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Abstract. Surface parameterization is a fundamental tool in geometric
modeling and processing. Most existing methods deal with simply con-
nected disks. This work introduces a novel method to handle multiply
connected surfaces based on holomorphic one-forms. The method maps
genus zero surfaces with arbitrary number of boundaries to an annulus
with concentric circular slits. Any two boundaries can be chosen to map
to the inner circle and the outer circle, the other boundaries to slits.
Equivalently, the surfaces can be mapped to a rectangle with horizontal
slits.
Compared to existing linear methods that require surface partition, this
method is more intrinsic and automatic. Compared to the existing holo-
morphic one-form method that requires double covering, it is more effi-
cient and has better control over singularities. Compared to the existing
Ricci flow method, this one is linear and simpler.
The proposed method has many merits. The images of boundaries are
parallel line segments. This regularity not only helps improve the accu-
racy for surface matching with boundaries, but also makes quad-remeshing
or mesh-spline conversion conversion convenient. The whole rectangle in
texture domain is fully occupied without any gap or overlapping; this im-
proves the packing efficiency for texture mapping. The positions of the
slits are completely determined by the surface geometry, which can be
treated as the finger print of the surface to classify surfaces by conformal
equivalence.
The algorithm is thoroughly explained in detail. Experimental results
are demonstrated to show the usefulness of the algorithm for multiply
connected domains.
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1 Introduction

Surface conformal parameterization is a fundamental tool in geometric modeling
and processing. It is an essential technique for many applications, such as texture
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Fig. 1. Slit map. (a) shows the original surface, which is a multiply connected domain;
(b) shows the slit domains. The top is the circular slit domain with outer circle γ1 and
inner circle γ0; the bottom is the parallel slit domain with upper side γ0 and lower side
γ1. (c) shows the conformal texture mapping by the circular slit map. (d) shows the
conformal texture mapping by the parallel slit map.

mapping, surface matching, registration and tracking, re-meshing, mesh-spline
conversion and so on.

Most existing parameterization methods focus on simply connected surfaces,
namely genus zero surfaces with a single boundary. According to Reimann’s
mapping theorem, any simply connected surface can be conformally mapped to
the unit disk, as shown in figure 2. The mapping is not unique. Two conformal
mappings differ by a Möbius transformation of the unit disk.

Fig. 2. Riemann mapping for a simply connected surface.

In practice, surfaces are usually with complicated topologies. In order to pa-
rameterize them using conventional methods, surfaces need to be partitioned to
simply connected disks first. This will introduce many artificial cuts and destroy
the intrinsic geometric properties of the original surfaces. In many geometric
modeling and processing applications, such as mesh-spline conversion and shape
classification, it is highly desirable to compute the parameterization without
partitioning. Our work focuses on the global parameterization of a broad class
of surfaces.

A multiply connected surface is a genus zero surface with multiple boundaries,
as shown in figure 1. Similar to the Riemann mapping theory, any multiply
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connected surface can be conformally mapped to some canonical domains. One
of such domains is the circular slit domain, which is an annulus with concentric
arc slits, as shown at the top of figure 1b; The other is the periodic parallel slit

domain, which is a strip with parallel slits, as shown at the bottom of figure 1b.
Two boundaries of the surface are mapped to the inner and outer boundaries of
the circular slit domain, and all the other boundaries are mapped to the circular
slits.

Compared to the simply connected case, the conformal mapping of multi-
ply connected surfaces is much more complicated. Two surfaces are conformally

equivalent, if there exists a conformal map between them. We can pick a canon-
ical representative for each conformal equivalence class. For example, all simply
connected surfaces are conformally equivalent, and the unit disk can serve as the
sole canonical representative. But multiply connected surfaces are in general not
conformally equivalent. For each conformal equivalence class of such surfaces we
need a separate circular slit domain as the canonical representative. In this sense,
the conformal parameterization algorithm for multiply connected surfaces must
compute both the mapping and the target domain; whereas the algorithm for
simply connected surfaces only needs to compute the mapping, since the domain
could be unique.

1.1 Contributions

In this paper we propose a novel method of conformal parameterization for
multiply connected surfaces. It maps the surface to circular slit domain or parallel
slit domain conformally. The algorithm is based on finding certain holomorphic
one-forms whose integration along boundaries satisfies special constraints. To
the best of our knowledge, this is the first work to directly handle multiply
connected surfaces by a linear method.

Slit mapping has many merits for geometric modeling and processing tasks.

