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Thanks for the invitation.
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Motivation

In computational geometry and computer graphics, many
recent applications based on Laplace-Beltrami operator.

Mesh Smoothing

[Desbrun et al 1999, etc]
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Mesh Editing

[Zhou et al 2005, Lipman et al 2005, etc]
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Shape Analysis

[Ovsjanikov, Sun and Guibas 2008, etc]

David Gu Conformal Geometry



Motivation

In computational geometry and computer graphics, many
recent applications based on Laplace-Beltrami operator.

Heat Kernel Signature

[Sun, Ovsjanikov, and Guibas 2008, etc]
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Laplace-Beltrami operator

Suppose (M,g) is a complete Riemannian manifold, g is the
Riemannian metric. f ,g : M → R are functions. The L2 norm is
given by

f ,g =
∫

M
fgdv

∆ is the Laplace-Beltrami operator.

∆(f ) = −div(grad(f )).

Laplace operator is elliptic, self-adjoint, positive definite.
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Eigen values and eigen functions

The eigenvalues {λn} and eigenfunctions {φn} of ∆ are

∆φn = −λnφn,

where φn is normalized to be orthonormal in L2(M), which form
the basis of L2(M). The collection of {λi}’s is called the
spectrum of ∆.
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Heat Kernel

Definition (Heat Kernel)

There is a heat kernel K (x ,y , t) ∈ C∞(M ×M ×R
+), such that

K (x ,y , t) =
∞

∑
n=0

e−λnt φn(x)φn(y).
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Heat Kernel

Heat kernel K (x ,y , t) means, if we set a unit heat source at
point x at time 0, the temperature at y at time t . The heat
equation is

∂
∂ t

(ft)+ ∆(ft) = 0.

with initial condition f0(x). The solution is given by

ft(x) =

∫

M
K (x ,y , t)f0(y)dy .
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Heat Kernel

Heat kernel reflects all the information of the Riemannian
metric g.

Theorem

Let Φ : (M1,g1) → (M2,g2) be a diffeomorphism between two
Riemannian manifolds. If f is an isometry, then

K1(x ,y , t) = K2(Φ(x),Φ(y), t),∀x ,y ∈ M, t > 0. (1)

Conversely, if f is a surjective map, and Eqn. (1) holds, then f is
an isometry.
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Main Problem

Prof. Leo Guibas raised the following question in SPM 2009.

Central Problem

In discrete case, does heat kernel determine the Riemannian
metric ?
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Polyhedral Surface

Definition (Polyhedral Surface)

An Euclidean polyhedral surface is a triple (S,T ,d) where S is
a closed surface, T is a triangulation of S and d is a metric on
S whose restriction to each triangle is isometric to an Euclidean
triangle.
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Polyhedral Surface

Euclidean polyhedral surfaces used in the experiments.
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Discrete Laplace Matrix

Definition (Cotangent Edge Weight)

Suppose [vi ,vj ] is a boundary edge of M, [vi ,vj ] ∈ ∂M, then
[vi ,vj ] is associated with one triangle [vi ,vj ,vk ], the angle
against [vi ,vj ] at the vertex vk is α , then the weight of [vi ,vj ] is
given by wij = 1

2 cotα . Otherwise, if [vi ,vj ] is an interior edge,
the two angles against it are α ,β , then the weight is
wij = 1

2(cotα +cotβ ).

vi

vj

α
β α

vi

vj

Cotangent edge weight.
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Discrete Laplace Matrix

The discrete Laplace-Beltrami operator is constructed from the
cotangent edge weight.

∆f (vi) = ∑
[vi ,vj ]∈E

wij(f (vi )− f (vj)).

Definition (Discrete Laplace Matrix)

The discrete Laplace matrix L = (Lij) for an Euclidean
polyhedral surface is given by

Lij =

{

−wij i 6= j
∑k wik i = j
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Discrete Heat Kernel

Because L is symmetric, it can be decomposed as

L = ΦΛΦT (2)

where Λ = diag(λ0,λ1, · · · ,λn), 0 = λ0 < λ1 ≤ λ2 ≤ ·· · ≤ λn are
the eigenvalues of L, and Φ = (φ0|φ1|φ2| · · · |φn), Lφi = λiφi are
the orthonormal eigenvectors, such that φT

i φj = δij .

Definition (Discrete Heat Kernel)

The discrete heat kernel is defined as follows:

K (t) = Φexp(−Λt)ΦT
. (3)
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Main Theorem

Theorem (Global Rigidity)

Suppose two Euclidean polyhedral surfaces (S,T ,d1) and
(S,T ,d2) are given,

L1 = L2,

if and only if d1 and d2 differ by a scaling.
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Corollary

Corollary

Suppose two Euclidean polyhedral surfaces (S,T ,d1) and
(S,T ,d2) are given,

K1(t) = K2(t),∀t > 0,

if and only if d1 and d2 differ by a scaling.

