
Colon Flattening with Discrete Ricci Flow

Feng Qiu, Zhe Fan, Xiaotian Yin, Arie Kaufman, and Xianfeng David Gu

Center for Visual Computing and Department of Computer Science,
Stony Brook University, New York, 11794, USA.

{qfeng,fzhe,xyin,ari,gu}@cs.sunysb.edu

Abstract. We present a novel colon flattening algorithm using the dis-
crete Ricci flow. The discrete Ricci flow is a powerful tool for designing
Riemannian metrics on surfaces with arbitrary topologies by user-defined
Gaussian curvatures. Moreover, the discrete Ricci flow deforms the Rie-
mannian metric on the surface conformally and minimizes the global
distortion, which means the local shape is well preserved. Two numeri-
cal methods, the gradient descending method and Newton’s method, for
computing the discrete Ricci flow have been implemented. Both methods
are accelerated with CUDA on the GPU. The flattened 2D rectangular
mesh of the colon is rendered using volumetric ray-casting method with
pseudo color to produce electronic biopsy images.

Key words: Colon flattening, discrete Ricci flow, conformal map, GPU

1 Introduction

Virtual colonoscopy has been proven to be an efficient and convenient method of
detecting colon polyps, the precursor of cancer. Traditionally, virtual colonoscopy
uses a virtual fly-through visualization system for the physician to navigate inside
the virtual colon model. However, due to the length and structure of the colon,
inspecting the entire colon wall is time consuming and error prone. Moreover,
polyps behind folds may be hidden, which results in incomplete examinations.

Virtual colon flattening is an efficient visualization technique for polyp de-
tection, in which the entire inner surface of the colon is dissected and flattened
on a 2D plane. However, virtual colon flattening introduces distortion. The ex-
isting colon flattening methods can be divided into two major categories: area
preserving methods [1] and angle preserving methods [2, 3]. The angle preserv-
ing methods preserves the local shape on the flattened colon surface, which is
desirable because the colon polyps usually have a semi-ellipsoidal shape which
we want to preserve. Moreover, the flattened colon can be efficiently volume ren-
dered to produce the electronic biopsy image for computer aided polyp detection
[7]. We propose a new colon surface flattening that is angle preserving based on
the discrete Ricci flow method. The discrete surface Ricci flow [4] has a simple
physical intuition, is general for surfaces with arbitrary topology, and can be
efficiently accelerated with the graphics processing unit (GPU).



2 Discrete Ricci Flow

Ricci flow has a simple physical intuition. Given a surface S with a Riemannian
metric g, the metric induces the Gaussian curvature function. If the metric g

is changed, then the Gaussian curvature will be changed accordingly. The Ricci
flow deforms g in the following way: at each point, g is locally scaled to a new
metric ḡ such that the scaling factor is proportional to the curvature at the
point. Because of this locally isotropic deformation, the deformation is a con-

formal metric deformation such that angles measured by g are equal to that
measured by ḡ. After the deformation, the new metric ḡ induces a new curva-
ture function. Both the metric and the curvature evolve while the deformation
process is repeated. And the curvature evolution is like a heat diffusion process.
Eventually, the Gaussian curvature function is constant everywhere. For a sur-
face with a cylinder topology such as the colon, the result Gaussian curvature
function is 0 everywhere.

(a)

φ12

φ23

φ31
v1

v2
v3

γ1

γ2

γ3e12

e23

e31

(b)

Fig. 1. (a) Flat circle packing metric, and (b) circle packing metric on a triangle.

In practice, the colon surface is represented with a triangular mesh. Therefore,
the discrete Ricci flow is computed where the Riemannian metric is replaced with
the circle packing metric. As shown in Fig. 1, let Γ be a function that assigns a
radius γi to vertex vi; let Φ be a function that assigns an acute angle φij to half
edge eij as the edge weight. The pair of vertex radius function and edge weight
function (Γ,Φ) defined on a mesh Σ is called the circle packing metric of Σ. The
discrete Ricci flow is defined as:

dui(t)

dt
= (K̄i − Ki) (1)

where ui = log γi and K̄i is the target Gaussian curvature. For colon surface
flattening, the target Gaussian curvature is 0 everywhere. The discrete Ricci flow
deforms the circle packing metric according to the discrete Gaussian curvature,



just like the Ricci flow deforms the Riemannian metric according to the Gaussian
curvature.

