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Abstract

The Laplace-Beltrami operator of a smooth Riemannian manifold is deter-
mined by the Riemannian metric. Conversely, the heat kernel constructed from
its eigenvalues and eigenfunctions determines the Riemannian metric. This
work proves the analogy on Euclidean polyhedral surfaces (triangle meshes),
that the discrete Laplace-Beltrami operator and the discrete Riemannian metric
(unique up to a scaling) are mutually determined by each other.

Given an Euclidean polyhedral surface, its Riemannian metric is repre-
sented as edge lengths, satisfying triangle inequalities on all faces. The Laplace-
Beltrami operator is formulated using the cotangent formula, where the edge
weight is defined as the sum of the cotangent of angles against the edge. We
prove that the edge lengths can be determined by the edge weights unique up
to a scaling using the variational approach.

First, we show that the space of all possible metrics of a polyhedral surface
is convex. Then, we construct a special energy defined on the metric space,
such that the gradient of the energy equals to the edge weights. Third, we
show the Hessian matrix of the energy is positive definite, restricted on the
tangent space of the metric space, therefore the energy is convex. Finally, by
the fact that the parameter on a convex domain and the gradient of a convex
function defined on the domain have one-to-one correspondence, we show the
edge weights determines the polyhedral metric unique up to a scaling.

The constructive proof leads to a computational algorithm that finds the
unique metric on a topological triangle mesh from a discrete Laplace-Beltrami
operator matrix.
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1 Introduction
Laplace-Beltrami operator plays a fundamental role in Riemannian geometry [10].
Discrete Laplace-Beltrami operators on triangulated surface meshes span the en-
tire spectrum of geometry processing applications, including mesh parameterization,
segmentation, reconstruction, compression, re-meshing and so on [5, 9, 14].

Laplace-Beltrami operator is determined by the Riemannian metric. The heat
kernel can be constructed from the eigenvalues and eigenfunctions of the Laplace-
Beltrami operator, conversely, it fully determines the Riemannian metric (unique up
to a scaling). In this work, we prove the discrete analogy to this fundamental fact,
that the discrete Laplace-Beltrami operator and the discrete Riemannian metric are
mutually determined by each other.

Related Works In real applications, a smooth metric surface is usually represented
as a triangulated mesh. The manifold heat kernel is estimated from the discrete
Laplace operator. The most well-known and widely-used discrete formulation of
Laplace operator over triangulated meshes is the so-called cotangent scheme, which
was originally introduced in [3, 7]. Xu [13] proposed several simple discretization
schemes of Laplace operators over triangulated surfaces, and established the theoret-
ical analysis on convergence. Wardetzky et al.[12] proved the theoretical limitation
that the discrete Laplacians cannot satisfy all natural properties, thus, explained the
diversity of existing discrete Laplace operators. A family of operations were pre-
sented by extending more natural properties into the existing operators. Reuter et
al.[8] computed a discrete Laplace operator using the finite element method, and
exploited the isometry invariance of the Laplace operator as shape fingerprint for ob-
ject comparison. Belkin et al.[1] proposed the first discrete Laplacian that pointwise
converges to the true Laplacian as the input mesh approximates a smooth manifold
better. Tamal et al.[2] employed this mesh Laplacian and provided the first conver-
gence to relate the discrete spectrum with the true spectrum, and studied the stability
and robustness of the discrete approximation of Laplace spectra. The eigenfunctions
of Laplace-Beltrami operator have been applied for global intrinsic symmetry de-
tection in [6]. Heat Kernel Signature was proposed in [11], which is concise and
characterizes the shape up to isometry.

Our Results In this work, we prove that the discrete Laplace-Beltrami operator
based on the cotangent scheme [3, 7] is determined by the discrete Riemannian met-
ric, and also determines the metric unique up to a scaling. The proof is using the
variational approach, which leads to a practical algorithm to compute a Riemannian
metric from a prescribed Laplace-Beltrami operator.

