Discrete Laplace-Beltrami Operator Determines Discrete Riemannian Metric

David Gu¹, Ren Guo³, Feng Luo², Wei Zeng¹

 ¹Computer Science Department Stony Brook University
²Department of Mathematics Rutgers University
³School of Mathematics University of Minnesota

20th Fall Workshop in Computational Geometry (FWCG)

David Gu Conformal Geometry

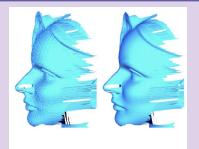
(日)

Thanks for the invitation.

◆□ → ◆□ → ◆ 三 → ◆ 三 → のへで

In computational geometry and computer graphics, many recent applications based on Laplace-Beltrami operator.

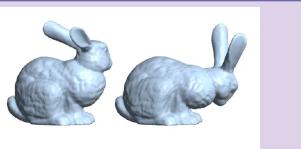
Mesh Smoothing



[Desbrun et al 1999, etc]

In computational geometry and computer graphics, many recent applications based on Laplace-Beltrami operator.

Mesh Editing

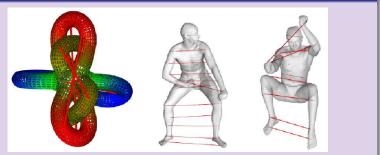


[Zhou et al 2005, Lipman et al 2005, etc]

() < </p>

In computational geometry and computer graphics, many recent applications based on Laplace-Beltrami operator.

Shape Analysis



[Ovsjanikov, Sun and Guibas 2008, etc]

(日)

In computational geometry and computer graphics, many recent applications based on Laplace-Beltrami operator.

Heat Kernel Signature

[Sun, Ovsjanikov, and Guibas 2008, etc]

・ ロ ト ・ 日 ト ・ 回 ト ・

Suppose (M,g) is a complete Riemannian manifold, g is the Riemannian metric. $f, g: M \to \mathbb{R}$ are functions. The L^2 norm is given by

$$f, g = \int_M fg dv$$

 Δ is the Laplace-Beltrami operator.

$$\Delta(f) = -\operatorname{div}(\operatorname{grad}(f)).$$

Laplace operator is elliptic, self-adjoint, positive definite.

▲ 同 ▶ ▲ 臣 ▶ ▲ 臣 ▶

The eigenvalues $\{\lambda_n\}$ and eigenfunctions $\{\phi_n\}$ of Δ are

 $\Delta\phi_n=-\lambda_n\phi_n,$

where ϕ_n is normalized to be orthonormal in $L^2(M)$, which form the basis of $L^2(M)$. The collection of $\{\lambda_i\}$'s is called the spectrum of Δ .

(日) (圖) (E) (E) (E)

Definition (Heat Kernel)

There is a heat kernel $K(x, y, t) \in C^{\infty}(M \times M \times \mathbb{R}^+)$, such that

$$K(\mathbf{x},\mathbf{y},t) = \sum_{n=0}^{\infty} e^{-\lambda_n t} \phi_n(\mathbf{x}) \phi_n(\mathbf{y}).$$

(日) (圖) (E) (E) (E)

Heat kernel K(x, y, t) means, if we set a unit heat source at point x at time 0, the temperature at y at time t. The heat equation is

$$\frac{\partial}{\partial t}(f_t) + \Delta(f_t) = 0.$$

with initial condition $f_0(x)$. The solution is given by

$$f_t(\mathbf{x}) = \int_M \mathbf{K}(\mathbf{x}, \mathbf{y}, t) f_0(\mathbf{y}) d\mathbf{y}.$$

(日)

큰

Heat kernel reflects all the information of the Riemannian metric ${\ensuremath{\textbf{g}}}$.

Theorem

Let $\Phi: (M_1, g_1) \to (M_2, g_2)$ be a diffeomorphism between two Riemannian manifolds. If f is an isometry, then

$$\mathcal{K}_{1}(\boldsymbol{x},\boldsymbol{y},t) = \mathcal{K}_{2}(\Phi(\boldsymbol{x}),\Phi(\boldsymbol{y}),t), \forall \boldsymbol{x},\boldsymbol{y} \in \boldsymbol{M}, t > 0. \tag{1}$$

Conversely, if f is a surjective map, and Eqn. (1) holds, then f is an isometry.

・ロ・ ・ 四・ ・ ヨ・ ・ 日・

Prof. Leo Guibas raised the following question in SPM 2009.