First, slit mapping maps the whole surface to a rectangle, with all the bound-
aries mapped to parallel slits. This regularity not only helps improve the ac-
curacy for surface matching with boundaries, but also makes quad-remeshing,
mesh-spline conversion convenient.

Second, the whole rectangle in the parallel slit domain is fully occupied with-
out any gap or overlapping, which improves the packing efficiency of texture
mapping.

Third, the positions of the slits in the regular domain are completely de-
termined by the surface geometry, which can be treated as the finger print to
classify surfaces by conformal equivalence.

Fourth, the whole pipeline is based on manipulation of one-forms, which is
a linear process that is very efficient and stable. Plus, the whole pipeline is very
easy to implement.
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1.2 Related Work

In recent years, many excellent algorithms have been developed in surface pa-
rameterization. In this work, we only briefly review the most related works. For
more thorough references on parameterization methods, we refer readers to the
the following excellent surveys: [4] by Floater et al and [2] by Sheffer et al.

Many existing methods target at simply connected surfaces, either with fixed
boundary condition ([3], [5] and etc) or free boundary condition [[6], [7], [1], [8]
and etc]. These methods can not be applied to the multiply connected surfaces
directly, because they can not guarantee the mapping to be diffeomorphism.

A common way to generalize the parameterization methods for simply con-
nected surfaces is by ”cutting-and-packing”. This approach has been adapted
by Cohen-Steiner et al. [9], Garland et al. [10], Maillot et al. [11] and Sander et
al. [12]. All these methods require to cut the surface into multiple patches, pa-
rameterize them separately and then pack them together in the texture domain.
Because the partitioning process is artificial, global geometric properties of the
surfaces will be lost. Furthermore, the conformality can not be achieved along
the patch boundaries.

Global method without segmentation is proposed by Gu et al. [13][14]. They
used holomorphic one-forms as the underlying tool. But for multi-hole annuli,
this method needs double covering to make the surface close, which will increase
the computational cost. Our slit method, on the other hand, does not require
double covering and is more efficient. Furthermore, their method can not control
the positions of singularities in the parameterization. Our method has full control
of the singularities. The method in [14] is general for surfaces with arbitrary
topologies. In our work, we focus on multiply connected surfaces, therefore the
algorithm is simplified to skip the computing of homology basis.

One-form has also been used for vector fields decomposition and smoothing
[23]. Discrete one-forms on meshes were studied in [18]. Tong et al. [20] used
harmonic one-forms for surface parameterization. They enlarge the space of har-
monic one-forms by allowing additional singular points on the surface. Kälberer
et al. applied one-forms for surface parameterization combining with branch cov-
ering in [21], where the parameter lines are governed by a given frame field. In
[22] Fisher et al. used one-forms for designing tangent vector fields on surfaces
with complicated topologies.

Another method for multiply connected surfaces is discrete Ricci flow, pro-
posed by Jin et al. [15]. They can prescribe the target curvature of boundaries,
so that the target domain has regular shape, such as a unit disk with multiple
inner circle boundaries. But it requires non-linear optimization. In our method
only linear operations get involved and is therefore much faster and more stable.

In the following part of the paper, we well first present the theories underlying
our method in section 2. Then we give the algorithm pipeline and the implemen-
tation details of each step in section 3. The experimental results are reported in
4, followed by a conclusion and a brief discussion on the future direction in 5.
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2 Theoretic Background

In this section, we briefly introduce the theoretic background necessary for un-
derstanding the algorithm proposed here.

Intuitively, a tangent vector field on a surface is harmonic, if both its circu-
lation and divergence are zeros. Two harmonic fields form a holomorphic one-

form, if they are orthogonal everywhere. An intrinsic way to compute conformal
parameterization is to search for a holomorphic one-form that satisfies certain
properties. In order to acquire the canonical mapping to the slit domains, we
shall find certain holomorphic one-forms with special behavior on the boundary
of the surface.

2.1 Harmonic Function

Suppose S is a surface embedded in R3 with induced Euclidean metric g. S is
covered by an atlas {(Uα, φα)}. Suppose (xα, yα) is the local parameter on the
chart (Uα, φα). We say (xα, yα) is isothermal, if the metric has the representation

g = e2λ(xα,yα)(dx2
α + dy2

α).

The Laplace-Beltrami operator is defined as

∆g =
1

e2λ(xα,yα)
(

∂2

∂x2
α

+
∂2

∂y2
α

).

Definition 1 (Harmonic Function). A function f : S → R is harmonic, if

∆gf ≡ 0.

