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Abstract

Every surface in the three dimensional Euclidean space have a canonical Rie-
mannian metric, which induces constant Gaussian curvature and is conformal to
the original metric. Discrete curvature flow is a feasible way to compute such
canonical metrics. Similarly, three dimensional manifolds also admit canoni-
cal metrics, which induce constant sectional curvature. Canonical metrics on 3-
manifolds are valuable for the study of 3D topology and have the potential for
volumetric parameterization and shape matching.

This paper generalizes discrete curvature flow from surfaces to hyperbolic 3-
manifolds with complete geodesic boundaries. The metric deforms according to
the curvature, until the curvature is constant everywhere. The theoretical results
are introduced, the algorithm is explained in details, and thorough experiments are
carried out to demonstrate the effectiveness and efficiency of discrete 3-manifold
curvature flow.
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1. Introduction 1

1 Introduction
Studying the topological and geometric structures of three dimensional manifolds
has fundamental importance in science and engineering. Computational algo-
rithms for 3-manifolds can help topologists and geometers to investigate the com-
plicated structures of 3-manifolds, they also have great potential for wide appli-
cations in the engineering world. The most direct applications include volumetric
parameterizations, volumetric shape analysis, volumetric deformation, solid mod-
eling and etc.

Figure 2 shows a simple example for volumetric parameterization for the vol-
umetric Max Planck model. The topology of the volume is very simple, a topo-
logical ball. A 3-manifold with more complicated topology is shown in figure 3.
In general, topology of 3-manifolds is extremely difficult to analyze. The percep-
tion of the topological structures of 3-manifolds are in general beyond human’s
intuition, because most 3-manifolds can not be realized in R3. A natural approach
to study 3-manifold is to map the 3-manifold onto the three dimensional space, so
that human beings can interpret them with concrete tangible experiences. It is of
great value for the advancement of science.

This is equivalent to construct a parameterization for an abstract 3-manifold
by a domain in R3. We can make a natural analogy using the surface parameter-
ization. Most surfaces can not be realized isometrically in the plane R2. Figure
1 shows one example. A surface with negative Euler number is parameterized
and is conformally mapped to the hyperbolic space H2. The three boundaries

Surface 3-Manifold
Manifold with negative Euler Hyperbolic 3-manifold

number with boundaries with geodesic boundaries
Fig.1 Fig.3

Building hyperbolic right-angled Truncated hyperbolic
Block hexagons Fig.1 tetrahedra Fig.7
Curvature Gaussian curvature Sectional curvature

Fig 8 Fig.8, Fig.9
Algorithm Discrete Ricci flow Discrete curvature flow
Parameter Upper half plane H2 Upper half space H3

domain Fig.1 Fig.18

Table 1: Correspondence between surface and 3-manifold parameterizations.
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1. Introduction 2

are mapped to geodesics. Given two arbitrary boundaries, there exists a unique
geodesic orthogonal to both boundaries. Three such geodesics partition the whole
surface into two right-angled hexagons as shown in (c). The surface is mapped
periodically to H2, frame (c) shows one period, frame (d) shows the periodic em-
bedding.

This work focuses on generalizing the parameterizations of open surfaces with
negative Euler numbers to hyperbolic 3-manifolds with boundaries as shown in
Fig. 3, where the 3-manifold is the 3-ball with a knotted pipe removed. There
are many intrinsic similarities and some fundamental differences. We summarize
the corresponding concepts for surfaces and 3-manifolds respectively in table 1:
the building blocks for surfaces are right-angled hyperbolic hexagons as shown in
figure Fig.1 frame (c); for 3-manifolds are truncated hyperbolic tetrahedra shown
in Fig.7. Both cases require to perform curvature flows. The curvature used in the
surface case is the vertex curvature in Fig.8, that in 3-manifold case is the edge
curvature in Fig. 9. The parameter domain for the surface case is the hyperbolic
space H2 using the upper half plane model; the domain for 3-manifold case is the
hyperbolic space H3 using the upper half space model.

1.1 Constant Curvature Metrics
All surfaces admit constant Gauss curvature metrics. Surfaces with positive, zero
and negative Euler numbers admit spherical, Euclidean and hyperbolic metrics
respectively. Namely, all surfaces can have one of the three geometries, the spher-
ical, Euclidean and hyperbolic geometry. Because most surfaces have negative
Euler number, therefore, most surfaces have hyperbolic metrics. The canonical
constant curvature metric plays an important role in geometric processing, espe-
cially for surface parameterizations.

