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ABSTRACT   

Magnetic resonance visual cystoscopy or MR cystography (MRC) is an emerging tool for bladder tumor detection, and 

3D endoscopic views on the inner bladder surface are being investigated by researchers.  In this paper, we further 

investigate an innovative strategy of visualizing the inner surface by flattening the 3D surface into a 2D display, where 

conformal mapping, a mathematically-proved algorithm with shape preserving, is used.  The original morphological, 

textural and even geometric information can be visualized in the flattened 2D image.  Therefore, radiologists do not have 

to manually control the view point and angle to locate the possible abnormalities like what they do in the 3D endoscopic 

views.  Once an abnormality is detected on the 2D flattened image, its locations in the original MR slice images and in 

the 3D endoscopic views can be retrieved since the conformal mapping is an invertible transformation.  In such a 

manner, the reading time needed by a radiologist can be expected to be reduced.  In addition to the surface information, 

the bladder wall thickness can be visualized with encoded colors on the flattened image.  A normal volunteer and a 

patient studies were performed to test the reconstruction of 3D surface, the conformal flattening, and the visualization of 

the color-coded flattened image.  A bladder tumor of 3 cm size is so obvious on the 2D flattened image such that it can 

be perceived only at the first sight.  The patient dataset shows a noticeable difference on the wall thickness distribution 

than that of the volunteer’s dataset.   
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1. INTRODUCTION  

Bladder cancer is the fifth leading cause of cancer deaths in the United States
1
, and each year, bladder tumor is 

diagnosed in more than 50,000 subjects according to American Cancer Society.  Optical cystoscopy is widely used to 

accurately evaluate the entire bladder, and to help early diagnosis and proper treatment of bladder carcinoma, despite the 

fact that it is invasive and expensive.  In the past few years, virtual cystoscopy (VCys) has been under development for 

an alternative non-invasive means to exam virtually the entire bladder
2
.  Compared to Computed Tomography (CT) 

technology used in most previous VCys work, Magnetic Resonance visual cystoscopy or MR cystography (MRC) has 

the advantage of not delivering excessive X-ray exposure, which makes it a possible substitute.  Therefore, MR imaging 

(MRI) has recently received attentions from both researchers and physicians, for its safety to the patients, and structural 

and functional information for diagnosing and staging the tumor growth
3
.   

In MRC, a patient is scanned by a MR device with bladder extended with urine.  Then two-dimensional (2D) MR slice 

images are acquired and the 3D inner surface of the bladder wall in the images is routinely examined by radiologists in 

2D slice displays.  Such process is often time consuming and wearing, and even leads to fatigue error in bladder 

evaluation and diagnosis.  Thus, 3D endoscopic views on the inner surface are investigated and developed, where a 3D 

model is reconstructed for quick detection.  However, since inner and outer surfaces of the bladder wall are both 

topological sphere-like, it still takes time to fully examine the bladder wall in order to find suspicious regions.  

Therefore, for purpose of quick detections, algorithms for flattening the 3D model to a 2D image while retaining 

necessary pathological information are highly desired.  

In this work, we build a framework of reconstructing the 3D bladder data from the MR images.  Then a segmentation 

algorithm is applied to acquire the inner bladder surface information.  With that information, we use the conformal 

mapping algorithm to flatten the 3D surface to a 2D image.  During that process, the geometric information of the  
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original surface is retained as far as possible.  Furthermore, bladder wall thickness calculation algorithm for visualizing 

the wall thickness characteristics is also utilized to improve the detection and examination
4
. 

The rest of the paper is organized as follows.  In Section 2, we explain our framework of visualizing bladder walls in 

details.  The theory and algorithm of each step are illustrated.  Experimental results are reported in Section 3.  Finally in 

Section 4, we summarize our work with a sketch of future plan. 

 

2. METHODS 

We firstly acquire the T1-weighted MR images of the bladder, where the urine signal is attenuated for good contrast 

against the wall, and then apply an automated segmentation algorithm to find the inner and outer surfaces of the bladder 

wall in the images.  The segmented inner surface is flattened by conformal mapping to preserve the surface geometry.  

Both the inner and outer surfaces are used to calculate the wall thickness.  The thickness distribution of the bladder wall 

is visualized by colors in the flattened image.  The methods to be presented in this paper are based on four steps: (1) 

acquisition of the raw and segmented volume image data, (2) calculation of the bladder wall thickness, (3) conformal 

mapping of the inner surface to a sphere, and (4) visualization of the 3D inner surface and the color-coded flattened 

image.  These four steps are described below. 