Paper Outline In Section 2, we briefly overview the fundamental theorem of smooth
heat kernel and our theoretical claims of discrete case. We clarify the simplest case,
one triangle mesh, in Section 3 first; then turn to the more general Euclidean polyhe-
dral surfaces in Section 4. Finally, in Section 5, we present a variational algorithm to
compute the unique Riemannian metric from from a Laplace-Beltrami matrix. The
numerical experiments on different topological triangle meshes support the theoretic
results.
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2 Preliminaries and Proof Overview

2.1 Smooth Case
Suppose (M,g) is a complete Riemannian manifold, g is the Riemannian metric. ∆
is the Laplace-Beltrami operator. The eigenvalues {λn} and eigenfunctions {ϕn} of
∆ are

∆ϕn =−λnϕn,

where ϕn is normalized to be orthonormal in L2(M). The spectrum is given by

0 = λ0 < λ1 ≤ λ2 ≤ ⋅⋅ ⋅ , λn → ∞.

Then there is a heat kernel K(x,y, t) ∈C∞(M×M×ℝ+), such that

K(x,y, t) =
∞

∑
n=0

e−λntϕn(x)ϕn(y).

Heat kernel reflects all the information of the Riemannian metric ð. The details of
the following theorem can be found in [11].

Theorem 2.1. Let f : (M1,g1) → (M2,g2) be a diffeomorphism between two Rie-
mannian manifolds. If f is an isometry, then

K1(x,y, t) = K2( f (x), f (y), t),∀x,y ∈ M, t > 0. (1)

Conversely, if f is a surjective map, and Eqn. (1) holds, then f is an isometry.

2.2 Discrete Case
In this work, we focus on discrete surfaces, namely polyhedral surface. For example,
a triangle mesh is piecewise linearly embedded in ℝ3.

Definition 2.1 (Polyhedral Surface). An Euclidean polyhedral surface is a triple
(S,T,d) where S is a closed surface, T is a triangulation of S and d is a metric on S
whose restriction to each triangle is isometric to an Euclidean triangle.

The well-known cotangent edge weight [3, 7] on an Euclidean polyhedral surface
is defined as follows:

Definition 2.2 (Cotangent Edge Weight). Suppose [vi,v j] is a boundary edge of
M, [vi,v j] ∈ ∂M, then [vi,v j] is associated with one triangle [vi,v j,vk], the angle
against [vi,v j] at the vertex vk is α , then the weight of [vi,v j] is given by wi j =

1
2 cotα .

Otherwise, if [vi,v j] is an interior edge, the two angles against it are α,β , then the
weight is wi j =

1
2(cotα + cotβ ).

The discrete Laplace-Beltrami operator is constructed from the cotangent edge
weight.

Definition 2.3 (Discrete Laplace Matrix). The discrete Laplace matrix L = (Li j)
for an Euclidean polyhedral surface is given by

Li j =

{ −wi j i ∕= j
∑k wik i = j
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Because L is symmetric, it can be decomposed as

L = ΦΛΦT (2)

where Λ = diag(λ0,λ1, ⋅ ⋅ ⋅ ,λn), 0 = λ0 < λ1 ≤ λ2 ≤ ⋅⋅ ⋅ ≤ λn are the eigenvalues of
L, and Φ = (ϕ0∣ϕ1∣ϕ2∣ ⋅ ⋅ ⋅ ∣ϕn), Lϕi = λiϕi are the orthonormal eigenvectors, such that
ϕ T

i ϕ j = δi j.

Definition 2.4 (Discrete Heat Kernel). The discrete heat kernel is defined as fol-
lows:

K(t) = Φexp(−Λt)ΦT . (3)

The Main Theorem in this work is

Theorem 2.2 (Global Rigidity). Suppose two Euclidean polyhedral surfaces (S,T,d1)
and (S,T,d2) are given,

L1 = L2,

if and only if d1 and d2 differ by a scaling.

Corollary 2.3. Suppose two Euclidean polyhedral surfaces (S,T,d1) and (S,T,d2)
are given,

K1(t) = K2(t),∀t > 0,

if and only if d1 and d2 differ by a scaling.

Proof. Note that,
dK(t)

dt
∣t=0 =−L.

Therefore, the discrete Laplace matrix and the discrete heat kernel mutually deter-
mine each other.

2.3 Proof Overview

The main idea for the proof is as follows. We fix the connectivity of the polyhedral
surface (S,T ). Suppose the edge set of (S,T ) is sorted as E = {e1,e2, ⋅ ⋅ ⋅ ,em}, where
m = ∣E∣ number of edges, the face set is denoted as F . A triangle [vi,v j,vk] ∈ F is
also denoted as {i, j,k} ∈ F .