Central Problem

In discrete case, does heat kernel determine the Riemannian metric ?

・ロ・ ・ 四・ ・ ヨ・ ・ 日・

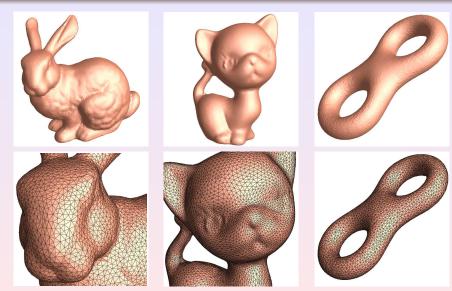
Definition (Polyhedral Surface)

An Euclidean polyhedral surface is a triple (S, T, d) where S is a closed surface, T is a triangulation of S and d is a metric on S whose restriction to each triangle is isometric to an Euclidean triangle.

(日)

르

Polyhedral Surface



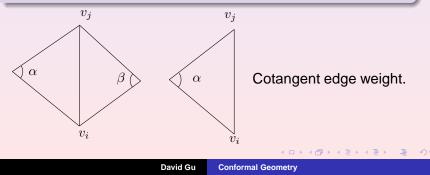
Euclidean polyhedral surfaces used in the experiments.

David Gu Conformal Geometry

(日)

Definition (Cotangent Edge Weight)

Suppose $[v_i, v_j]$ is a boundary edge of M, $[v_i, v_j] \in \partial M$, then $[v_i, v_j]$ is associated with one triangle $[v_i, v_j, v_k]$, the angle against $[v_i, v_j]$ at the vertex v_k is α , then the weight of $[v_i, v_j]$ is given by $w_{ij} = \frac{1}{2} \cot \alpha$. Otherwise, if $[v_i, v_j]$ is an interior edge, the two angles against it are α, β , then the weight is $w_{ij} = \frac{1}{2} (\cot \alpha + \cot \beta)$.



The discrete Laplace-Beltrami operator is constructed from the cotangent edge weight.

$$\Delta f(\mathbf{v}_i) = \sum_{[\mathbf{v}_i, \mathbf{v}_j] \in \mathbf{E}} \mathbf{w}_{ij}(f(\mathbf{v}_i) - f(\mathbf{v}_j)).$$

Definition (Discrete Laplace Matrix)

The discrete Laplace matrix $L = (L_{ij})$ for an Euclidean polyhedral surface is given by

$$L_{ij} = \begin{cases} -w_{ij} & i \neq j \\ \sum_k w_{ik} & i = j \end{cases}$$

(日)

Because L is symmetric, it can be decomposed as

$$\mathcal{L} = \Phi \Lambda \Phi^{\mathcal{T}} \tag{2}$$

where $\Lambda = diag(\lambda_0, \lambda_1, \dots, \lambda_n)$, $0 = \lambda_0 < \lambda_1 \le \lambda_2 \le \dots \le \lambda_n$ are the eigenvalues of *L*, and $\Phi = (\phi_0 | \phi_1 | \phi_2 | \dots | \phi_n)$, $L\phi_i = \lambda_i\phi_i$ are the orthonormal eigenvectors, such that $\phi_i^T \phi_i = \delta_{ii}$.

Definition (Discrete Heat Kernel)

The discrete heat kernel is defined as follows:

$$K(t) = \Phi \exp(-\Lambda t) \Phi^{T}.$$
 (3)

(ロ) (四) (三) (三)

Theorem (Global Rigidity)

Suppose two Euclidean polyhedral surfaces (S,T,d_1) and (S,T,d_2) are given,

$$L_1=L_2,$$

if and only if d_1 and d_2 differ by a scaling.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ◆ ○ ● ◆ ○ ●

Corollary

Corollary

Suppose two Euclidean polyhedral surfaces (S,T,d_1) and (S,T,d_2) are given,

$$K_1(t) = K_2(t), \forall t > 0,$$

if and only if d_1 and d_2 differ by a scaling.

Proof.

Note that,

$$\frac{dK(t)}{dt}|_{t=0} = -L.$$

Therefore, the discrete Laplace matrix and the discrete heat kernel mutually determine each other.

(日)

Connectivity

Fix the connectivity of the polyhedral surface (S, T). Suppose the edge set of (S, T) is sorted as $E = \{e_1, e_2, \dots, e_m\}$, where m = |E| number of edges, the face set is denoted as F. A triangle $[v_i, v_j, v_k] \in F$ is also denoted as $\{i, j, k\} \in F$.