This fact also holds for 3-manifolds. All 3-manifolds can be canonically de-
composed to prime 3-manifolds. All prime 3-manifolds can be further decom-
posed by tori into pieces so that each piece has one of eight canonical geometries.
Similar to the surface case, most 3-manifolds have hyperbolic metric, which in-
duces constant sectional curvature. Finding the constant curvature metrics for
3-manifolds is an fundamental problem that is important for volumetric parame-
terization and analysis. This paper aims at introducing an algorithm to compute
the constant curvature metric for hyperbolic 3-manifolds with boundaries.
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1. Introduction 3

(a)Left view (b) Right view

(c) Fundamental domain (d) Periodic embedding

Figure 1: Surface with boundaries with negative Euler number can be conformally
periodically mapped to the hyperbolic space H2.

1.2 Discrete Curvature Flow
In order to compute the constant curvature metric of surfaces, the surfaces are
approximated by triangular meshes. The metric is represented as the edge lengths.
The Gaussian curvature is represented as discrete vertex curvature as shown in
figure 8. Discrete curvature flow is an effective method to compute the metric
on the meshes. The basic principle is to deform the edge lengths of the mesh
according to the vertex curvatures, such that the curvature evolves according to
a heat diffusion process. At the steady state, the metric is the constant curvature
metric. Suppose the Euler number of the mesh is positive, zero or negative, we

3



1. Introduction 4

treat each triangle on the mesh as a spherical, a Euclidean or a hyperbolic triangle.
In the computation, we use spherical, Euclidean or hyperbolic cosine law.

The method can be generalized to 3-manifold directly. The 3-manifold is tri-
angulated, and the edge lengths determine the metric. The edge lengths are de-
formed according to the curvature. At the steady state, the metric is the constant
sectional curvature metric. In current work, we focus on hyperbolic 3-manifold
only. During the computation, we assume all the tetrahedra are hyperbolic.

1.3 Differences between Surfaces and 3-Manifolds
There are fundamental differences between surfaces and 3-manifolds. The Mostow
rigidity is the most prominent one [14]. Mostow rigidity states that the geometry
of a finite volume hyperbolic manifold (for dimension greater than two) is deter-
mined by the fundamental group and hence unique. Namely, suppose M and N
are complete finite volume hyperbolic n-manifolds with n > 2. If there exists
an isomorphism f : π1(M) → π1(N) then it is induced by a unique isometry
from M to N . For surface case, the geometry of the surface is not determined
by the fundamental group. Suppose M and N are two surfaces with hyperbolic
metrics. If M and N share the same topology, then there exist isomorphisms
f : π1(M) → π1(N). But there may not exist an isometry from M to N . If
we fix the fundamental group of the surface M , then there are infinite many pair-
wise non-isometric hyperbolic metrics on M . Each of them corresponding to a
conformal structure of M .

Namely, surfaces have conformal geometry, 3-manifolds don’t have confor-
mal geometry. Suppose g1 and g2 are two Riemannian metrics on a topological
surface S. If there is a function λ : S → R, such that g1 = e2λg2, then all the
Riemannian metrics on the topological surface S can be classified by the con-
formal equivalence relation, each equivalence class is a conformal structure. If
the surface is with a negative Euler number, then there exists a unique hyperbolic
metric in each conformal structure. Given a surface embedded in R3, it has the
induced Euclidean metric. The constant curvature metric obtained by curvature
flow method is conformal to the original induced Euclidean metric.

Conformality is an important criteria for surface parameterization. Confor-
mal surface parameterization is equivalent to find a metric with constant Gaussian
curvature conformal to the induced Euclidean metric. For 3-manifold parameter-
izations, conformality can not be achieved in general. Surface parameterizations
need the original induced Euclidean metric, namely, the vertex positions or the
edge lengths are essential parts of the input. In contrast, for 3-manifolds, only
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2. Previous Works 5

topological information is required. The tessellation of a surface will affect the
conformality of the parameterization result. The tessellation doesn’t affect the
computational results of 3-manifolds. In order to reduce the computational com-
plexity, we can use the simplest triangulation for a 3-manifold. For example, the
3-manifold of Thurston’s Knotted Y-Shape in Fig.3 can be either represented as a
high resolution tetrahedral mesh or a mesh with only 2 truncated tetrahedra, the
resulting canonical metrics are identical. Meshes with very few tetrahedra are
highly desired.

In practice, on discrete surfaces, there are only vertex curvatures, which mea-
sure the angle deficient at each vertex. On discrete 3-manifolds, like a tetrahedral
mesh, there are both vertex curvatures and edge curvatures. The vertex curvature
equals to 4π minus all the surrounding solid angles; the edge curvature equals to
2π minus all the surrounding dihedral angles. The vertex curvatures are deter-
mined by the edge curvatures. In our computational algorithm, we mainly use the
edge curvature.