The pipeline of the discrete Ricci flow based colon flattening is as follows:

1. Compute the initial circle packing metric of the colon surface mesh;
2. Deform the circle packing metric with Eqn. 1;
3. Compute the layout of the flattened mesh with the result metric.

To compute the initial circle packing metric, the radii of vertices are computed
with:

γjk
i =

1

2
(lki + lij − ljk) (2)

γi =
1

m

∑

fijk∈F

γjk
i (3)

where lij , ljk, and lki are the edge length of triangle fijk. Then, the half edge
weight (or the angle associated with each half edge) φij can be computed with
the cosine law in Euclidean space.

To deform the circle packing metric, one method is the gradient descending
algorithm in which the discrete Gaussian curvature of every vertex is computed
to update ui

ui = ui + ǫ(K̄i − Ki) (4)

where ǫ is a small constant (step size). Then, ui is used to calculate the vertex
radii of the updated circle packing metric. The discrete Gaussian curvature can
then be deduced from the updated circle packing metric. This process repeats un-
til the maximum curvature error is less than certain threshold. Another method
is the Newton’s method where the sparse Hessian matrix H = (∂Ki/∂uj)n×n is
computed in each step. Then the linear system:

Hdu = K̄ − K (5)

is solved to update the vector u = (u0, u1, · · · , un−1)
T .

Finally, the flattened mesh layout is computed by embedding the triangles
with edge lengthes in the resulting circle packing metric. We refer the reader to
[4] for more details.

3 GPU Acceleration and Results

The GPU is the processor on a commodity 3D graphics card for accelerating
raster-based rendering. In recent years, the GPU performance has been increas-
ing at incredible rate. Current GPU surpasses CPU in raw computational power
by an order of magnitude and the gap between GPU performance and CPU per-
formance is still increasing. The high performance and fast performance growth
of the GPU is made possible by the explicit parallelism in raster-based render-
ing. Because the GPU is data driven (i.e., it needs to process a huge amount



of vertices, geometry primitives, and pixels in real-time speed), it emphasizes
data parallelism. For example, the NVIDIA GeForce 8800 GTX has 128 thread
processors that are dynamically allocated to data processing and compute si-
multaneously. The NVIDIA GeForce GTX 280 released this year has 240 thread
processors for data parallel computation. In addition to its high computational
power, the GPU is becoming more and more flexible and programmable. High
level languages have been added to graphics APIs, such as OpenGL and Di-
rectX, for programming the GPU. As a result, general-purpose computation on
the GPU (GPGPU) has become an active area of research. A wide range of
general-purpose application has been accelerated on the GPU.

Compute Unified Device Architecture (CUDA) is a new programming tool
developed by NVIDIA for general-purpose computation. With CUDA, the pro-
grammer can use extended C language to develop general-purpose computation
on the GPU. No knowledge in graphics hardware and APIs is needed anymore.
In addition, CUDA allows the program to access a linear GPU memory, which is
larger and much more convenient to use than the GPU textures. CUDA further
exposes to the programmer hardware features, such as data parallel cache and
scatter operation.

To implement the gradient descending algorithm with CUDA, the surface
mesh is stored as two arrays, vertex array and triangle array. The vertex array
stores pre-vertex data, including vertex radius, target curvature, boundary flag,
incident triangle list, and incident corner angles. The triangle array stores per-
triangle data, including indices of vertices, half edge weights, and corner angles.
Two computation kernels operate on the arrays in a SIMD fashion. The first
computation kernel works on the triangles and calculates edge length and corner
angles out of vertex radii. Based on corner angles, the second computation kernel
updates the curvature for every vertex. This process repeats until the maximum
curvature error is below a user defined threshold. Because each computation
kernel execute on an array (triangle or vertex) and every data element in the
array is processed independently, the computation is fully parallelized.