2.2 Holomorphic One-form

Suppose ω is a differential one-form with the representation fαdxα+gαdyα in the
local parameters (xα, yα), and fβdxβ + gβdyβ in the local parameters (xβ , yβ).
Then

(

∂xα

∂xβ

∂yα

∂xβ

∂xα

∂yβ

∂yα

∂yβ

)

(

fα

gα

)

=

(

fβ

gβ

)

.

ω is a closed one-form, if on each chart (xα, yα)

∂f

∂yα

− ∂g

∂xα

= 0.

ω is an exact one-form, if it equals the gradient of some function. An exact
one-form is also a closed one-form. If a closed one-form ω satisfies

∂f

∂xα

+
∂g

∂yα

= 0,

then ω is a harmonic one-form. The gradient of a harmonic function is an exact
harmonic one-form.

The so-called Hodge star operator turns a one-form ω to its conjugate ∗ω,

∗ω = −gαdxα + fαdyα.
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Definition 2 (Holomorphic One-form). A holomorphic one-form is a com-

plex differential form

ω +
√
−1∗ω,

where ω is a harmonic one-form.

The wedge product of two one-forms ωk = fkdx+gkdy, k = 1, 2 is a two-form

ω1 ∧ ω2 = (f1g2 − f2g1)dx ∧ dy.

2.3 Slit Mapping

Suppose S is an open surface with n boundaries γ1, · · · , γn. We can uniquely find
a holomorphic one-form ω, such that

∫

γk

ω =







2π k = 1
−2π k = 2
0 otherwise

Definition 3 (Circular Slit Mapping). Fix a point p0 on the surface, for

any point p ∈ S, let γ be an arbitrary path connection p0 and p, then the circular

slit mapping is defined as

φ(p) = e
∫

γ
ω
.

The proof of the following theorem on slit mapping can be found in [24].

Theorem 1 (Canonical Domains for Multiply Connected Surface). The

function φ effects a one-to-one conformal mapping of M onto the annulus 1 <

|z| < eλ0 minus n − 2 concentric arcs situated on the circles |z| = eλi , i =
1, 2, · · · , n − 2.

For a given choice of the inner and outer circle, the circular slit mapping is
uniquely determined up to a rotation around the center.

The slit mapping computes the intrinsic structure of the given surface, which
can be reflected in the shape of the target domain. The shape of a canonical
region with connectivity n depends on 3n−6 real constants. If we put the center
of boundary circles at the origin, and chose the radius of the outre circle to be 1 by
normalization, then the position and length of each concentric slit is determined
by 3 numbers, which gives a total of 3n−6; the radius of the inner circle requires
an additional parameter, but another parameter must be discounted to allow for
arbitrary rotation of the domain. Actually, 3n − 6 is exactly the dimension of
the conformal equivalence class space for an annulus with n boundaries.

The parallel slit mapping can be defined in a similar way.

Definition 4 (Parallel Slit Mapping). Let S̄ be the universal covering space

of the surface S, π : S̄ → S be the projection and ω̄ = π∗ω be the pull back of ω.

Fix a point p̄0 on S̄, for any point p ∈ S̄, let γ̄ be an arbitrary path connection

p̄0 and p̄, then the parallel slit mapping is defined as

φ̄(p̄) =

∫

γ̄

ω̄.
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2.4 Discrete Approximation

All the concepts defined in the smooth setting can be approximated in the dis-
crete setting. A smooth surface is approximated by a piecewise linear triangular
mesh M . vi represents a vertex, [vi, vk] means a half-edge, [vi, vj , vk] is an ori-
ented face.

A discrete zero-form is a function defined on the vertices f : V → R. A
discrete one-form is a function defined on the edges ω : E → R. A discrete
two-form is a function defined on the faces. The boundary operator ∂ gives the
boundary of an oriented edge and an oriented face.

∂[vi, vj ] = vj − vi,

∂[vi, vj , vk] = [vi, vj ] + [vj , vk] + [vk , vi].

The discrete exterior differential operator d is defined as the following. Suppose
f is a zero-form, then df is a one-form:

df([vi, vj ]) = f ◦ ∂[vi, vj ] = f(vj) − f(vi).

If ω is a one-form, then dω is a two-form:

dω([vi, vj , vk]) = ω ◦ ∂[vi, vj , vk] = ω[vi, vj ] + ω[vj , vk] + ω[vk, vi].

Given a discrete one-form ω, if dω is zero, the ω is closed. If there is a zero-form
f , such that ω = df , then ω is exact.