Metric

An Euclidean polyhedral metric on (S, T) is given by its edge length function $d : E \to \mathbb{R}^+$, denoted as $d = (d_1, d_2, \dots, d_m)$, where $d_i = d(e_i)$ is the length of edge e_i , such that on each triangle $[v_i, v_j, v_k]$

$$\{(d_1, d_2, d_3) | d_i + d_j > d_k\}$$

(日)

Definition (Admissible Metric Space)

Given a triangulated surface (S, K), the admissible metric space is defined as

$$\Omega_{u} = \{(u_{1}, u_{2}, u_{3} \cdots, u_{m}) | \sum_{k=1}^{m} u_{k} = m, (\sqrt{u_{i}}, \sqrt{u_{j}}, \sqrt{u_{k}}) \in E_{d}(2), \forall \{i, j, k\} \in \mathbb{Z}$$

where

$$E_d(2) = \{(d_1, d_2, d_3) | d_i + d_j > d_k\}$$

We show that Ω_u is a convex domain in \mathbb{R}^m .

・ロ・ ・ 四・ ・ ヨ・ ・ 日・

Definition (Energy)

An energy $E: \Omega_u \to \mathbb{R}$ is defined as:

$$E(u_1, u_2 \cdots, u_m) = \int_{(1,1,\cdots,1)}^{(u_1, u_2 \cdots, u_m)} \sum_{k=1}^m w_k(\mu) d\mu_k,$$
(4)

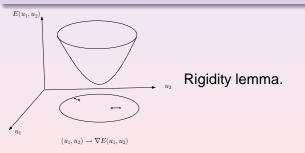
where $w_k(\mu)$ is the cotangent weight on the edge e_k determined by the metric μ .

We show that the energy is convex.

・ロ・ ・ 四・ ・ ヨ・ ・ 日・

Lemma

Suppose $\Omega \subset \mathbb{R}^n$ is an open convex domain in \mathbb{R}^n , $E : \Omega \to \mathbb{R}$ is a strictly convex function with positive definite Hessian matrix, then $\nabla E : \Omega \to \mathbb{R}^n$ is a smooth embedding.



(日) (圖) (E) (E) (E)

Proof of Rigidity lemma

Proof.

If $\mathbf{p} \neq \mathbf{q}$ in Ω , let $\gamma(t) = (1 - t)\mathbf{p} + t\mathbf{q} \in \Omega$ for all $t \in [0, 1]$. Then $f(t) = E(\gamma(t)) : [0, 1] \to \mathbb{R}$ is a strictly convex function, so that

$$\frac{df(t)}{dt} = \nabla E|_{\gamma(t)} \cdot (\mathbf{q} - \mathbf{p}).$$

Because

$$\frac{d^2 f(t)}{dt^2} = (\mathbf{q} - \mathbf{p})^T H|_{\gamma(t)} (\mathbf{q} - \mathbf{p}) > 0,$$

 $\frac{df(0)}{dt} \neq \frac{df(1)}{dt}$, therefore

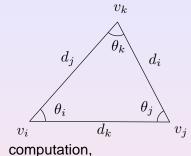
$$\nabla E(\mathbf{p}) \cdot (\mathbf{q} - \mathbf{p}) \neq \nabla E(\mathbf{q}) \cdot (\mathbf{q} - \mathbf{p}).$$

This means $\nabla E(\mathbf{p}) \neq \nabla E(\mathbf{q})$, therefore ∇E is injective. On the other hand, the Jacobi matrix of ∇E is the Hessian matrix of E, which is positive definite. It follows that $\nabla E : \Omega \rightarrow \mathbb{R}^n$ is a smooth embedding

Proof.

Because the energy $E : \Omega_u \to \mathbb{R}$ is strictly convex on Ω_u , and Ω_u is convex, therefore $\nabla E : \Omega_u \to \mathbb{R}^m$ is an embedding. $\nabla E = (w_1, w_2, \dots, w_m)$ are the edge weights. Namely, the map $(u_1, u_2, \dots, u_m) \to (w_1, w_2, \dots, w_m)$ is one-to-one, the metric is determined by the wedge weight unique up to scaling.

