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Abstract. This chapter introduces the concepts, theories and algorithms
of discrete curvature flows for surfaces with arbitrary topologies. Discrete
curvature flow for hyperbolic 3-manifolds with geodesic boundaries is also
presented. Curvature flow method can be used to design Riemannian
metrics by prescribed curvatures, and applied for parameterization in
graphics, shape registration in computer vision, brain mapping in medi-
cal imaging, spline construction in computer aided geometric design, and
many other engineering fields.
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1 Introduction

Ricci flow is a curvature flow method, which has been applied to the proof of the
Poincaré conjecture on three dimensional manifolds [Per02,Per03b,Per03a]. Ricci
flow was introduced by Richard Hamilton for general Riemannian manifolds in
his seminal work [Ham82] in 1982.

Physical Intuition Ricci flow has a simple physical intuition. Given a manifold
with a Riemannian metric, the metric induces the curvature function. If the
metric is changed, the curvature will be changed accordingly. The metric can
be deformed in the following way: at each point, locally scale the metric, such
that the scaling factor is proportional to the curvature at the point. After the
deformation, the curvature will be changed. By repeat this deformation process,
both the metric and the curvature will evolve, such that the curvature evolution
? This work has been supported by NSF CCF-0448399, NSF DMS-0528363, NSF DMS-
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is like a heat diffusion process. Eventually, the curvature function is constant
everywhere. In particular, if the manifold is closed and simply connected, it
becomes a sphere eventually.

Motivations Ricci flow has been applied in engineering fields. Surface Ricci flow
is a powerful tool to design Riemannian metric, such that the metric induces
the user-defined Gaussian curvature function on the surface, and is conformal
(i.e.,angle-preserving) to the original metric. Many applications in engineering
fields can be formulated as finding certain metrics with desired properties, where
Ricci flow can be directly utilized.

In graphics, a surface parametrization is commonly used, which refers to
the process of mapping a surface to another canonical domain. If the domain is
planar, then it is equivalent to finding a Riemannian metric that induces zero
Gaussian curvature everywhere. Such a metric is called a flat metric.

In digital geometry processing, if such a parameterization is known, any
signal (e.g. texture) on the surface can be defined on the parametric domain.
Complicated processing tasks on surfaces can be transferred to easier ones on
the parametric domains, such as texturing [LPRM02] and re-meshing [AMD02].

In computer-aided geometric modeling, a flat metric is helpful for construct-
ing manifold splines, whose parametric domains are manifolds with arbitrary
topologies instead of planar domains. In order to build a manifold spline, a
special atlas of the domain manifold is required, such that all local coordinate
transition maps are affine. One way to construct such an atlas is to find a flat
metric. Details of the manifold theory and the construction of an affine atlas can
be found in [GHQ06].

In the medical imaging field, conformal brain mapping has been widely used,
which maps the human brain cortical surfaces to the unit sphere to facilitate
registration, fusion, and comparison. This is equivalent to finding a Riemannian
metric on the brain cortical surface, such that the induced Gaussian curvature
is a constant +1 everywhere.

For 3-manifolds, discrete curvature flow is also valuable, especially for the in-
vestigation of the topological structures and geometric properties of 3-manifolds.
It has great potential for many engineering applications, such as volumetric pa-
rameterization, registration and shape analysis.

Brief History Richard Hamilton introduced Ricci flow for general Riemannian
manifold in [Ham82]. Later, Hamilton introduced surface Ricci flow in [Ham88].
Perelman applied Ricci flow for the proof of Poincaré conjecture and Thurston’s
geometrization conjecture in [Per02,Per03b,Per03a]. A thorough introduction to
Ricci flow can be found in [CLN06] and [CCG+07].

A circle packing algorithm was introduced by Thurston in [Thu76]. Stephen-
son et.al. improved the algorithm and built a software system, which is explained
in [Ste05]. Chow and Luo discovered their intrinsic relations and laid down the
theoretic foundation for discrete Ricci flow in [CL03], where the existence and
convergence of the discrete Ricci flow were established. The variational approach
to finding constant curvature metrics on triangulated surfaces was pioneered by
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the works [dVY91], [BW92], [Riv94]. More recently, it appears in [BS04], [Lei02],
[Luo04a] and [Luo05b].