Proof.

Note that,
dK (t)

dt
|t=0 = −L.

Therefore, the discrete Laplace matrix and the discrete heat
kernel mutually determine each other.
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Proof Overview

Connectivity

Fix the connectivity of the polyhedral surface (S,T ). Suppose
the edge set of (S,T ) is sorted as E = {e1,e2, · · · ,em}, where
m = |E | number of edges, the face set is denoted as F . A
triangle [vi ,vj ,vk ] ∈ F is also denoted as {i , j ,k} ∈ F .

Metric

An Euclidean polyhedral metric on (S,T ) is given by its edge
length function d : E → R

+, denoted as d = (d1,d2, · · · ,dm),
where di = d(ei) is the length of edge ei , such that on each
triangle [vi ,vj ,vk ]

{(d1,d2,d3)|di +dj > dk}
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Proof Overview-Admissible Metric Space

Definition (Admissible Metric Space)

Given a triangulated surface (S,K ), the admissible metric
space is defined as

Ωu = {(u1,u2,u3 · · · ,um)|
m

∑
k=1

uk = m,(
√

ui ,
√

uj ,
√

uk)∈Ed(2),∀{i , j ,k}∈

where
Ed(2) = {(d1,d2,d3)|di +dj > dk}

We show that Ωu is a convex domain in R
m.

David Gu Conformal Geometry



Proof Overview-Energy

Definition (Energy)

An energy E : Ωu → R is defined as:

E(u1,u2 · · · ,um) =
∫ (u1,u2··· ,um)

(1,1,··· ,1)

m

∑
k=1

wk (µ)dµk , (4)

where wk (µ) is the cotangent weight on the edge ek

determined by the metric µ .

We show that the energy is convex.
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Proof Overview - Rigidity Lemman

Lemma

Suppose Ω ⊂ R
n is an open convex domain in R

n, E : Ω → R is
a strictly convex function with positive definite Hessian matrix,
then ∇E : Ω → R

n is a smooth embedding.
E(u1, u2)

u1

u2

(u1, u2) → ∇E(u1, u2)

Rigidity lemma.
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Proof of Rigidity lemma

Proof.

If p 6= q in Ω, let γ(t) = (1− t)p+ tq ∈ Ω for all t ∈ [0,1]. Then
f (t) = E(γ(t)) : [0,1] → R is a strictly convex function, so that

df (t)
dt

= ∇E |γ(t) · (q−p).

Because
d2f (t)

dt2 = (q−p)T H|γ(t)(q−p) > 0,

df (0)
dt 6= df (1)

dt , therefore

∇E(p) · (q−p) 6= ∇E(q) · (q−p).

This means ∇E(p) 6= ∇E(q), therefore ∇E is injective.
On the other hand, the Jacobi matrix of ∇E is the Hessian
matrix of E , which is positive definite. It follows that
∇E : Ω → R

n is a smooth embedding.
David Gu Conformal Geometry



Proof of main theorem

Proof.

Because the energy E : Ωu → R is strictly convex on Ωu, and
Ωu is convex, therefore ∇E : Ωu → R

m is an embedding.
∇E = (w1,w2, · · · ,wm) are the edge weights. Namely, the map
(u1,u2, · · · ,um) → (w1,w2, · · · ,wm) is one-to-one, the metric is
determined by the wedge weight unique up to scaling.
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Simple Case - One Euclidean Triangle

vi vj

vk

θi
θj

θk

dk

didj

An Euclidean triangle. By direct

computation,

Lemma

Suppose an Euclidean triangle is with angles {θi ,θj ,θk} and
edge lengths {di ,dj ,dk}, angles are treated as the functions of
the edge lengths, θi(di ,dj ,dk ) then
∂θi
∂di

= di
2A and ∂θi

∂dj
= − di

2A cosθk , where A is the area of the
triangle.
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Simple Case - One Euclidean Triangle

vi vj

vk

θi
θj

θk

dk

didj

An Euclidean triangle. By direct

computation,

Lemma

In an Euclidean triangle, let ui = 1
2d2

i and uj = 1
2d2

j then

∂ cotθi

∂uj
=

∂ cotθj

∂ui
(5)

Corollary

The differential form David Gu Conformal Geometry



Convexity of Admissible Metric Space

Definition (Admissible Metric Space)

Let ui = 1
2d2

i , the admissible metric space is defined as

Ωu := {(ui ,uj ,uk )|(√ui ,
√

uj ,
√

uk ) ∈ Ed(2),ui +uj +uk = 3}

Lemma

The admissible metric space Ωu is a convex domain in R
3.