Suppose ω is a closed one-form, then we can embed each face on the plane and
assign it with a local coordinates. The discrete one-form can be represented as a
smooth one-form on the face. The Hodge star operator and the wedge product
operator can be defined the same as in smooth case.

The Laplace-Beltrami operator can be approximated by the cotangent for-
mulae. A thorough discussion on the discrete Laplace-Beltrami operator can be
found in Xu’s work [19].

3 Algorithm Pipeline

In this work, our goal is to compute a conformal mapping from a multiply
connected mesh to the slit domain. Suppose the input mesh has n+1 boundaries,

∂M = γ0 − γ1 − · · · − γn.

Without loss of generality, we map γ0 to the outer circle of the circular slit
domain, γ1 to the inner circle, and all the others to the concentric slits.

The following is the algorithm pipeline:

1. Compute the basis for all exact harmonic one-forms; (section 3.1)
2. Compute the basis for all closed harmonic one-forms; (section 3.2)
3. Compute the basis for all holomorphic one-forms; (section 3.3)
4. Construct the slit mapping. (section ??).



8 Xiaotian Yin, Junfei Dai, Shing-Tung Yau, and Xianfeng Gu

(a)f1 (b) f2 (c) f3

(d)η1 (e) η2 (f) η3

Fig. 3. Harmonic functions for three different inner boundaries. The first row shows
the harmonic function fk by color-encoding, the second row shows the corresponding
harmonic one-form ηk by integration contours.
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3.1 Basis of Exact Harmonic One-form

The first step of the algorithm is to compute the basis for exact harmonic one-
forms. Let γk be an inner boundary, we compute a harmonic function fk : S → R

by solving the following Dirichlet problem on mesh M :

{

∆fk ≡ 0
fk|γj

= δkj

where δkj is the Kronecker function, ∆ is the discrete Laplacian-Beltrami oper-
ator using the well-known co-tangent formula proposed in [16].

The exact harmonic one-form ηk can be computed as the gradient of the
harmonic function fk,

ηk = dfk,

and {η1, η2, · · · , ηn} form the basis for the exact harmonic one-forms .

3.2 Basis for Harmonic One-forms

(a) ζ1 (b) g1

Fig. 4. Constructing a closed one-form. (a) shows the cut path ζ1 on M bridging the
inner boundary γ1 to the outer boundary γ0; (b) shows the harmonic function g1 on
the cut mesh M1.

After getting the exact harmonic one-forms, we will compute the closed one-
form basis. Let γk (k > 0) be an inner boundary. Compute a path from γk to
γ0, denote it as ζk as shown in figure 4. ζk cut the mesh open to Mk, while ζk

itself is split into two boundary segments ζ+
k and ζ−k in Mk. Define a function

gk : Mk → R by solving a Dirichlet problem,







∆gk ≡ 0
gk|ζ+

k
= 1

gk|ζ−
k

= 0.
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(a)τ1 (b)τ1 (c)τ3

Fig. 5. Basis for the closed but not exact harmonic one-forms.

Compute the gradient of gk and let τk = dgk, then map τk back to M , where
τk becomes a closed one-form. Then we need to find a function hk : M → R, by
solving the following linear system:

∆(τk + dhk) ≡ 0.

Updating τk to τk +dhk, now we have {τ1, τ2, . . . , τn} as a set of basis for all the
closed but not exact harmonic one-forms. Figure 5 shows the closed non-exact
harmonic one-form basis for the face model.

With both the exact harmonic one-form basis and the closed non-exact har-
monic one-form basis computed, we can construct the harmonic one-form basis
by taking the union of them:

{η1, η2, · · · , ηn, τ1, τ2, · · · , τn}.

3.3 Basis for Holomorphic One-forms

(η1 + ∗η1) (η2 + ∗η2) (η3 + ∗η3)

Fig. 6. Holomorphic one-form basis.
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In step 1 we computed the basis for exact harmonic one-forms {η1, · · · , ηn}.
Now we compute their conjugate one-forms {∗η1, · · · , ∗ηn}, so that we can com-
bine all of them together into a set of holomorphic one-form basis.

First of all, for ηk we compute an initial approximation η′

k by a brute-force
method using Hodge star. That is, rotating ηk by 90◦ about the surface normal
to obtain η′

k. In practice such an initial approximation is usually not accurate
enough. In order to improve the accuracy, we employ a technique utilizing the
harmonic one-form basis we just computed. From the fact the ηk is harmonic,
we can conclude that its conjugate ∗ηk should also be harmonic. Therefore, ∗ηk

can be represented as a linear combination of the base harmonic one-forms:

∗ηk =

n
∑

i=1

aiηi +

n
∑

i=1

biτi.