1.4 Contributions
This work generalizes discrete hyperbolic curvature flow from surface case to
hyperbolic 3-manifold with geodesic boundaries and develop practical algorithms
to compute the hyperbolic metrics of 3-manifolds. The algorithm is rigorous and
efficient.

The rest of the paper is organized as follows: we briefly review the most re-
lated works in Section 2; details of the algorithms are explained in Section 3;
Experimental results are reported in Section 4; We conclude in Section 5 with
future directions.

2 Previous Works
Discrete surface curvature flow has been applied for surface parameterizations.
Extensive research has been done on surface parameterization due to its wide ap-
plications in computer graphics. The surveys of [4, 17] provide excellent reviews
on various kinds of mesh parameterization techniques. The followings methods
in fact conformally deform the metrics and compute a metric with zero Gaus-
sian curvature everywhere. Sheffer and Sturler introduced angle based flattening
(ABF) method for surface parameterization in [15], the method was improved to
be faster and more robust in [16]. A linear angle based parameterization method
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2. Previous Works 6

Figure 2: Volumetric parameterization for a topological ball.

is introduced in [22]. Circle pattern method for surface parameterization was in-
troduced in [8]. Discrete Ricci flow method was applied for parameterizations of
general surfaces in [7]. Ben-Chen et al. introduced a linear algorithm for design-
ing metrics from curvatures in [3].

In the following, we briefly review some most related work on volumetric
meshing and isosurface extraction. Labelle and Shewchuk introduced the isosur-
face stuffing algorithm to generate tetrahedron mesh with bounded dihedral angles
in [10]. The volumetric discrete Laplace-Beltrami operator used in this work is a
generalization of the cotan formula in the surface case; the cotan value of dihedral
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3. Algorithm 7

angles are used to replace those of corner angles. The range of the dihedral an-
gles affect the parameterization quality. A Delaunay-based variational approach
to isotropic tetrahedral meshing is introduced by Alliez et al. in [1], which pro-
duces well-shaped tetrahedra by minimizing an energy form. Tandem algorithm
is introduced for isosurfaces extraction and simplification in [2]. The volumetric
harmonic map depends on volumetric Laplacian, volumetric graph Laplacian has
been applied for large mesh deformation in [23].

Volumetric parameterization based on harmonic maps is applied for volumet-
ric brain mapping in medical imaging field in [21]. In that work, the cotangent for-
mula for discrete Laplace-Beltrami operator is generalized to tetrahedron mesh.
Volumetric parameterization using fundamental solution method is introduced in
[11] and applied for volumetric deformation and morphing. Harmonic volumetric
paramaeterization for cylinder volumes is applied for constructing trivariate spline
fitting in [13].

The topology and geometry of general 3-manifolds are explained in Thurston’s
works [19, 20]. Hyperbolic 3-manifolds with geodesic boundaries are manually
constructed and analyzed in [6] and [5]. The theoretic foundation of our discrete
curvature flow method is introduced in [12]. The topological method to verify
whether a 3-manifold is hyperbolic manifold with complete geodesic boundaries
is described in [19, 20].

3 Algorithm
The input to the algorithm is the boundary surface of a 3-manifold, represented
as a triangular mesh. The output is a realization of (fundamental domain of) the
3-manifold in the hyperbolic space H3. The algorithm pipeline is as the following:

1. Compute the triangulation of the 3-manifold as a tetrahedral mesh. Simplify
the triangulation such that the number of the tetrahedra is minimal.

2. Run discrete curvature flow on the minimal tetrahedral mesh.

3. Realize the minimal tetrahedral mesh in the hyperbolic space H3.

4. Real time display the 3-manifold with hyperbolic metric in H3 using image-
based CSG rendering.

7



3. Algorithm 8

(a) Front view (b) Back view

Figure 3: The boundary surface of a 3-manifold, Thurston’s knotted Y. The vol-
ume can be treated as a solid ball with three entangled pipes removed. Note that
the spherical boundary surface is rendered using back-facing mode.

3.1 Triangulation and Simplification
In geometric processing, surfaces are approximated by triangular meshes. 3-
manifolds are approximated by tetrahedral meshes. In general, given the boundary
surfaces of a 3-manifold, there are existing methods to tessellate the interior and
construct the tetrahedral mesh. In this work, we use tetrahedral tessellation based
on volumetric Delaunay triangulation [18].

In order to simplify the triangulation, we use the following algorithm.

1. Denote the boundary of a 3-manifold M as ∂M = {S1, S2, · · · , Sn}. For
each boundary surface Si, create a cone vertex vi, connect each face fj ∈ Si

to form a tetrahedron T i
j . Therefore, M is augmented to M̃ .