Simple Case - One Euclidean Triangle



An Euclidean triangle. By direct

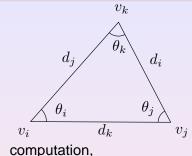
(日)

4

Lemma

Suppose an Euclidean triangle is with angles $\{\theta_i, \theta_j, \theta_k\}$ and edge lengths $\{d_i, d_j, d_k\}$, angles are treated as the functions of the edge lengths, $\theta_i(d_i, d_j, d_k)$ then $\frac{\partial \theta_i}{\partial d_i} = \frac{d_i}{2A}$ and $\frac{\partial \theta_i}{\partial d_j} = -\frac{d_i}{2A}\cos\theta_k$, where A is the area of the triangle.

Simple Case - One Euclidean Triangle



An Euclidean triangle. By direct

Lemma

In an Euclidean triangle, let $u_i = \frac{1}{2}d_i^2$ and $u_j = \frac{1}{2}d_j^2$ then

$$\frac{\partial \cot \theta_i}{\partial u_j} = \frac{\partial \cot \theta_j}{\partial u_i}$$

(5)

Convexity of Admissible Metric Space

Definition (Admissible Metric Space)

Let $u_i = \frac{1}{2}d_i^2$, the admissible metric space is defined as

$$\Omega_{u} := \{(u_{i}, u_{j}, u_{k}) | (\sqrt{u_{i}}, \sqrt{u_{j}}, \sqrt{u_{k}}) \in E_{d}(2), u_{i} + u_{j} + u_{k} = 3\}$$

Lemma

The admissible metric space Ω_u is a convex domain in \mathbb{R}^3 .

By direct argument.

David Gu Conformal Geometry

Definition (Edge Weight Space)

The edge weights of an Euclidean triangle form the edge weight space

$$\Omega_{\theta} = \{(\cot \theta_i, \cot \theta_j, \cot \theta_k) | 0 < \theta_i, \theta_j, \theta_k < \pi, \theta_i + \theta_j + \theta_k = \pi\}$$

Lemma

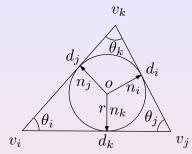
The energy $E: \Omega_u \to \mathbb{R}$

$$E(u_i, u_j, u_k) = \int_{(1,1,1)}^{(u_i, u_j, u_k)} \cot \theta_i d\tau_i + \cot \theta_j d\tau_j + \cot \theta_k d\tau_k$$
(7)

is well defined on the admissible metric space Ω_u and is convex.

・ロ・・ (日・・ (日・・ (日・))

Positivity of Hessian matrix

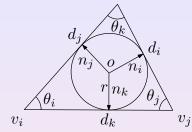


The geometric interpretation of

• (1) • (1) • (1) • (1)

the Hessian matrix. The incircle of the triangle is centered at O, with radius r. The perpendiculars n_i , n_j and n_k are from the incenter of the triangle and orthogonal to the edge e_i , e_j and e_k respectively.

Positivity of Hessian matrix



By direct computation, we

show the Hessian matrix

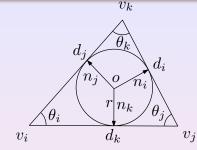
$$H = -\frac{2R^2}{A} \begin{bmatrix} (\eta_i, \eta_i) & (\eta_i, \eta_j) & (\eta_i, \eta_k) \\ (\eta_j, \eta_i) & (\eta_j, \eta_j) & (\eta_j, \eta_k) \\ (\eta_k, \eta_i) & (\eta_k, \eta_j) & (\eta_k, \eta_k) \end{bmatrix}$$

As shown in Figure 30, $d_i \mathbf{n}_i + d_j \mathbf{n}_j + d_k \mathbf{n}_k = 0$,

$$\eta_i = \frac{\mathbf{n}_i}{r\mathbf{d}_i}, \eta_j = \frac{\mathbf{n}_j}{r\mathbf{d}_j}, \eta_k = \frac{\mathbf{n}_k}{r\mathbf{d}_k},$$

where r is the radius of the incircle of the triangle.