2.1 Acquisition of the raw and segmented volume image data  

We choose T1-weighted MR imaging instead of T2-weighted images used in many previous work for two reasons.  On 

one hand, the image intensities of urine is decreased in T1-weighted images, which provides good contrast between the 

bladder wall and lumen.  On the other hand, the partial volume effect in T1-weighted image is less visible. 

From the acquired T1-weighted bladder images in DICOM format, we resample the image voxel sizes and build the 

corresponding raw volume, where each voxel in the sampled volume is a cubic element.  Then we clip the raw volume, 

only keeping the bladder and its surrounding area.  This can significantly reduce the work of automatic segmentation. 

A coupled level set based segmentation algorithm
5
 is applied to the sampled raw volume to classify each voxel to one of 

the three types: the urine inside the bladder, the bladder wall, and the tissues outside the bladder.  The algorithm gets an 

initial guess from modified Chan-Vese (CV) model, then uses the level set method on both the inner and outer borders 

iteratively. The segmentation result shows improvement compared to the well-known CV model. 

2.2 Calculation of bladder wall thickness  

We are developing an efficient algorithm based on electric field to calculate the bladder wall thickness
6
.  From the 

segmentation result, we get the inner and outer surfaces, which are represented by the innermost and outermost voxels of 

the segmented bladder wall, respectively.  The inner and outer surfaces are closed surfaces which do not intersect with 

each other.  We assume that the inner surface has an electric potential 0, while the outer one has a potential 1.  Then an 

electric field between the inner and outer surfaces can be constructed.  From each voxel on the inner surface, we travel 

along the gradient direction until we reach the outer surface.  In the process, we integrate along the path to calculate its 

length, and get the wall thickness of that voxel. 

There are alternative methods to calculate the thickness.  For example, for each vertex on the inner surface, we can 

simply find the nearest vertex on the outer surface, and then calculate their Euclidean distance
7
.  This method has its 

advantage in running time.  However, it may not generate a reasonable result when the inner surface is concave. 

2.3 Conformal mapping of the inner surface to a sphere  

2.3.1 Basis of conformal mapping 

It is well known in mathematics that any closed genus zero surface can be mapped conformally (angle-preserving) onto 

the unit sphere
8
.  The mapping is a diffeomorphism.  Two such conformal mappings differ by a Möbius transformation 

on the sphere.  All Möbius transformations form a six-dimensional group.  Furthermore, any harmonic map from the 

genus zero closed surface to the unit sphere is conformal.  Conformal mapping has been successfully applied in brain 

surface mapping
9
. Here we first introduce its theoretical background. 



Suppose  is a surface embedded in the three dimensional Euclidean space , where  are local parameters.  

We use  to denote , and  to denote .  The parameters are regular if .  We assume   are regular 

parameters. 

Let  be a tangent vector of the surface, the norm of the vector in  is given by 

  (1) 

where ,  and .  Then the matrix 

  (2) 

defines an inner product on the tangent plane at , which is called a Riemannian metric tensor of the surface.  The 

tangent vector length and the angle can be measured by the Riemannian metric .  Let  be another local parameter 

of the same surface, and let the Jacobi matrix be 

  (3) 

Then the matrix tensor on  is 

  (4) 

Let  and  be two tangent vectors, then the angle between the two vectors are , then 

  (5) 

Suppose  and  are two Riemannian metrics on the same surface, and 

  (6) 
By Equation 5, it can be verified that the angles between  and  measured by  and  are equal.  Therefore we say 

 and  are conformal, namely, angle preserving. 

Suppose  is a differential map between two surfaces  and .  and  be the 

Riemannian metrics of  and  respectively.  Assume  and  be the local parameters of  and  

respectively, then the map  has local representation .   maps a tangent vector  of  to the 

tangent vector  on , and we define the length of  as that of .  This defines metric on , which 

is called the pull back metric induced by , 

  (7) 
where  is the Jacobi matrix 

  (8) 

If the pullback metric  on  is conformal to the original metric , 

  (9) 
then the map  is a conformal map.  Intuitively, a conformal map preserves angles. 

Suppose  be the unit sphere , then the stereographic projection  maps the sphere to the 

complex plane, , 

  (10) 



which is conformal.  All the conformal maps from the whole complex plane to itself are given by the so-called Möbius 

transformations: 

  (11) 

Then composition  is a spherical conformal map, namely a spherical Möbius transformation.  It is 

easy to see that all the Möbius transformations form a 6 dimensional group. 