2. Use edge collapse as shown in figure 5 to simplify the triangulation, such
that all vertices are removed except for those cone vertices {v1, v2, · · · , vn}.
Denote the simplified tetrahedral mesh still as M̃ .

a1

c1

b1

d1

B1 A1

C1

b2

a2

c2

B2

C2 A2

d2

a1

c1

b1

d1

B1 A1

C1

b2

a2 c2
B2

C2 A2

d2

d1

d1

Figure 4: Simplified triangulation and gluing pattern of Thurston’s knotted-Y. The
two faces with the same color are glued together.
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3. Algorithm 9

Figure 5: Edge collapse in tetrahedron mesh.

3. For each tetrahedron T̃i ∈ M̃ , cut T̃ by the boundary surfaces to form
truncated tetrahedron (hyper ideal tetrahedron), denoted as Ti.

The simplified triangulation is represented as a collection of truncated tetrahedra
and their gluing pattern. As shown in figure 4, the simplified tetrahedral mesh has
only two truncated tetrahedra T1, T2. Let Ai, Bi, Ci, Di represent the four faces of
the tetrahedron Ti; ai, bi, ci, di represent the truncated vertices of Ti. The gluing
pattern is given as follows:

A1 → B2 {b1 → c2, d1 → a2, c1 → d2}
B1 → A2 {c1 → b2, d1 → c2, a1 → d2}
C1 → C2 {a1 → a2, d1 → b2, b1 → d2}
D1 → D2 {a1 → a2, b1 → c2, c1 → b2}

The first row means that face A1 ∈ T1 is glued with B2 ∈ T2, such that the
truncated vertex b1 is glued with c2, d1 with a2 and c1 with d2. Other rows can be
interpreted in the same way.

3.2 Discrete Curvature Flow for 3-Manifolds
2-manifolds (surfaces) are approximated by triangular meshes with different back-
ground geometries. Similarly, 3-manifolds are approximated by tetrahedron meshes
with different background geometry. 3-manifolds with boundaries can also be ap-
proximated by truncated tetrahedron meshes, where the face hexagons are glued
together, the vertex triangles form the boundary surface.

3.2.1 Hyperbolic Cosine Law

As shown in figure 6, hyperbolic triangles and right angled hexagons satisfy spe-
cial cosine laws.

9



3. Algorithm 10

l1

l2

l3

θ1

θ2

θ3

x1

x2x3

y1

y2
y3

Figure 6: Hyperbolic Cosine laws for triangle and right-angled hexagon.

Given a triangle in the hyperbolic space H2, whose edge lengths are {li, lj, lk}
and the inner angles are {θi, θj, θk}, where θi is against li, the inner angles are
determined by the edge lengths according to the hyperbolic cosine law

cosh li =
cos θi + cos θj cos θk

sin θj sin θk

(3.1)

cos θi =
− cosh li + cosh lj cosh lk

sinh lj sinh lk
(3.2)

Given a hyperbolic hexagon as shown in figure 6 with all the right inner angles,
the edge lengths are {xi, xj, xk}, {yi, yj, yk}, xi is against yi, then the cosine law
for right-angled hyperbolic hexagon is

cosh yi =
cosh xi + cosh xj cosh xk

sinh xj sinh xk

(3.3)

3.2.2 Hyperbolic Tetrahedron and Truncated Hyperbolic Tetrahedron

A closed 3-manifold can be triangulated to tetrahedra. The left frame in Figure
7 shows a hyperbolic tetrahedron [v1v2v3v4]. Each face fi of a hyperbolic tetra-
hedron is a hyperbolic plane, each edge eij is a hyperbolic line segment. The
right frame in Figure 7 shows a truncated hyperbolic tetrahedron, where the four
vertices are truncated by hyperbolic planes. The cutting plane at vertex vi is per-
pendicular to the edges eij, eik, eil. Therefore, each face of a truncated hyperbolic
tetrahedron is a right-angled hyperbolic hexagon, each cutting section is a hyper-
bolic triangle.

10



3. Algorithm 11

v1

v2

v3

v4

f3f4

f1

f2

v1

v2

v4v3

f3f4

f2

f1

θ6
θ2

θ1

θ5

θ3

θ4

Figure 7: Hyperbolic tetrahedron and truncated tetrahedron.

As shown in Figure 7, the dihedral angles are {θ1, θ2, · · · , θ6}. The geome-
try of the truncated tetrahedron is determined by these angles. For example, the
hyperbolic triangle at v2 has inner angles θ3, θ4, θ5, its edge lengths can be deter-
mined using formula 3.1. For face f4, the edge length e12, e23, e31 are determined
by the hyperbolic triangles at v1, v2, v3 using the right-angled hyperbolic hexagon
cosine law 3.3.

