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Abstract

In this paper we present a conformal mapping-based ap-
proach for 3D face recognition. The proposed approach
makes use of conformal UV parameterization for mapping
purpose and Shape Index decomposition for similarity mea-
surement. Indeed, according to conformal geometry theory,
each 3D surface with disk topology can be mapped onto
a 2D domain through a global optimization, resulting in a
diffeomorphism, i.e., one-to-one and onto. This allows us
to reduce the 3D surface matching problem to a 2D image
matching one by comparing the corresponding 2D confor-
mal geometric maps. To deal with facial expressions, the
Möbius transformation of UV conformal space has been
used to ’compress’ face mimic region. Rasterized images
are used as an input for (2D)2PCA recognition algorithm.
Experimented on 62 subjects randomly selected from the
FRGC dataset v2 which includes different facial expres-
sions, the proposed method displays a 86.43%, 97.65% and
69.38 rank-one recognition rate in respectively Neutral vs.
All, Neutral vs. Neutral and Neutral vs. Expression scenar-
ios.

1. Introduction
Face is potentially the best biometrics for people identi-

fication related applications for its non instructiveness, con-
tactless and socially well acceptance. Unfortunately, face
recognition in 2D proves to be a very challenging task as
intra-class variations, dues to factors as diverse as pose,
lighting conditions, facial expressions, etc., are often much
greater than inter-class variations [12]. The last years have
witnessed 3D face models as a potential solution to deal
with the two unsolved problems in 2D face recognition,
namely lightning conditions and pose variations [1], thereby
improving the effectiveness of face recognition systems.
While 3D face models are theoretically insensible to light-

ing condition changes, they still require to be pose normal-
ized before 3D facial shape-based matching. Moreover, as
3D face models describe 3D facial shapes, they are also
more sensible to facial expression changes as compared to
their 2D counterpart. As 3D facial shape matching is rather
hard, several works in the literature propose to map 3D face
models into some low-dimensional space, including the lo-
cal isometric facial representation [2], the annotated facial
model (AFM) [6], or conformal mapping [9]. In [9], Wang
et al. proposed conformal parameterization to reduce sur-
face matching complexity; they studied a family of confor-
mal geometric maps for recognition purpose. The recogni-
tion algorithm was tested on a small data set containing 100
face scans from 10 subjects and achieved 98.4% rank one
recognition rate using texture and shape maps.

In this paper, we propose to deepen this conformal
mapping-based approach for 3D face recognition. The pro-
posed approach makes use of conformal UV parameteriza-
tion for mapping purpose and Shape Index decomposition
for similarity measurement. The 3D facial surface match-
ing problem is reduced to 2D image matching thanks to the
resulted 2D conformal geometric maps. To deal with facial
expressions, the Möbius transformation of UV conformal
space is also used to ’compress’ face mimic region. Raster-
ized images are used as an input for (2D)2PCA recogni-
tion algorithm. Experimented on 62 subjects randomly se-
lected from the FRGC dataset v2 which includes different
facial expressions, the proposed method displays a 86.43%,
97.65% and 69.38 rank-one recognition rate in respectively
Neutral vs. All, Neutral vs. Neutral and Neutral vs. Expres-
sion scenarios.

The remaining of this paper is organized as follows:
section 2 gives brief introduction to conformal maps and
the whole process overview. Section 3 describes in details
the idea to create expression insensitive face maps, start-
ing from preprocessing, face cut, conformal transformation
and expression compression. Section 4 presents variation of



standard PCA algorithm which has better accuracy. Finally
section 5 presents test data set and achieved results and sec-
tion 6 concludes approach and marks future directions.

2. Basics of conformal geometry and architec-
ture overview

We introduce in this section first the basics of con-
formal geometry-based parameterization then describe the
overview of our approach.

2.1. Conformal UV parameterization for face nor-
malization

It can be proven that there exists a mapping from any sur-
face with a disk topology to a 2D unit disk [5], which is one-
to-one, onto, and angle preserving. This mapping is called
conformal mapping and keeps the line element unchanged,
except for a local scaling factor[4]. Conformal maps have
many appealing properties: (1) If the parameterization is
conformal, then the surface is uniquely determined (up to
a rigid motion) by the mean curvature with area stretching
factor defined on the parameter domain. (2) Conformal pa-
rameterization depends on the geometry itself, not the tri-
angulation of the surfaces. From a practical point of view,
conformal parameterization is easy to control. Hence con-
formal parameterization is crucial for 3D shape matching
and recognition. Consider the case of mapping a planar re-
gion S to the plane D.