Positivity of Hessian matrix



 $(x_i, x_j, x_k) \in \mathbb{R}^3$ is a vector in \mathbb{R}^3 ,

(日)

4

then

$$\begin{bmatrix} \mathbf{x}_i, \mathbf{x}_j, \mathbf{x}_k \end{bmatrix} \begin{bmatrix} (\eta_i, \eta_i) & (\eta_i, \eta_j) & (\eta_i, \eta_k) \\ (\eta_j, \eta_i) & (\eta_j, \eta_j) & (\eta_j, \eta_k) \\ (\eta_k, \eta_i) & (\eta_k, \eta_j) & (\eta_k, \eta_k) \end{bmatrix} \begin{bmatrix} \mathbf{x}_i \\ \mathbf{x}_j \\ \mathbf{x}_k \end{bmatrix} = \|\mathbf{x}_i \eta_i + \mathbf{x}_j \eta_j + \mathbf{x}_k \eta_k\|^2$$

If the result is zero, then $(x_i, x_j, x_k) = \lambda(u_i, u_j, u_k), \lambda \in \mathbb{R}$. That is the null space of the Hessian matrix. In the admissible metric space Ω_u , $u_i + u_j + u_k = C(C = 3)$.

Euclidean Polyhedral Surface

Lemma

The admissible metric space Ω_u is convex.

Proof.

For a triangle $\{i, j, k\} \in F$, define

$$\Omega_u^{ijk} := \{(u_i, u_j, u_k) | (\sqrt{u_i}, \sqrt{u_j}, \sqrt{u_k}) \in E_d(2) \}.$$

Similar to the proof of Lemma 16, Ω_u^{ijk} is convex. The admissible metric space for the mesh is

$$\Omega_u = \bigcap_{\{i,j,k\}\in \mathcal{F}} \Omega_u^{ijk} \bigcap \{(u_1, u_2, \cdots, u_m) | \sum_{k=1}^m u_k = m\},$$

the intersection Ω_u is still convex.

Closed Euclidean Polyhedral Surface

Lemma

The admissible metric space Ω_u is convex.

Proof.

For a triangle $\{i, j, k\} \in F$, define

$$\Omega_u^{ijk} := \{(u_i, u_j, u_k) | (\sqrt{u_i}, \sqrt{u_j}, \sqrt{u_k}) \in E_d(2) \}.$$

Similar to the proof of Lemma 16, Ω_u^{ijk} is convex. The admissible metric space for the mesh is

$$\Omega_u = \bigcap_{\{i,j,k\}\in \mathcal{F}} \Omega_u^{ijk} \bigcap \{(u_1, u_2, \cdots, u_m) | \sum_{k=1}^m u_k = m\},$$

the intersection Ω_u is still convex.

Closed Euclidean Polyhedral Surface

Definition (Differential Form)

The differential form ω defined on Ω_{μ} is the summation of the differential form on each face.

$$\omega = \sum_{\{i,j,k\}\in F} \omega_{ijk} = \sum_{i=1}^m 2w_i du_i,$$

where ω_{iik} is given in Eqn. (6) in Corollary 14. w_i is the edge weight on e_i .

Lemma

The differential form ω is a closed 1-form.

Proof.

According to Corollary 14,

$$d\omega = \sum_{\text{David Gu}} d\omega_{ijk} = 0.$$

Conformal Geometry

Lemma

The energy function

$$E(u_1, u_2, \cdots, u_n) = \sum_{\{i, j, k\} \in F} E_{ijk}(u_1, u_2, \cdots, u_n) = \int_{(1, 1, \cdots, 1)}^{(u_1, u_2, \cdots, u_n)} \sum_{i=1}^n w_i du_i$$

is well defined and convex on Ω_u , where E_{ijk} is the energy on the face, defined in Eqn. (7).

(日) (圖) (E) (E) (E)

Main Theorem

Theorem

The mapping on a closed Euclidean polyhedral surface $\nabla E : \Omega_u \to \mathbb{R}^m, (u_1, u_2, \cdots, u_n) \to (w_1, w_2, \cdots, w_n)$ is a smooth embedding.

Proof.

The admissible metric space Ω_u is convex as shown in Lemma 20, the total energy is convex as shown in Lemma 23. According to Lemma 11, ∇E is a smooth embedding.

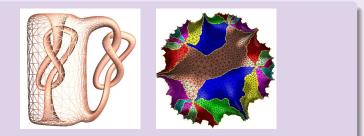
By using double covering technique, we convert a Euclidean polyhedral surface with boundary to a Euclidean polyhedral closed surface.

(日) (圖) (E) (E) (E)

Generalize the theorem to higher dimesnional Euclidean polyhedral manifolds.

(日) (圖) (E) (E) (E)

For more information, please email to gu@cs.sunysb.edu.



Thank you!

David Gu Conformal Geometry

(日)