By definition, an Euclidean polyhedral metric on (S,T ) is given by its edge length
function d : E →ℝ+. We denote a metric as d = (d1,d2, ⋅ ⋅ ⋅ ,dm), where di = d(ei) is
the length of edge ei. Let

Ed(2) = {(d1,d2,d3)∣di +d j > dk}

be the space of all Euclidean triangles parameterized by the edge lengths, where
{i, j,k} is a cyclic permutation of {1,2,3}. In this work, for convenience, we use
u = (u1,u2, ⋅ ⋅ ⋅ ,um) to represent the metric, where uk =

1
2 d2

k .

Definition 2.5 (Admissible Metric Space). Given a triangulated surface (S,K), the
admissible metric space is defined as

Ωu = {(u1,u2,u3 ⋅ ⋅ ⋅ ,um)∣
m

∑
k=1

uk = m,(
√

ui,
√

u j,
√

uk) ∈ Ed(2),∀{i, j,k} ∈ F}
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We show that Ωu is a convex domain in ℝm.

Definition 2.6 (Energy). An energy E : Ωu → ℝ is defined as:

E(u1,u2 ⋅ ⋅ ⋅ ,um) =
∫ (u1,u2⋅⋅⋅ ,um)

(1,1,⋅⋅⋅ ,1)

m

∑
k=1

wk(µ)dµk, (4)

where wk(µ) is the cotangent weight on the edge ek determined by the metric µ .

Next we show this energy is convex in Lemma 3.5. According to the following
lemma, the gradient of the energy ∇E(d) : Ω → ℝm

∇E : (u1,u2 ⋅ ⋅ ⋅ ,um)→ (w1,w2, ⋅ ⋅ ⋅wm)

is an embedding. Namely the metric is determined by the edge weight unique up to
a scaling.

Lemma 2.4. Suppose Ω ⊂ ℝn is an open convex domain in ℝn, E : Ω → ℝ is a
strictly convex function with positive definite Hessian matrix, then ∇E : Ω → ℝn is a
smooth embedding.

Proof. If p ∕= q in Ω, let γ(t) = (1− t)p+ tq ∈ Ω for all t ∈ [0,1]. Then f (t) =
E(γ(t)) : [0,1]→ ℝ is a strictly convex function, so that

d f (t)
dt

= ∇E∣γ(t) ⋅ (q−p).

Because
d2 f (t)

dt2 = (q−p)T H∣γ(t)(q−p)> 0,

d f (0)
dt ∕= d f (1)

dt , therefore

∇E(p) ⋅ (q−p) ∕= ∇E(q) ⋅ (q−p).

This means ∇E(p) ∕= ∇E(q), therefore ∇E is injective.
On the other hand, the Jacobi matrix of ∇E is the Hessian matrix of E, which is

positive definite. It follows that ∇E : Ω → ℝn is a smooth embedding.

From the discrete Laplace-Beltrami operator (Eqn. (2)) or the heat kernel (Eqn.
(3)), we can compute all the cotangent edge weights, then because the edge weight
determines the metric, we attain the Main Theorem 2.2.

3 Euclidean Triangle
In this section, we show the proof for the simplest case, a Euclidean triangle; in the
next section, we generalize the proof to all types of triangle meshes.

Given a triangle {i, j,k}, three corner angles denoted by {θi,θ j,θk}, three edge
lengths denoted by {di,d j,dk}, as shown in Figure 1. In this case, the problem is
trivial. Given (wi,w j,wk) = (cotθi,cotθ j,cotθk), we can compute (θi,θ j,θk) by
taking the arctan function. Then the normalized edge lengths are given by

(di,d j,dk) =
3

sinθi + sinθ j + sinθk
(sinθi,sinθ j,sinθk).

Although this approach is direct and simple, it can not be generalized to more
complicated polyhedral surfaces. In the following, we use a different approach,
which can be generalized to all polyhedral surfaces.

4



vi vj

vk

θi
θj

θk

dk

didj

Figure 1: An Euclidean triangle.

Lemma 3.1. Suppose an Euclidean triangle is with angles {θi,θ j,θk} and edge
lengths {di,d j,dk}, angles are treated as the functions of the edge lengths, θi(di,d j,dk)
then

∂θi

∂di
=

di

2A
(5)

and
∂θi

∂d j
=− di

2A
cosθk, (6)

where A is the area of the triangle.