Suppose S is a topological annulus, with boundaries
∂S = γ0 . γ1 as shown in Figure 1. First, we compute
a path γ2 connecting γ0 and γ1. Then we compute a har-
monic function f : S → R, such that:

{
fγ0 = 0
fγ1

= 1.
∆f = 0

(1)

The level set of f is shown in Figure 1. Then ∇f is a
harmonic 1-form.

We slice the surface along γ2 to get a new surface S̃ with
a single boundary. γ2 become two boundary segments γ+2
and γ−2 on S̃. Then we compute a function g0 : S̃ → R,
such that {

g0|γ+
2

= 1

g0|γ−
2

= 0
(2)

g0 takes arbitrary value on other vertices. Therefore∇g0
is a closed 1-form defined on S. Then we find another func-
tion g1 : S → R, such that∇g0+∇g1 is a harmonic 1-form
∇.(∇g0 +∇g1) = 0.

Then we need to find a scalar λ, such that ∗∇f =
λ(∇g0 + ∇g1), where ∗ is a the Hodge star operator

Figure 1. Harmonic 1-forms. Top row, the cut on the surface. Bot-
tom row, the level sets of the harmonic 1-form ∇f and its conju-
gate harmonic 1-form λ(∇g0 +∇g1).

(∗(fdx+ gdy) = fdy− gdx, where fdx+ gdy is a differ-
ential one form). The holomorphic 1-form is given by

ω = ∇f + iλ(∇g0 +∇g1). (3)

Let Img(
∫
γ0
ω) = k, the conformal mapping form S to

a canonical annulus given by

Φ(p) = exp
2Π
k

∫ p
q
ω, (4)

where q is the bas point, the path form q to p is arbitrary
chosen.

For more details about conformal parameterization
please refer to [9].

The result of conformal UV parameterization can be seen
on Figure 2, where inner face hole created in lips part has
been mapped to inner circle and outer 3D face boundary has
been mapped to unit circle.

2.2. Process overview

The main idea underlying this approach is to transform
a 3D facial shape matching problem to a 2D one using con-
formal parameterization. Furthermore, to deal with facial
expression variations, we make use of Möbius transforma-
tion to ’compress’ the elastic facial region, leading to a 2D
conformal map less sensitive to facial expressions.

The overview of the whole pipeline to create conformal
maps from 3D face models can be seen on Figure 3. Fol-
lowing sections will describe each step in details.
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Figure 2. Conformal Map created from parametrized UV coordi-
nates, colors represent Shape Index value. The mouth part has
been mapped to the inner hole while outer face boundary to the
boundary of circle (genus 0 surface, with a single boundary).

3. Generation of face conformal maps

3.1. 3D Face preprocessing

Direct application of conformal mapping introduced in
[9] is not feasible on 3D face models as it requires surface
with disk topology (genus 0 surface, with a single bound-
ary). For this purpose, we have closed the mouth region
based on manual landmarks [8], setting to zero the distance
between the upper and the lower lips.

Conformal mapping is also sensitive to outer boundary
[9]. To deal with this problem, faces are cropped using a
fixed geodesic distance, 100 mm in this work, from the nose

Figure 3. Following steps of the algorithm.

tip.
Once this preprocessing carried out, the 2D UV confor-

mal parameterization of a 3D face model can be calculated
according to [9]. Figure 4 shows the result of this prepro-
cessing step. As we can see, closing the mouth while us-
ing geodesic distance for cropping 3D faces leads to a more
consistent outer boundary, especially in the chin region, dis-
playing roughly the same border the mouth being opened or
closed.

3.2. Shape Index

Since UV conformal parameterization transfer 3D model
to 2D map, some 3D property has to be moved over 2D face
map. To deal with variations due to lightening conditions
on texture images, we chose to project Shape Index values.
Alternatively, we can also project other geometric measures
such as normal vectors, curvatures, etc.

Shape Index (Figure 5) is a normalized curvature repre-
sentation in a certain point of a surface within 2.5D image,
proposed by Dorai and Jain in 1997. This local curvature
information about a point is independent of the coordinate
system. The Shape Index at point p is calculated using the
maximum (k1) and the minimum (k2) local curvature:
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Figure 4. Geodesic face cutting result with zero distance between
lips in presence of expression.

