vature of singularities. 1-form can only map the boundaries
to straight lines. Ricci flow can design the boundary curva-
tures.

Ricci flow is a generalization of circle packing. Conven-
tional circle packing only handles tangent circles and uses
the gradient descend method, whereas Ricci flow handles
intersecting circles and can adopt Newton’s method. There-
fore, Ricci flow is more general and efficient.

Circle pattern is a variation of circle packing. Both Ricci
flow and circle pattern support Newton’s method for op-
timizing convex energies. They are Legenre dual to each
other [20]. Circle pattern computes angle structures, while
Ricci flow computes metrics. The framework of Ricci flow
can be applied for both discrete and continuous surfaces.
Circle pattern can only be applied in the discrete setting.

Future directionsAlthough for the purpose of parameteri-
zation, the target curvature is zero on almost every vertex,
Ricci flow can calculate the conformal metrics for arbitrary
admissible target curvatures. This leads to the new applica-
tions of metric design using curvatures. We will explore this
direction in the future.

We will also study the problem of assigning target curva-
tures to minimize area distortions. Besides prescribed cur-
vatures, other geometric constraints can be added for the pa-
rameterization. In addition, we will improve our algorithm
to handle large meshes using a hierarchical method.

Appendix
Admissible curvature for a meshSupposeΣ is a triangular
mesh with a discrete metric(Γ, Φ). A vertex curvatureK
is admissible if there exists another metric with a different
Γ but the sameΦ (conformal to the original metric) which
inducesK. The necessary and sufficient conditions forK
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Figure 6. Different kinds of prescribed boundary curvature s induce different kinds of uniform flat
metrics and conformal mesh signatures.

to be admissible are the following linear inequalities;

∑

vi∈I

Ki > −
∑

(e,v)∈Lk(I)

(π − φ(e)) + 2πχ(FI), (10)

where given any subsetI ⊂ V , FI is the set of all faces in
Σ whose vertices are inI. The link ofI, denoted byLk(I),
is the set of pairs(e, v) of an edgee and a vertexv such that
the end points of e are not inI, the vertexv is in I, ande

andv form a triangle.
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[26] A. Sheffer, B. Lévy, M. Mogilnitsky, and A. Bogomyakov.
ABF++: Fast and robust angle based flattening.ACM Trans-
actions on Graphics, 24(2):311–330, 2005.

[27] W. Thurston. Geometry and Topology of 3-Manifolds.
Princeton lecture notes, 1976.
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Figure 7. Flat metric with two interior singularities.

Figure 8. A genus one surface with three boundaries is parame terized using uniform flat metric. The
three circles in each period in the second left frame corresp ond to the three boundaries. The texture
in the second right frame is mapped onto the surface in the rig htmost frame.

Figure 9. Uniform flat metric for a genus 3 sculpture model. Di fferent boundary positions induce dif-
ferent metrics with different area distortions. The bounda ry of the surface in the top row is on the
back of the child. The boundary in the bottom row is at the bott om of the sculpture. After comput-
ing the metric, the seams are computed (blue curves). The sur face is sliced open along the seams
and embedded onto the plane as shown in the fourth column. The last column show zoom-ins of the
regions in the fourth column.
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