By direct argument.
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Edge Weight Space

Definition (Edge Weight Space)

The edge weights of an Euclidean triangle form the edge
weight space

Ωθ = {(cotθi ,cotθj ,cotθk )|0 < θi ,θj ,θk < π,θi + θj + θk = π}

Lemma

The energy E : Ωu → R

E(ui ,uj ,uk ) =

∫ (ui ,uj ,uk )

(1,1,1)
cotθidτi +cotθjdτj +cotθkdτk (7)

is well defined on the admissible metric space Ωu and is
convex.
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Positivity of Hessian matrix

vi vj

vk

θi
θj

θk

nk

ni
nj o

r

dk

di

dj

The geometric interpretation of

the Hessian matrix. The incircle of the triangle is centered at O,
with radius r . The perpendiculars ni , nj and nk are from the
incenter of the triangle and orthogonal to the edge ei , ej and ek

respectively.
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Positivity of Hessian matrix

vi vj

vk

θi
θj

θk

nk

ni
nj o

r

dk

di

dj

By direct computation, we

show the Hessian matrix

H = −2R2

A





(ηi ,ηi) (ηi ,ηj) (ηi ,ηk )
(ηj ,ηi) (ηj ,ηj) (ηj ,ηk )
(ηk ,ηi) (ηk ,ηj) (ηk ,ηk )





As shown in Figure 30, dini +djnj +dknk = 0,

ηi =
ni

rdi
,ηj =

nj

rdj
,ηk =

nk

rdk
,

where r is the radius of the incircle of the triangle.
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Positivity of Hessian matrix

vi vj

vk

θi
θj

θk

nk

ni
nj o

r

dk

di

dj

(xi ,xj ,xk ) ∈ R
3 is a vector in R

3,

then

[xi ,xj ,xk ]





(ηi ,ηi) (ηi ,ηj) (ηi ,ηk )
(ηj ,ηi) (ηj ,ηj) (ηj ,ηk )
(ηk ,ηi) (ηk ,ηj) (ηk ,ηk )









xi

xj

xk



= ‖xi ηi +xjηj +xk ηk‖2

If the result is zero, then (xi ,xj ,xk ) = λ (ui ,uj ,uk ),λ ∈ R. That is
the null space of the Hessian matrix. In the admissible metric
space Ωu, ui +uj +uk = C(C = 3).
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Euclidean Polyhedral Surface

Lemma

The admissible metric space Ωu is convex.

Proof.

For a triangle {i , j ,k} ∈ F , define

Ωijk
u := {(ui ,uj ,uk )|(√ui ,

√

uj ,
√

uk) ∈ Ed(2)}.

Similar to the proof of Lemma 16, Ωijk
u is convex. The

admissible metric space for the mesh is

Ωu =
⋂

{i ,j ,k}∈F

Ωijk
u

⋂

{(u1,u2, · · · ,um)|
m

∑
k=1

uk = m},

the intersection Ωu is still convex.
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Closed Euclidean Polyhedral Surface

Lemma

The admissible metric space Ωu is convex.

Proof.

For a triangle {i , j ,k} ∈ F , define

Ωijk
u := {(ui ,uj ,uk )|(√ui ,

√

uj ,
√

uk) ∈ Ed(2)}.

Similar to the proof of Lemma 16, Ωijk
u is convex. The

admissible metric space for the mesh is

Ωu =
⋂

{i ,j ,k}∈F

Ωijk
u

⋂

{(u1,u2, · · · ,um)|
m

∑
k=1

uk = m},

the intersection Ωu is still convex.
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Closed Euclidean Polyhedral Surface

Definition (Differential Form)

The differential form ω defined on Ωu is the summation of the
differential form on each face,

ω = ∑
{i ,j ,k}∈F

ωijk =
m

∑
i=1

2widui ,

where ωijk is given in Eqn. (6) in Corollary 14. wi is the edge
weight on ei .

Lemma

The differential form ω is a closed 1-form.

Proof.

According to Corollary 14,

dω = ∑
{i ,j ,k}∈F

dωijk = 0.
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Energy function

Lemma

The energy function

E(u1,u2, · · · ,un)= ∑
{i ,j ,k}∈F

Eijk(u1,u2, · · · ,un)=

∫ (u1,u2,··· ,un)

(1,1,··· ,1)

n

∑
i=1

widui

is well defined and convex on Ωu, where Eijk is the energy on
the face, defined in Eqn. (7).
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Main Theorem

Theorem

The mapping on a closed Euclidean polyhedral surface
∇E : Ωu → R

m,(u1,u2, · · · ,un) → (w1,w2, · · · ,wn) is a smooth
embedding.

Proof.

The admissible metric space Ωu is convex as shown in Lemma
20, the total energy is convex as shown in Lemma 23.
According to Lemma 11, ∇E is a smooth embedding.
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Surface with boundaries

By using double covering technique, we convert a Euclidean
polyhedral surface with boundary to a Euclidean polyhedral
closed surface.
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Future Direction

Generalize the theorem to higher dimesnional Euclidean
polyhedral manifolds.
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Thanks

For more information, please email to gu@cs.sunysb.edu.

Thank you!
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