SI(p) =
1

2
− 1

π
tan−1 k1(p) + k2(p)

k1(p)− k2(p)
, (5)

where k1 and k2 are principal curvatures at point p.
This calculation process a shape scale between < 0, 1 >.
Shape Index scale represents numerous shapes starting from
a spherical cup (0 value) ending on spherical cap (1 value)
(Figure 6).

Figure 5. ShapeIndex decomposition over a face.

Figure 6. ShapeIndex - shape dictionary, possible shape index val-
ues and corresponding surface shape.

Shape Index is calculated using principal curvatures,
whereas principal curvatures can be calculated as follows:

k1(p) = H +
√
H2 −K, (6)

k2(p) = H −
√
H2 −K, (7)

where,H andK are Mean and Gaussian curvatures in point
p, which were calculated according to [8].

Curvatures of a vertex are computed by a least square fit-
ting of a bi-polynomial surface onto an appropriate neigh-
borhood around the vertex[8]. As can be seen on figure 5,
too small neighborhood for estimating shape index leads to
noisy decomposition. In this work, we used a neighborhood
of 15 mm of geodesic distance from the vertex under inves-
tigation.

3.3. Conformal Map Normalization

Facial conformal maps generated by the harmonic en-
ergy minimization from 3D face models can have different
size and 2D rotation. To facilitate matching 2D facial con-
formal maps, they need to be size and rotation normalized.

For rotation normalization we make use of the two inner
eyes corners mapped on the conformal map then rotate the
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Figure 7. Difference in neighborhood in Shape Index approxima-
tion (neighborhood size indicated in mm, models marked with an-
chor points).

underlying conformal map so that both the two inner eye
corners lie at the horizontal line. Once the pose corrected,
the size of the underlying conformal map is also normal-
ized, using the radius min-max rule, setting radius of con-
formal map to 50 units.

3.4. Compressing facial expression sensitive regions
by Möbius transformation

Variations by facial expressions are a major challenge in
3D face recognition. Facial conformal maps so far gener-
ated have reduced a 3D shape matching problem to a 2D
one while preserving facial topology. However, they are
still facial expression sensitive. In order to decrease such a
sensibility, we propose to make use of Möbius transforma-
tion to ’compress’ facial elastic regions, i.e. the lower part
of a face model. For this purpose, the center of a confor-
mal map is moved to the nose tip of the face. Then Möbius
transformation is carried out on UV conformal coordinates,

Figure 8. Conformal maps (Figure 2) transformed by Möbius
transformation with center point in the nose tip.

using the following formula:

f(θ, z0, z) = eiθ
z − z0
1− z̄0z

, (8)

where z = (u + iv) is a complex number within the
unit disk (UV coordinates). θ, z0 and z are parameters. The
mapping will move z0 to the origin.

Figure 8 shows some results of this transformation on
two facial conformal maps.

3.5. Conformal model rasterization - face map

Finally conformal maps resulted from Möbius mapping
are rasterized. Rasterization is the process by which a prim-
itive is converted to a two-dimensional image used for ex-
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Figure 9. Example of single triangle rasterization (source
Wikipedia).

ample to view 3D objects on the screen in 3D graphics. In
our case such primitive is a triangle from which 3D model
and then Conformal Map is formed. Figure 9 shows an ex-
ample of one triangle rasterization.

The process consists of simple color interpolation be-
tween components of primitives; for our purpose we use
simple version of rasterization which consists of triangle
edge color interpolation and horizontal interpolation within
edges.

4. (2D)2PCA recognition algorithm

In this work (2D)2PCA [3, 10], a variant of PCA with
better performance, is used for feature dimension reduction
and similarity computation.

Principal Component Analysis (PCA) is a well-known
feature extraction and data representation technique how-
ever for 2D images it has one serious drawback, 2D image
matrix have to be previously transformed to 1D vector by
columns or rows concatenation. This type of concatena-
tion into 1D vector often leads to a high-dimensional vector
space, where it is difficult to evaluate covariance matrix ac-
curately due to its large size and relatively small number
of training samples [11, 10]. Also eigen decomposition of
large covariance matrix is also very time-consuming.

To overcome those problems 2DPCA was proposed [10].
2DPCA technique computes eigenvectors directly from so-
called image covariance matrix, without conversion to 1D
vector. 2DPCA is more efficient method than standard PCA
having higher accuracy what was reported in [10].