All genus zero closed metric surface can be conformally mapped to the unit sphere.  The conformal mappings are not 

unique.  Two such mappings differ by a spherical Möbius transformation. 

Let  and  be surfaces with Riemannian metrics  and  respectively, and let  be a  map from  to .  

The harmonic energy density is given by 

  (12) 

where  is the inverse matrix of .  The harmonic energy of the map is given by 

  (13) 

where  is the area element of .  The critical points of  is the space of maps are called harmonic 

maps.  The following theorem plays a fundamental role in our current work: 

For closed zero closed metric surfaces, degree one harmonic maps are conformal maps. 

If the target surface , , and , then the harmonic energy has a simpler form 

  (14) 

where  is the gradient of , 

  (15) 

Harmonic maps satisfy the following Laplace equation 

  (16) 
where  is the Laplace-Beltrami operator on .  It has the local representation 

  (17) 

The harmonic map can be constructed by diffusion method.  Let  be  maps from a genus zero closed 

metric surface to the unit sphere, such that  is a degree one map, such as the Gauss map, 

  (18) 
where  is the unit normal vector at point .  The heat diffusion is given by 

  (19) 

then  will converge to a harmonic map under the following normalization condition, 

  (20) 



In practice, the surfaces are approximated by polyhedral surfaces, especially triangle meshes, where each face is a 

Euclidean triangle.  A triangle mesh is a simplicial complex.  We use  to denote a vertex, the edge connecting  

and ;  a triangle face connecting three vertices. 

A function  is approximated by a piecewise linear function.  Suppose  is one triangle, then any point 

  can be represented as 

  (21) 
Suppose  is a piecewise linear function , then 

  (22) 
By direct computation, the harmonic energy of  on the face  is given by 

  (23) 
Similarly, the harmonic energy of  defined on the whole mesh  is given by 

  (24) 

where  is the edge weight 

  (25) 

 and  are the two angles against the edge . 

The discrete Laplace-Beltrami operator is given by 

  (26) 

2.3.2 Computational algorithms 

Since our conformal mapping algorithm is based on triangle mesh, we utilize marching cube algorithm
10
 to generate the 

triangle mesh of the inner surface from the segmented volume data.  Ideally, the algorithm outputs topological sphere, 

i.e., genus 0 closed surface, which will be conformally mapped to a sphere later. 

Then a half-edge data structure to represent the triangle mesh is built upon the result of the marching cube algorithm.  

This data structure, in which the connection of faces, edges and vertices of the triangle mesh is constructed and visited 

efficiently, is widely used in geometric modeling and other fields. 

After that, the normal vector of each vertex of the mesh is calculated.  And for each vertex, we get its thickness from the 

pre-calculated thickness value of the voxel in which it lies.  Those two kinds of information will be useful in the 

visualization part. 

Now we are ready to map the bladder inner wall to a sphere.  Our algorithm is based on the nonlinear heat diffusion 

method.  We first find a degree one map f
r
 between the inner wall surface M  and the unit sphere 

2S .  The map may 

not be a diffeomorphism, and will be smoothed out automatically during the process.  We evolve f
r
 to minimize its 

harmonic energy until it becomes a harmonic map.  The evolution is according to a nonlinear heat diffusion process 

( )
( ),

df t
f t

dt
= −∆

r
r

 

where ∆  is the Laplace-Beltrami operator on the surface determined by its induced Euclidean metric.  Since ( )f M
r

 is 

constrained to be on the unit sphere, we need to project f−∆
r
 onto the tangent space of the sphere. 

The algorithm is described below: input: mesh M , step length tδ , energy difference threshold Eδ ; output: a 

harmonic map 
2:f M →

r
2S , which satisfies the zero mass-center constraint. 



1) Compute Gauss map 
2:N M → 2S . Let f N=

r
, compute harmonic energy 0E . 

2) For each vertex v M∈ , compute the Laplacian,  project it to the tangent space to get f∆
r
. 

3) Update f
r
 by f f tδ δ= −∆

r r
. 

4) Normalize the map, such that the mass center of ( )f M
r

 is at the origin. 

5) If 0E E Eδ− < , return f
r
. Otherwise, assign E  to 0E  and repeat steps 2)-5). 

By choosing the step length carefully, the energy can be decreased monotonically during the process. 