On the other hand, the geometry of a truncated tetrahedron is determined by
the length of edges e12, e13, e14, e23, e34, e42. Due to the fact that each face is a
right angled hexagon, the above six edge lengths will determine the edge lengths
of each vertex triangle, and therefore determines its three inner angles, which
equal to the corresponding dihedral angles.

3.2.3 Discrete Curvature

In the surface case, the discrete curvature is represented as the angle deficit. For
an interior vertex, the curvature is 2π minus the surrounding corner angles;

K(vi) = 2π −
∑
jk

αjk
i .

for a boundary vertex, the curvature is π minus the surrounding corner angles. In
3-manifold case, as shown in figure 8, each tetrahedron [vi, vj, vk, vl] has four solid
angles at their vertices, {αjkl

i , αkli
j , αlij

k , αijk
l }; for an interior vertex, the vertex

11



3. Algorithm 12

vi

vj vk

αjk
i

vlαkl
i

vi

vj vk

vl

αjkl
i

Figure 8: Discrete vertex curvature for 2-manifold and 3-manifold.

curvature is 4π minus the surrounding solid angles,

K(vi) = 4π −
∑
jkl

αjkl
i .

for a boundary vertex, the vertex curvature is 2π minus the surrounding solid
angles.

In 3-manifold case, there is another type of curvature, edge curvature. Sup-
pose [vi, vj, vk, vl] is a tetrahedron, the dihedral angle on edge eij is denoted as
βkl

ij . If edge eij is an interior edge ( i.e. eij is not on the boundary surface), its
curvature is defined as

K(eij) = 2π −
∑
kl

βkl
ij .

If eij is on the boundary surface, its curvature is defined as

K(eij) = π −
∑
kl

βkl
ij .

For 3-manifolds, edge curvature is more essential than vertex curvature. The
later is determined by the former.

Theorem Suppose M is a tetrahedron mesh, vi is an interior vertex of M .
Then ∑

j

K(eij) = K(vi).

Proof: Draw a sphere centered at vi, with a radius small enough such that the
sphere only contains a single vertex vi. The sphere intersects all the faces of the

12
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vi

vj

vk vl
βkl

ij

vi

vj

vk

vl

Figure 9: Discrete edge curvature for a 3-manifold.

vi

vj

vk

vl

wj

wk

wl

Figure 10: Vertex curvature and edge curvature are related.

mesh, which induces a triangulation of the sphere. Let eij = [vi, vj] be an adjacent
edge, eij intersects the sphere at wj . Scale the sphere to be the unit sphere S. Now,
each triangular face of S [wj, wk, wl] corresponds to the solid angle of an adjacent
tetrahedron [vi, vj, vk, vl]; The discrete vertex curvature of S at wj corresponds to
the discrete edge curvature of edge eij . According to Gauss-Bonnet theorem, we

13



3. Algorithm 14

have ∑
jkl

A([wj, wk, wl]) +
∑

j

K(wj) = 4π,

and therefore∑
j

K(wj) =
∑

j

K(eij = 4π −
∑
jkl

A([wj, wk, wl]) = K(vi).

3.2.4 Discrete Curvature Flow

Given a hyperbolic tetrahedron in H3 with edge lengths lij and dihedral angles
θij , the volume of the tetrahedron V is a function of the dihedral angles V =
V (θ12, θ13, θ14, θ23, θ24, θ34), and the Schlaefli formula can be expressed as

∂V

∂θij

=
−lij
2

,

namely, the differential 1-form dV is −1
2

∑
ij lijdθij . It can be further proved that

the volume of a hyperbolic truncated tetrahedron is a strictly concave function of
the dihedral angles.

Given an ideal triangulated 3-manifold (M, T ), let E be the set of edges in
the triangulation. An assignment x : E → R+ is called a hyperbolic cone met-
ric associated with the triangulation T if for each tetrahedron t in T with edges
e1, e2, · · · , e6, the x(ei) are the edge lengths of a hyperbolic truncated tetrahe-
dron in H3. The set of all hyperbolic cone metrics associated with T is denoted
as L(M, T ), which is an open set. The discrete curvature of a cone metric is a
map K(x) : L → R, mapping each edge e to its discrete curvature. The discrete
curvature flow is then defined by

dxij

dt
= Kij, (3.4)

where xij is the edge length of eij , Kij is the edge curvature of eij .
For any ideal triangulated 3-manifold (M, T ), the equilibrium points of the

discrete curvature flow Eqn.3.4 are the complete hyperbolic metric with totally
geodesic boundary. Each equilibrium is a local attractor of the flow. Furthermore,
a hyperbolic cone metric associated with an ideal triangulation is locally deter-
mined by its cone angles. For any ideal triangulated 3-manifold, under the discrete
curvature flow, the discrete curvature Kij(t) evolves according to the discrete heat
equation. Furthermore, the total curvature

∑
ij K2

ij is strictly decreasing until all
edge curvatures (also the vertex curvatures) are zeros. The theoretic proofs can be
found in [12].