Proof. According to Euclidean cosine law,

cosθi =
d2

j +d2
k −d2

i

2d jdk
(7)

we take derivative on both sides with respective to di

−sinθi
∂θi

∂di
=

−2di

2d jdk

∂θi

∂di
=

di

d jdk sinθi
=

di

2A
(8)

where A = 1
2 d jdk sinθi is the area of the triangle. Similarly,

∂
∂d j

(d2
j +d2

k −d2
i ) =

∂
∂d j

(2d jdk cosθi)

2d j = 2dk cosθi −2d jdk sinθi
∂θi

∂d j

2A
∂θi

∂d j
= dk cosθi −d j =−di cosθk

We get
∂θi

∂d j
=−di cosθk

2A
.

Lemma 3.2. In an Euclidean triangle, let ui =
1
2 d2

i and u j =
1
2 d2

j then

∂ cotθi

∂u j
=

∂ cotθ j

∂ui
(9)
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Proof.

∂ cotθi

∂u j
=

1
d j

∂ cotθi

∂d j
=− 1

d j

1
sin2 θi

∂θi

∂d j
=

1
d j

1
sin2 θi

di cosθk

2A
=

d2
i

sin2 θi

cosθk

2Adid j

=
4R2

2A
cosθk

did j

(10)

where R is the radius of the circum circle of the triangle. The righthand side of Eqn.
(10) is symmetric with respect to the indices i and j.

Corollary 3.3. The differential form

ω = cotθidui + cotθ jdu j + cotθkduk (11)

is a closed 1-form.

Proof. By the above Lemma 3.2 regarding symmetry,

dω = (
∂ cotθ j

∂ui
− ∂ cotθi

∂u j
)dui ∧du j +(

∂ cotθk

∂u j
− ∂ cotθ j

∂uk
)du j ∧duk

+(
∂ cotθi

∂uk
− ∂ cotθk

∂ui
)duk ∧dui

= 0.

Definition 3.1 (Admissible Metric Space). Let ui =
1
2 d2

i , the admissible metric
space is defined as

Ωu := {(ui,u j,uk)∣(√ui,
√

u j,
√

uk) ∈ Ed(2),ui +u j +uk = 3}

Lemma 3.4. The admissible metric space Ωu is a convex domain in ℝ3.

Proof. Suppose (ui,u j,uk) ∈ Ωu and (ũi, ũ j, ũk) ∈ Ωu, then from
√

ui +
√u j >

√
uk,

we get ui+u j +2√uiu j > uk. Define (uλ
i ,u

λ
j ,u

λ
k ) = λ (ui,u j,uk)+(1−λ )(ũi, ũ j, ũk),

where 0 < λ < 1. Then

uλ
i uλ

j = (λui +(1−λ )ũi)(λu j +(1−λ )ũ j)

= λ 2uiu j +(1−λ )2ũiũ j +λ (1−λ )(uiũ j +u jũi)

≥ λ 2uiu j +(1−λ )2ũiũ j +2λ (1−λ )
√

uiu jũiũ j

= (λ√uiu j +(1−λ )
√

ũiũ j)
2

It follows

uλ
i +uλ

j +2
√

uλ
i uλ

j ≥ λ (ui +u j +2
√

uiu j)+(1−λ )(ũi + ũ j +2
√

ũiũ j)

>λuk +(1−λ )ũk = uλ
k

This shows (uλ
i ,u

λ
j ,u

λ
k ) ∈ Ωu.

Similarly, we define the edge weight space as follows.
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vi vj

vk

θi
θj

θk

nk

ni
nj o

r

dk

di

dj

Figure 2: The geometric interpretation of the Hessian matrix. The incircle of the
triangle is centered at O, with radius r. The perpendiculars ni, n j and nk are from the
incenter of the triangle and orthogonal to the edge ei, e j and ek respectively.

Definition 3.2 (Edge Weight Space). The edge weights of an Euclidean triangle
form the edge weight space

Ωθ = {(cotθi,cotθ j,cotθk)∣0 < θi,θ j,θk < π,θi +θ j +θk = π}
Note that,

cotθk =−cot(θi +θ j) =
1− cotθi cotθ j

cotθi + cotθ j

Lemma 3.5. The energy E : Ωu → ℝ

E(ui,u j,uk) =
∫ (ui,u j,uk)

(1,1,1)
cotθidτi + cotθ jdτ j + cotθkdτk (12)

is well defined on the admissible metric space Ωu and is convex.