Using the wedge product ∧, we can construct the following linear system,

∫

M

∗ηk ∧ ηi =

∫

M

η′

k ∧ ηi,

∫

M

∗ηk ∧ τj =

∫

M

η′

k ∧ τj .

We solve this linear system to obtain the coefficients ai and bi (i = 1, 2, · · · , n)
for the conjugate one-form ∗ηk. Pairing each base exact harmonic one-form with
its conjugate, we get a set of basis for the holomorphic one-form group on M :

{η1 +
√
−1∗η1, · · · , ηn +

√
−1∗ηn}

Figure 6 demonstrates the base holomorphic one-forms on the mesh.

3.4 Construct Slit Mapping

After computing the holomorphic one-form basis, we need to find a special holo-
morphic one-form ω

ω =

n
∑

i=1

λi(ηi +
√
−1∗ηi)

such that the imaginary part of its integration satisfies

Im

(∫

γk

ω

)

=

{

−2π k = 1
0 k > 1

In order to get the coefficients λi, solve the following linear system for λi,
i = 1, · · · , n:











α11 α12 · · · α1n

α21 α22 · · · α2n

...
...

. . .
...

αn1 αn2 · · · αnn





















λ1

λ2

...
λn











=











−2π

0
...
0
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Fig. 7. Circular Slit Mapping and Parallel Slit Mapping. The first row shows the con-
formal texture mappings induced by the slit mappings; the second row shows the
corresponding slit domains.

where

αkj =

∫

γj

∗ηk,

It can be proven that this linear system has a unique solution, which reflects
the fact that γ1 is mapped to the inner circle of the circular slit domain. Further,
the system implies the following equation

λ1α01 + λ2α02 + · · · + λnα0n = 2π,

which means that γ0 is mapped to the outer circle in the circular slit domain.
After computing the desired holomorphic one-form ω, we are ready to gen-

erate the circular slit mapping. What we need to compute is a complex-valued
function φ : M → C by integrating ω and taking the exponential map. Choosing
a base vertex v0 arbitrarily, and for each vertex v ∈ M choosing the shortest
path γ from v0 to v, we can compute the map as the following:

φ(v) = e
∫

γ
ω
.

Based on the circular slit map φ we just computed, we can compute a parallel
slit map τ : M → C:

τ(v) = ln φ(v).

Figure 7 shows the results for both circular and parallel slit mappings. In the
third frame, γ0 and γ1 are mapped to the outer and inner boundaries, γ2 and γ3

to the circular slits. In the second frame, γ2 and γ3 are mapped to the outer and
inner boundaries, γ0 and γ1 to the circular slits. Frame 3 shows the parallel slit
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mapping, which is the logarithm of the circular slit mapping in the first frame;
Frame 4 is the logarithm of the circular slit mapping in the second frame.

γ0

γ1

γ2 γ3

γ0

γ1

γ2
γ3

γ0

γ1

γ2

γ3

γ0

γ3

γ2 γ1

Fig. 8. Circular slit mappings with different boundary arrangements.

Figure 8 shows more circular slit mappings. Any two boundaries can be
chosen and be mapped to the outer and inner circles.

4 Experimental Results

We implemented our algorithm in C++ on Windows platform. The system has
been tested on several real human face surfaces (see figure 10), scanned by 3D
scanners introduced in [?]. Each face mesh has around 15k vertices and 30k

triangles with 4 boundaries. We also tested our system on a brain cortical surface
(figure 11), which is reconstructed from MRI images. The cortical surface has
30k vertices and 60k faces with 12 landmarks sliced on the surface. The harmonic
forms are computed using a brute-force implementation of the conjugate gradient
method, without using any well-tuned numerical library. The whole processing
takes less than 3 minuets. In all experiments the algorithm converges stably, and
the final parameterization results are conformal.

As a global conformal parameterization method, slit mapping can be applied
to many applications in geometric modeling and processing. In the current work
we applied slit mapping method for several most direct applications and got
some preliminary results.

Texture Mapping. One of most direct applications in computer graphics is tex-
ture mapping. As shown in figure 1, the parallel slit domain can serve as the
texture domain, which is very regular in shape. More over, the texture domain
is fully utilized during the texture mapping, since there is no gap inside the
domain.