14



3. Algorithm 15

3.3 Hyperbolic Embedding of 3-Manifolds
Once the edge lengths of the tetrahedron mesh have been obtained, we can realize
it in the hyperbolic space H3. First, we introduce how to construct a single trun-
cated tetrahedron; then we explain how to glue multiple truncated tetrahedra by
hyperbolic rigid motion.

3.3.1 Hyperbolic Space Model

In this work, we use the upper half plane model for hyperbolic space H2. H2 =

{(x, y) ∈ R2|y > 0}, with the Riemannian metric ds2 = dx2+dy2

y2 . In H2, hy-
perbolic lines are circular arcs and half lines orthogonal to the x-axis. The rigid
motion is given by the so-called Möbius transformation

az + b

cz + d
, ac− bd = 1, a, b, c, d ∈ R,

where z = x + iy is the complex coordinates.
Similarly, the three dimensional hyperbolic space H3 can be represented using

upper half space model,H3 = {(x, y, z) ∈ R3|z > 0}, with Riemannian metric

ds2 =
dx2 + dy2 + dz2

z2
.

In H3, the hyperbolic planes are hemispheres or vertical planes, whose equators
are on the xy-plane. The xy-plane represents all the infinity points in H3. The
rigid motion in H3 is determined by its restriction on the xy-plane, which is a
Möbius transformation on the plane, in the form

az + b

cz + d
, ac− bd = 1, a, b, c, d ∈ C.

Most of the computation is carried out on the xy-plane.

3.3.2 Construction of a Truncated Hyperbolic Tetrahedron

The geometry of a truncated hyperbolic tetrahedron is determined by its dihedral
angles. This section explains the algorithm to construct a truncated tetrahedron
in the upper half space model of H3. The algorithm consists of two steps. First,
construct a circle packing; second, compute a CSG (Constructive Solid Geometry)
surface. The resulting surface is the boundary of the truncated tetrahedron.

15



3. Algorithm 16

θ1

θ2

θ3

θ2 θ6

θ4

θ3

θ5

θ4

f1

f2

f3

f4

v3

v4

v1

v2

θ6

θ5

Figure 11: Circle packing for the truncated tetrahedron.

Construct a Circle Packing Suppose the dihedral angles of a truncated tetra-
hedron are given. The tetrahedron can be realized in H3 uniquely, up to rigid
motion. The tetrahedron is the intersection of half spaces, the boundaries of these
half spaces are the hyper planes on faces f1, f2, f3, f4 and the cutting planes at the
vertices v1, v2, v3, v4. Each plane intersects the infinity plane at a hyperbolic line,
which is a Euclidean circle on the xy-plane. By abusing the symbols, we use fi

to represent the intersection circle between the hyperbolic plane through the face
fi and the infinity plane. Similarly, we use vj to represent the intersection circle
between the cutting plane at vj and the infinity plane. The goal of this step is to
find planar circles fi’s and vj’s, such that

1. circle fi and circle fj intersect at the given corresponding angle.

2. circle vi is orthogonal to circles fj, fk, fl.

As shown in figure 11, all the circles can be computed explicitly.

• f1, line y = 0.

• f2, line y = tan θ1x.

16



3. Algorithm 17

• f3, circle with radius 1, and centered at

(x3, y3) = (
cos θ1 cos θ3 + cos θ2

sin θ1

, cos θ3)

• f4, circle with radius

R =

√
(cos θ4 + a + b)2 − c(1− x2

3 − y2
3)− (cos θ4 + a + b)

c
,

where

(a, b, c) = (cos θ5,
cos θ5 cos θ1 + cos θ6

sin θ1

, 1− a2 − b2)

and centered at (aR, bR).

In order to compute the circles vi’s, we use the fact that vi is orthogonal to
circles fj, fk, fl, where {i, j, k, l} are pairwisely different. First we need to trans-
form f1 and f2 from lines to Euclidean circles. Let p, q be two points, which are
not on any circle fj , define a Möbius transformation

φ =
z − q

z − p
, φ−1 =

pw − q

w − 1
.