Proof. According to Corollary 3.3, the differential form is closed. Furthermore, the
admissible metric space Ωu is a simply connected domain. The differential form is
exact, therefore, the integration is path independent, and the energy function is well
defined.

Then we compute the Hessian matrix of the energy,

H =−2R2

A

⎡⎢⎢⎣
1
d2

i
− cosθk

did j
− cosθ j

didk

− cosθk
d jdi

1
d2

j
− cosθi

d jdk

− cosθ j
dkdi

− cosθi
dkd j

1
d2

k

⎤⎥⎥⎦=−2R2

A

⎡⎣ (ηi,ηi) (ηi,η j) (ηi,ηk)
(η j,ηi) (η j,η j) (η j,ηk)
(ηk,ηi) (ηk,η j) (ηk,ηk)

⎤⎦
As shown in Figure 2, dini +d jn j +dknk = 0,

ηi =
ni

rdi
,η j =

n j

rd j
,ηk =

nk

rdk
,

where r is the radius of the incircle of the triangle. Suppose (xi,x j,xk) ∈ ℝ3 is a
vector in ℝ3, then

[xi,x j,xk]

⎡⎣ (ηi,ηi) (ηi,η j) (ηi,ηk)
(η j,ηi) (η j,η j) (η j,ηk)
(ηk,ηi) (ηk,η j) (ηk,ηk)

⎤⎦⎡⎣ xi

x j

xk

⎤⎦= ∥xiηi + x jη j + xkηk∥2 ≥ 0

If the result is zero, then (xi,x j,xk) = λ (ui,u j,uk),λ ∈ ℝ. That is the null space of
the Hessian matrix. In the admissible metric space Ωu, ui+u j +uk =C(C = 3), then
dui+du j+duk = 0. If (dui,du j,duk) belongs to the null space, then (dui,du j,duk)=
λ (ui,u j,uk), therefore, λ (ui +u j +uk) = 0. Because ui,u j,uk are positive, λ = 0. In
summary, the energy on Ωu is convex.
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Theorem 3.6. The mapping ∇E : Ωu → Ωθ ,(ui,u j,uk)→ (cotθi,cotθ j,cotθk) is a
diffeomorphism.

Proof. The energy E(ui,u j,uk) is a convex function defined on the convex domain
Ωu, according to Lemma 2.4, ∇E : (ui,u j,uk)→ (cotθi,cotθ j,cotθk) is a diffeomor-
phism.

4 Euclidean Polyhedral Surface
In this section, we consider the whole polyhedral surface.

4.1 Closed Surfaces
Given a polyhedral surface (S,T,d), the admissible metric space and the edge weight
have been defined in Section 2.2 respectively.

Lemma 4.1. The admissible metric space Ωu is convex.

Proof. For a triangle {i, j,k} ∈ F , define

Ωi jk
u := {(ui,u j,uk)∣(√ui,

√
u j,

√
uk) ∈ Ed(2)}.

Similar to the proof of Lemma 3.4, Ωi jk
u is convex. The admissible metric space for

the mesh is

Ωu =
∩

{i, j,k}∈F

Ωi jk
u

∩
{(u1,u2, ⋅ ⋅ ⋅ ,um)∣

m

∑
k=1

uk = m},

the intersection Ωu is still convex.

Definition 4.1 (Differential Form). The differential form ω defined on Ωu is the
summation of the differential form on each face,

ω = ∑
{i, j,k}∈F

ωi jk =
m

∑
i=1

2widui,

where ωi jk is given in Eqn. (11) in Corollary 3.3. wi is the edge weight on ei.

Lemma 4.2. The differential form ω is a closed 1-form.

Proof. According to Corollary 3.3,

dω = ∑
{i, j,k}∈F

dωi jk = 0.

Lemma 4.3. The energy function

E(u1,u2, ⋅ ⋅ ⋅ ,un) = ∑
{i, j,k}∈F

Ei jk(u1,u2, ⋅ ⋅ ⋅ ,un) =
∫ (u1,u2,⋅⋅⋅ ,un)

(1,1,⋅⋅⋅ ,1)

n

∑
i=1

widui

is well defined and convex on Ωu, where Ei jk is the energy on the face, defined in
Eqn. (12).
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Proof. For each face {i, j,k} ∈ F , the Hessian matrices of Ei jk is semi-positive defi-
nite, therefore, the Hessian matrix of the total energy E is semi-positive definite.