Although this work focuses on multiply connected surfaces, in fact our algo-
rithm can be easily generalized to handle high genus closed surfaces, such as the
eight model in figure 9. The only extra requirement is to slice the surface open
along certain cycles, for example, the two tunnel cycles in figure 9c. Such cycles
can be automatically computed using methods like that proposed by T. Dey et
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γ0 γ3

γ1 γ2

γ

γ0

γ1

γ2

γ3

γ0 γ3

γ1

γ2

γ

(a) (b) (c) (d) (e)

Fig. 9. Slit mapping of closed mesh. The closed eight model needs to be sliced open
along two tunnel cycles and turned into an annulus with 4 boundaries, as shown in (c).
(a) is the texture mapping using texture domain (b), which is the parallel slit domain
with prescribed boundary γ0 and γ2; (e) is the texture mapping using texture domain
(d), which is the parallel slit domain with prescribed boundary γ0 and γ3.

al in [17]. After turning the surface into a multiply connected one, we can carry
out the slit algorithm thereafter directly.

Surface Fingerprint. The slit mapping method computes the conformal invari-
ants of the surface. The shape parameters of the circular slit domain indicate the
conformal equivalence class of the surface and can be treated as the fingerprints
of the surface. We test our algorithm for several human faces from different per-
sons with different expressions. The result is illustrated in figure 10. From this
figure, it is very clear that the fingerprints of the three calm faces are very sim-
ilar, whereas the fingerprint of the laughing face is quite different from others.
This gives us a way to measure the expression quantitatively.

Conformal Brain Mapping with Landmarks. Slit mapping provides a valuable
tool for brain mapping. As shown in figure 11, brain surfaces are highly con-
voluted. It is a great challenge to match two cortical surfaces directly in R3.
Conformal brain mapping flattens the brain surface onto the canonical domains.
Special landmarks are labeled on the surface, which are required to be regis-
tered across different brain surfaces. By using slit mapping, all the land marks
are mapped to parallel slits, and the whole brain is mapped to a rectangle. This
makes the down stream registration and analysis much easier. In the middle
column of figure 11, the circular slit mapping result is illustrated. In order to
show the landmarks clearly, we remove the texture information from the surface
in the bottom frame. The last column shows the parallel slit mapping result; all
the landmarks are mapped to horizontal slits as illustrated in the bottom frame.

As a general method for conformal parameterization, slit mapping can also
benefits many other applications, such as quad-remeshing, geometry image gen-
eration, mesh-spline conversion and etc. It is an interesting research direction to
explore the potential of our method in those applications.



Slit Map : Conformal Parameterization for Multiply Connected Surfaces 15

γ

γ

Fig. 10. Slit domains as finger prints. The left column shows two face models; the
middle and right column show their finger prints using the parallel and circular slit
domains respectively.

Fig. 11. Conformal brain mapping with 12 landmarks. The first column is the brain
surface; the second column is the circular slit mapping; the last column is the parallel
slit mapping.
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5 Conclusion

In this work, we presented a novel global conformal parameterization method,
called slit map, for multiply connected surfaces. The method is based on comput-
ing a holomorphic one-form that has special behaviors on the surface boundaries.
The algorithm maps any multiply connected surface to a flat annulus with con-
centric circular slits (circular slit domain) or to a rectangle with parallel slits
(parallel slit domain). The target domains are canonical and reflect the intrinsic
conformal structure of the surface; therefore, the shape parameters of the target
domains can be used for conformal surface classification. The method can bene-
fit many important applications in geometric modeling and processing, such as
texture mapping, surface classification, quad re-meshing, mesh-spline conversion
and so on. It can also be applied for conformal brain mapping in medical imaging
field. The regularity of the target domain facilitates surface matching with land
mark constraints. The method is automatic, efficient, stable and general, which
can be shown by our experimental results

In the future, we will explore more applications of slit mapping. Also, we want
to investigate alternative methods of conformal mapping for multiply connected
surfaces and compare their performances to that of slit mapping.
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22. FISHER, M., SCHRÖDER, P., DESBRUN, M., HOPPE., H.: Design of tangent
vector fields. ACM Transactions on Graphics (TOG) Vol 26, No 3, pp.56–66.

23. TONG, Y., LOMBEYDA, S., HIRANI, A. N., DESBRUN, M.: Discrete Multiscale
Vector Field Decomposition. ACM Trans. Graph. 22, 3, pp.445–452.

24. AHLFORS, L.V.: Complex analysis. McGraw-Hill, New York, 1953.