Then φ−1 transforms f1, f2, f3, f4 to circles, and circle v1 is orthogonal to circle
f2, f3, f4, as shown 12. Such a circle exists and is unique; it can be computed
explicitly by solving the following system,

(x1 − xj)
2 + (y1 − yj)

2 = r2
j + r2

1, j = 2, 3, 4

where (x1, y1) is the center, r1 is the radius of v1. After finding v1, v2, v3, v4,
we transform them back using φ. Let w1, w2, w3 be points on the circle v1, the
φ(w1), φ(w2), φ(w3) are the points on the circle φ(v1).

CSG Modeling After we obtain the circle packing, we can construct hemi-
spheres whose equators are those circles. If the circle is a line, then we construct
a half plane orthogonal to the xy-plane through the line. Computing CSG among
these hemispheres and half-planes, we can get the truncated tetrahedron as shown
in figure 13.
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f2

f4

f3

v1

Figure 12: Circle v1 is orthogonal to circles f2, f3, f4.

Each hemisphere is a hyperbolic plane, and separates H3 to two half-spaces.
For each hyperbolic plane, we select one half-space; the intersection of all such
half-spaces is the desired truncated tetrahedron embedded in H3. The question is,
we need to determine which half-space of the two is to be used. The answer is as
the following. Here we use fi to represent both the face circle and the hemisphere
whose equator is the face circle fi. Similarly, we use vk to represent both the
vertex circle and the hemisphere whose equator is the vertex circle. As shown in
figure 11, three face circles fi, fj, fk bound a curved triangle ∆ijk, which is color
coded, one of them is infinite. If ∆ijk is inside the circle fi, then we choose the half
space inside the hemisphere fi; otherwise we choose the half-space outside the
hemisphere fi. Suppose vertex circle vk is orthogonal to the face circles fi, fj, fk;
if ∆ijk is inside the circle vk, then we choose the half-space inside the hemisphere
vk; otherwise we choose the half-space outside the hemisphere vk.

Figure 14 demonstrates a realization of a truncated hyperbolic tetrahedron in
the upper half space model of H3, based on the circle packing in figure 11.

3.3.3 Glue two Truncated Hyperbolic Tetrahedra

Suppose we want to glue two truncated hyperbolic tetrahedra, T1 and T2, along
their faces. We need to specify the correspondence between the vertices and faces

18
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f1

f2

f3

f4

v1

v2

v3

v4

Figure 13: Constructing an ideal hyperbolic tetrahedron from circle packing using
CSG operators.

between T1 and T2. Suppose we want to glue f4 ∈ T1 to fl ∈ T2, such that
{v1, v2, v3} ⊂ T1 are attached to {vi, vj, vk} ⊂ T2. Such a gluing pattern can be
denoted as a permutation {1, 2, 3, 4} → {i, j, k, l}. The right-angled hyperbolic
hexagon of f4 is congruent to the hexagon of fl. Suppose the circle packing of f4

is as shown in the last frame of figure 16, the intersection points between f4 and
v3 are p and q, the intersection points between f4 and v1 are r and s; p, r, s, q are
sorted counter-clockwisely along the circle of f4. Then we construct a Möbius
transformation

φ1(z) =
(z − p)(r − q)

(z − q)(r − p)
,

19



3. Algorithm 20

Figure 14: Realization of a truncated hyperbolic tetrahedron in the upper half
space model of H3, based on the circle packing in figure 11.

f1

f2

f3

f4

v1

v2

v3

v4

f1

f2

f3

f4

v1

v2

v3

v4

Figure 15: Glue two tetrahedra by using a Möbius transformation to glue their
circle packings, such that f3 → f4, v1 → v1, v2 → v2, v4 → v3.

which maps p, r, q to 0, 1,∞. Similarly, suppose circle fl intersects vk at p̃, q̃, fl

intersects vi at r̃, s̃, let

φ2(z) =
(z − p̃)(r̃ − q̃)

(z − q̃)(r̃ − p̃)
,

then the Möbius transformation φ = φ−1
2 ◦φ1 induces an hyperbolic isometry that

glues f4 to fl, {v1, v2, v3} to {vi, vj, vk}.
Figure 17 shows the gluing between two truncated hyperbolic tetrahedra.
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v1

v2

v3

v4

f3f4

f1

f2
vi

vj

vk

vl

fi

fj

fkfl

T1 T2

v1

v2

v3

f4

p

q

r

s

Figure 16: Glue T1 and T2 along f4 ∈ T1 and fl ∈ T2, such that {v1, v2, v3} ⊂ T1

are attached to {vi, vj, vk} ⊂ T2.

Figure 17: Glue T1 and T2. The first row, f3 → f4, {v1, v2, v4} → {v1, v2, v3}.
The second row, f4 → f3,{v1, v2, v3} → {v2, v1, v4}.