For the Newton’s method, the major difference from the gradient descending
algorithm is updating the Hessian matrix (hij)n×n and solving the linear system
in Eqn. 5. The elements of the Hessian matrix hij = ∂Ki/∂uj are calculated
with a computation kernel in parallel. The core of the linear system solver is the
multiplication of a sparse matrix and a dense vector. Bolz et al. [5] have proposed
a scheme of sparse matrix solver using OpenGL, where the off-diagonal entries of
the sparse matrix are compactly stored in row major. To efficiently implement
the sparse matrix solver with CUDA, we propose a new method to store the
sparse matrix compactly in a 1D array. First, the rows of the matrix are sorted
in descending order by the number of entries ni. Denote the reordered row as Ri′ .
Second, each row Ri′ is condensed by removing the zero entries, and the non-zero
entries are associated with the corresponding column indices. Denote the j-th
non-zero entry in row Ri′ as hi′j . Then, all hi′j are stored linearly in column
major, which means i′ varies first. With this column major storage, the memory



access in CUDA implementation can be efficiently coalesced. Other operations
such as vector dot product are implemented with the CUBLAS library [6].

We have tested our GPU accelerated colon flattening algorithm with colon
datasets from NIH. The dataset has been preprocessed with the method in [7]
for digital cleansing, segmentation and colon surface mesh extraction. Fig. 2
shows the electronic biopsy image of a flattened colon rendered with volumetric
ray casting method using a transfer function with pseudo color. The experiment
is conducted on a PC platform with dual Xeon 3.6GHz CPU and an NVIDIA
GeForce 8800 GTX graphics card. In our experiment, the GPU implementation
of the gradient descending algorithm is approximately 40 times faster than on
the CPU. The Newton’s method on the GPU is approximately 8 times faster
than the software implementation.

Fig. 2. Electronic biopsy image of a flattened colon. Red and yellow color represent
high densities while low density regions are blue.

4 Conclusions

We have presented an angle preserving colon flattening method based on the
discrete Ricci flow computation, which has an advantage of being fully par-
allelizable. We have implemented the algorithm on a GPU with the NVIDIA
CUDA programming toolkit. The GPU implementation achieves a speedup fac-
tor of 40 for the gradient descending method and 8 for the Newton’s method.
As GPUs continue to become more powerful and programmable, their impact
on medical imaging will increase.

References

1. Bartroĺı, A.V., Wegenkittl, R., König, A., Gröller, E.: Nonlinear virtual colon un-
folding. IEEE Visualization (2001) 411–420

2. Haker, S., Angenent, S., Tannenbaum, A., Kikinis, R.: Nondistorting flattening
maps and the 3D visualization of colon CT images. IEEE Transactions on Medical
Imaging 19(7) (2000) 665–670

3. Hong, W., Gu, X., Qiu, F., Jin, M., Kaufman, A.: Conformal virtual colon flattening.
Symposium on Solid and Physical Modeling (2006) 85–93



4. Jin, M., Kim, J., Luo, F., Gu, X.D.: Discrete surface ricci flow. IEEE Transaction
on Visualization and Computer Graphics 14(5) (2008) (in press)

5. Bolz, J., Farmer, I., Grinspun, E., Schröoder, P.: Sparse matrix solvers on the
GPU: conjugate gradients and multigrid. ACM Transactions on Graphics 22(3)
(2003) 917–924

6. NVidia: Compute Unified Device Architecture: Programming Guide. (2007) Version
1.1, http://www.nvidia.com/object/cuda develop.html.

7. Hong, W., Qiu, F., Kaufman, A.: A pipeline for computer aided polyp detection.
IEEE Transactions on Visualization and Computer Graphics 12(5) (2006) 861–868