As a standard 2DPCA method works in row directions,
the alternative 2DPCA works in columns directions of im-

ages, (2D)2PCA algorithm combines both of them [3]. In
more details 2DPCA optimal matrix X reflecting informa-
tion between rows of images, alternative 2DPCA learns op-
timal matrix Z reflecting informations between columns of
images. (2D)2PCA uses both matrixes X and Z to create
coefficient (feature) matrix C:

C = ZTAX, (9)

As depicted in [10] the nearest neighbor classifier can be
used for classification:

d(C,Ck) =‖ C − Ck ‖ . (10)

The method was tested on standard face image data base
along with PCA and 2DPCA and gained higher accuracy
with lower feature dimensionality. For more details of
whole method please refer to [3].

5. Experimental results
5.1. Testing Data Set

To experiment our approach, 62 subjects were randomly
selected from FRGCv2 data base [7]. FRGCv2 dataset con-
tains 4007 3D scans of 466 persons. The data set were ac-
quired using a Minolta910 range scanner with resolution of
640x480. Data set contains numerous subjects with differ-
ent facial expressions, was collected during 2003-2004 aca-
demic year and hence includes the time variations. The data
set contains also labeled expression variations like: NoEx-
pression, Disgust, Happiness, Sadness, Surprise, Other.

5.2. Experimental Settings

For each 3D face model, the corresponding facial con-
formal map is generated using the whole process described
above, including 3D face cropping, UV paramterization cal-
culation, normalization, Möbius transformation and rasteri-
zation. The resulted 2D conformal maps were used as input
for (2D)2PCA algorithm for recognition, keeping 99% of
eigenvalues variation.

One model with neutral expression from each selected
subject is put to the gallery and the remaining models ac-
cording to labeled expression are used as a probe in differ-
ent scenarios: 1) Neutral vs. Neutral, 2) Neutral vs. Ex-
pression, 3) Neutral vs. All. In case of first scenario probe
models are selected within ”NoExpression” labels, in the
second scenario probe models come from all models except
those marked ”NoExpression” and finally in the last sce-
nario we take all expression and no-expression models as a
testing probe.

5.3. Results and Analysis

Using this experimental setting, our approach has
achieved 97.65% rank-one recognition rate for scenario
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I II III
ShapeIndex 86.43% 97.65% 69.38%
Mean Curv. 86.84% 94.29% 75.51%
Curvadness 86.23% 96.30% 70.91%

Kakadiaris 2007 PAMI[6] 97% - -
Wang 2006 CVPR[9] 95.7% - -

I - Neutral vs. All
II - Neutral vs. Neutral
III - Neutral vs. Expression

Table 1. Rank-1 recognition rate on 62 subjects of FRGCv2.0 data
set.

where models labeled as ”NoExpression” are presented to
the system. All test scenarios and different combination of
curvatures values are presented in Table 1.

For comparison reasons we have projected also different
vertex features as a color maps. Shape Index is a normalized
value in range< 0, 1 >while mean curvature or cuvardness
have no range, to create images with the same range, aver-
age maximum and minimum values were calculated using
models form the Gallery.

As we can see in table 1 ShapeIndex Maps achieved best
performance in the test Neutral vs. All (97.65%), but Cu-
vardness Index is not far away with result (96.3%). While
in case of Expressions Mean curvature maps outperforms
Shape Index maps with difference of 5%.

Comparing our approach to the previous article [9] we
have achieved lower performance in the scenario of Neutral-
All, but our algorithm has been tested on much bigger data
set containing large expressions, while the tests made in the
previous article were made only on 100 models without any
mention about expressions. In [6] authors did not mention
about recognition results in different scenarios and no re-
sults are provided to evaluate the sensibility of their algo-
rithm with respect to expression variations. However, their
technique requires first an ICP based accurate registration
of 3D face scans.

6. Conclusion

In this paper we proposed to deepen the conformal
geometry-based approach for face recognition in [9], us-
ing mouth as inner boundary and Möbius transformation to
’compress’ facial expression sensitive regions. The major
advantage of such an approach is to convert an initially 3D
facial shape matching problem to a 2D one, thus making
available all the techniques so far developed in 2D for 3D
face recognition. Algorithm has been tested on FRGCv2
data base with different scenarios and achieved 86.43%,
97.65% and 69.38 rank-one recognition rate in respectively
Neutral vs. All, Neutral vs. Neutral and Neutral vs. Expres-

sion scenarios.
The future work includes study of facial regions for con-

formal mapping and the use of other geometric measure-
ments, such as curvatures, normal vectors, geometric im-
ages like also fusions of them.
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