The first row shows the change of the circle packing (only the face circles
are illustrated, the vertex circles are omitted); the second row shows the different
views of the transformed tetrahedron corresponding to the second circle packing
in the first row; the third row shows the different views of the transformed tetra-
hedron corresponding to the last circle packing in the first row. 11.
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3.4 Real Time Rendering
The periodic embedding of the 3-manifold in the hyperbolic space H3 can be
rendered in real time using image-based CSG rendering technique [9]. More rig-
orously speaking, we can display the embedding of a finite portion of the universal
covering space of M with the hyperbolic metric in H3 in real time.

The edge lengths and dihedral angles are pre-computed. The circle packing for
each truncated tetrahedron is also precomputed. The gluing pattern and the CSG
tree are generated on the fly. We use OpenCSG library to display the embedding
in real time.

4 Experimental Results

Figure 18: Embed the 3-manifold periodically in the hyperbolic space H3.

We tested our algorithm extensively on more than 120 hyperbolic 3-manifolds
tessellated by truncated hyperbolic tetrahedra. All the testing cases are conver-
gent. We compare our computational results with those using algebraic geometry
methods, the metrics and dihedral angles are perfectly matched. The matching
error is less than 1e− 8.

The stability of the algorithm depends on several key factors:

• The choice of the triangulation. For the same 3-manifold, different triangu-
lations affect the stability of the curvature flow. For some triangulation, the
critical point of the volume energy is an interior point of the metric space.
In this case, the discrete curvature flow is convergent and stable. For some
triangulation, the critical point of the volume energy is on the boundary of

22
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the metric space, the algorithm can not lead to the desired result. It is an
open problem to find the conditions for the triangulations, which guarantee
the convergence of the curvature flow.

• The choice of the initial conditions. Due to the numerical error, if the initial
edge lengths are too big (greater than 37.7) then the angles computed using
hyperbolic cosine law is too close to zeros. This leads to the instability. In
practice, we choose the initial edge lengths around 1.0, which always gives
the desired solutions.

We apply our discrete hyperbolic curvature flow to visualizing 3-manifolds,
which can not be realized in R3 and given by abstract tetrahedron meshes. We
also apply it to verifying whether two 3-manifolds are homeomorphic by com-
paring their hyperbolic volumes. If two hyperbolic 3-manifolds with geodesic
boundaries are homeomorphic, then their hyperbolic volumes should be identical,
independent of their triangulations.

5 Conclusion and Future Direction
This paper generalizes discrete curvature flow for surfaces to hyperbolic 3-manifolds
with complete geodesic boundaries. The metric deforms according to the curva-
ture, until the curvature is constant everywhere. The theoretical results are in-
troduced, and the algorithm is explained in details. Thorough experimental re-
sults demonstrate the effectiveness and the efficiency of the 3-manifold curvature
flow algorithm. The method is applied for visualizing 3-manifolds and volumetric
shape analysis.

In the future, we will generalize the current method for computing geometric
structures of 3-manifolds with other topological types. We will also study the con-
ditions for triangulations to ensure the existence of the solutions. For real appli-
cations, we will apply discrete curvature flow method for parameterizing volumes
in the three dimensional Euclidean space.
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[9] Florian Kirsch and Jürgen Döllner. Rendering techniques for hardware-
accelerated image-based csg. In WSCG, pages 221–228, 2004.

[10] François Labelle and Jonathan Richard Shewchuk. Isosurface stuffing: fast
tetrahedral meshes with good dihedral angles. ACM Trans. Graph., 26(3):57,
2007.

[11] Xin Li, Xiaohu Guo, Hongyu Wang, Ying He, Xianfeng Gu, and Hong Qin.
Harmonic volumetric mapping for solid modeling applications. In Proceed-
ing of Symposium on Solid and Physical Modeling, pages 109–120, 2007.

24



REFERENCES 25

[12] Feng Luo. A combinatorial curvature flow for compact 3-manifolds with
boundary. Electron. Res. Announc. Amer. Math. Soc., 11:12–20, 2005.

[13] Tobias Martin, Elaine Cohen, and Mike Kirby. Volumetric parameterization
and trivariate b-spline fitting using harmonic functions. In Proceeding of
Symposium on Solid and Physical Modeling, 2008.

[14] G. D. Mostow. Quasi-conformal mappings in n-space and the rigidity of the
hyperbolic space forms. Publ.Math.IHES, 34:53–104, 1968.

[15] Alla Sheffer and Eric de Sturler. Parameterization of faced surfaces
for meshing using angle based flattening. Engineering with Computers,
17(3):326–337, 2001.
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