2.4 Visualization  

In the previous step, we map the inner bladder wall to a sphere, with thickness value and normal vector attached on each 

vertex.  Here, we firstly do a thickness mapping to transfer the value to a color so that we can visualize them, and find 

thick or abnormal regions quickly.  Then we offer two options to map the sphere to 2D plane – pole projection and earth 

map. Finally the result is shown on the screen with graphics techniques. 

2.4.1 Color mapping 

We use a simple linear method to encode colors.  Firstly each thickness value is normalized to a real number between 0 

and 1.  To further make the major parts of different bladders look similar in color, we reset the median thickness value to 

0.5, and the distribution of larger and smaller values are rescaled accordingly.  After that, we assign six basic colors: red, 

yellow, green, cyan, blue, and purple, to thickness 1, 0.8, 0.6, 0.4, 0.2, and 0, respectively.  If a thickness value is 

between two values listed above, we linearly interpolate the three RGB channels of two corresponding basic colors to get 

the three channels of the color of the specific thickness value. 

2.4.2 Flattening of the mapped sphere 

We have two ways of flattening the sphere: (1) to two unit disks, and (2) to an ellipse on the plane.  The first method is 

based on stereographic projection.  For the lower hemisphere, we use north pole as the projection center.  Each vertex of 

the hemisphere is mapped to the intersection of the line connecting the north pole and itself, and the equator plane.  For 

the upper hemisphere, we do the same thing, but use south pole as the projection center instead. 

The second method is based on Mollweide projection, which is well studied in cartography, and widely used for global 

maps
11
.  The projection is: 

 

2 2
cos , 2 sin ,x yλ θ θ

π
= =

 (27) 

where θ  is an angle defined by 2 sin 2 sinθ θ π φ+ = .  Here λ  is the longitude from the central meridian, and φ  is 
the latitude. 

Both methods have their own merits. The earth map can show the result in only one picture, but it has higher distortion 

in the north and south poles. 

2.4.3 OpenGL rendering 

We employ OpenGL to visualize the results.  The normal vector of each vertex is set to the attached values on each 

vertex of the original bladder surface mesh, and the vertex colors are just calculated from color mapping.  OpenGL can 

render the result meshes with colors smoothly and automatically. 

 



3. RESULTS 

We tested the whole pipeline on nine bladder datasets on a computer with Intel Xeon 3.4G CPU and 3GB RAM.  For 

each dataset, the volume size is about 180×180×180, and the number of vertices of the triangle mesh is about 50,000.  
In the framework, each of the first three steps described in the previous section takes about 20 minutes, so it takes 

approximately one hour for each dataset.  The results are shown by the figures below and consistent with expectations. 

  

Figure 1: Result of the first data set.  Left up – one slice of the raw data with segmentation result.  Left down – 

bladder inner surface.  Middle – flattened two disks and ellipse.  The color bar indicates the color mapping of the 

normalized bladder wall thickness.  Red color stands for larger value than violet.  Right – the histogram of 

thickness value distribution.   

 

 

Figure 2: Result of the third data set. Note that there is a straight line on the right (with thickness value 1) in the 

histogram, which also contributes to the large red area on the bladder 

. 



 

Figure 3: Result of the fifth data set. 

 

We pick the 1st, 3rd, and 5th dataset to illustrate. The slices and flattened results coincide with each other in all of the 

three cases, and strongly support our guess that the 1st bladder is healthy, while the other two have tumors.  

The results also show that the segmentation algorithm works well generally. Sometimes (5 out of 9 cases in our running), 

the algorithm generates some (from 1 to 4) tiny pieces at the same time, due to the survived noises in the segmented 

data.  However, these pieces are isolated from the bladder wall, and can be easily removed by simply picking the largest 

connecting component of the segmented data. 

4. CONCLUSION 

In this study, we presented an integrated pipeline to process T1-weighted MR bladder images and to accelerate the 

evaluation of the entire bladder.  The conformal mapping algorithm and the thickness calculation algorithm offer us a 

fast way to detect the regions in the bladder with abnormal thickness.  The innovations reside in this study consist of (1) 

a systematic method for bladder wall reconstruction and flattening; (2) an efficient algorithm for calculating bladder wall 

thickness; and (3) an innovative way to visualize the entire bladder wall.  These innovations enable us to visualize the 

bladder wall geometry and the wall thickness characteristics, and reduce the complexity from 3D to 2D operation. 

In our future work, we will further improve the segmentation algorithm and visualization quality, and try to minimize the 

information loss and inaccuracy in each step of the pipeline.  The applications in Computer Aided Detection (CAD) are 

also under progress. 
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