Similar to the proof of Lemma 3.5, the null space of the Hessian matrix H is

kerH = {λ (d1,d2, ⋅ ⋅ ⋅ ,dn),λ ∈ ℝ}.

The tangent space of Ωu at u = (u1,u2, ⋅ ⋅ ⋅ ,un) is denoted by T Ωu(u). Assume
(du1,du2, ⋅ ⋅ ⋅ ,dun) ∈ T Ωu(u), then from ∑m

i=1 ui = m, we get ∑m
i=1 dum = 0. There-

fore,
T Ωu(u)∩KerH = {0},

hence H is positive definite restricted on T Ωu(u). So the total energy E is convex on
Ωu.

Theorem 4.4. The mapping on a closed Euclidean polyhedral surface ∇E : Ωu →
ℝm,(u1,u2, ⋅ ⋅ ⋅ ,un)→ (w1,w2, ⋅ ⋅ ⋅ ,wn) is a smooth embedding.

Proof. The admissible metric space Ωu is convex as shown in Lemma 4.1, the total
energy is convex as shown in Lemma 4.3. According to Lemma 2.4, ∇E is a smooth
embedding.

4.2 Open Surfaces
By the double covering technique [4], we can convert a polyhedral surface with
boundaries to a closed surface. First, let (S̄, T̄ ) be a copy of (S,T ), then we re-
verse the orientation of each face in M̄, and glue two surfaces S and S̄ along their
corresponding boundary edges, the resulting triangulated surface is a closed one. We
get the following corollary

Corollary 4.5. The mapping on an Euclidean polyhedral surface with boundaries
∇E : Ωu → ℝm,(u1,u2, ⋅ ⋅ ⋅ ,un)→ (w1,w2, ⋅ ⋅ ⋅ ,wn) is a smooth embedding.

Surely, the cotangent edge weights can be uniquely obtained from the discrete
heat kernel. By combining Theorem 4.4 and Corollary 4.5, we obtain the major
Theorem 2.2, Global Rigidity Theorem, of this work.

5 Numerical Experiments
From above theoretic deduction, we can design the algorithm to compute discrete
metric with user prescribed edge weights.

Problem 5.1. Let (S,T ) be a triangulated surface, w̄(w̄1, w̄2, ⋅ ⋅ ⋅ , w̄n) are the user
prescribed edge weights. The problem is to find a discrete metric u= (u1,u2, ⋅ ⋅ ⋅ ,un),
such that this metric ū induces the desired edge weight w.

The algorithm is based on the following theorem.

Theorem 5.2. Suppose (S,T ) is a triangulated surface. If there exists an ū ∈ Ωu,
which induces w̄, then u is the unique global minimum of the energy

E(u) =
∫ (u1,u2,⋅⋅⋅ ,un)

(1,1,⋅⋅⋅ ,1)

n

∑
i=1

(w̄i −wi)dµi. (13)
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Genus 0 Genus 1 Genus 2

Figure 3: Euclidean polyhedral surfaces used in the experiments.

Proof. The gradient of the energy ∇E(u) = w̄−w, and since ∇E(ū) = 0, therefore
ū is a critical point. The Hessian matrix of E(u) is positive definite, the domain Ωu

is convex, therefore ū is the unique global minimum of the energy.

In our numerical experiments, as shown in Figure 3, we tested surfaces with dif-
ferent topologies, with different genus, with or without boundaries. All discrete poly-
hedral surfaces are triangle meshes scanned from real objects. Because the meshes
are embedded in ℝ3, they have induced Euclidean metric, which are used as the de-
sired metric ū. From the induced Euclidean metric, the desired edge weight w̄ can be
directly computed. Then we set the initial discrete metric to be the constant metric
(1,1, ⋅ ⋅ ⋅ ,1). By optimizing the energy in Eqn. (13), we can reach the global min-
imum, and recovered the desired metric, which differs from the induced Euclidean
metric by a scaling.

6 Future Work
We conjecture that the Main Theorem 2.2 holds for arbitrary dimensional Euclidean
polyhedral manifolds, that means discrete Laplace-Beltrami operator (or equivalently
the discrete heat kernel) and the the discrete metric for any dimensional Euclidean
polyhedral manifold are mutually determined by each other. On the other hand,
we will explore the possibility to establish the same theorem for different types of
discrete Laplace-Beltrami operators.
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