In engineering fields, discrete curvature flow method has been applied for sur-
face parameterization [KSS06], [BCGB08], [JKLG08], [YKLG08], face matching
and registration [ZYZ+08] and shape analysis [GWK+07], computing general
geometric structures [JLG07] and constructing manifold splines [GHJ+08].

More details for discrete curvature flow and variational principle on discrete
surfaces can be found in [LGD07]. The source codes of the algorithms can be
found in [GY08].

2 Theoretical Background for Smooth Surface Ricci Flow

In this section, we introduce the theory of Ricci flow in the continuous setting,
which will be generalized to the discrete setting in Section 3.

2.1 Fundamental Group and Universal Covering Space

The closed loops on the surface can be classified by homotopy equivalence. If
two closed curves on a surface M can deform to each other without leaving
the surface, then they are homotopic to each other. Two closed curves sharing
common points can be concatenated to form another loop. This operation defines
the multiplication of homotopic classes. All the homotopy classes form the so
called first fundamental group of M . A collection of curves on the surface is a cut
graph, if their complement is a topological disk, which is called the fundamental
domain of the surface.

For a genus g closed surface, the fundamental group has 2g generators. A set
of fundamental group basis {a1, b1, a2, b2, · · · , ag, bg} is canonical, if ai, bi have
only one geometric intersection, but neither ai, aj nor ai, bj have geometric inter-
sections, where i 6= j. Figs. 8(a) and 6(a) show the sets of canonical fundamental
group generators for the kitten model with zero Euler number and the amphora
model with negative Euler number. If we slice M along the curves, we can get a
disk-like domain with boundary {a1b1a

−1
1 b−1

1 a2b2a
−1
2 b−1

2 · · · agbga
−1
g b−1

g }, which
is called the canonical fundamental domain of the surface M .

A covering space of M is a surface M̄ together with a continuous surjective
map p : M̄ → M , such that for every q ∈ M there exists an open neighborhood
U of q such that p−1(U) (the inverse image of U under p) is a disjoint union
of open sets in M̄ , each of which is mapped homeomorphically onto U by p.
If M̄ is simply connected, then M̄ is called the universal covering space of M .
Suppose φ : M̄ → M̄ , p = φ ◦ p, then φ is called a deck transformation. A deck
transformation maps one fundamental domain to another fundamental domain.
All the deck transformations form the so-called deck transformation group, which
is isomorphic to the fundamental group. We use the algorithms in [CJGQ05] to
compute the canonical fundamental group generators.
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2.2 Riemannian Metric and Gaussian Curvature

All the differential geometric concepts and the detailed explanations can be
found in [Gug77]. Suppose S is a C2 smooth surface embedded in R3 with local
parameter (u1, u2). Let r(u1, u2) be a point on S and dr = r1du1 + r2du2 be the
tangent vector defined at that point, where r1, r2 are the partial derivatives of
r with respect to u1 and u2, respectively. The Riemannian metric or the first
fundamental form is:

< dr, dr >=
∑

< ri, rj > duiduj , i, j = 1, 2. (1)

The Gauss map G : S → S2 from the surface S to the unit sphere S2 maps
each point p on the surface to its normal n(p) on the sphere. The Gaussian
curvature K(p) is defined as the Jacobian of the Gauss map. Intuitively, it is the
ratio between the infinitesimal area of the Gauss image on the Gaussian sphere
and the infinitesimal area on the surface.

Let ∂S be the boundary of the surface S, kg the geodesic curvature, dA the
area element, ds the line element, and χ(S) the Euler characteristic number of
S. The total curvature is determined by the topology:

∫

S

KdA +
∫

∂S

kgds = 2πχ(S). (2)

Fig. 1. Properties of Conformal Mapping: Conformal mappings transform in-
finitesimal circles to infinitesimal circles and preserve the intersection angles among
the circles. Here, infinitesimal circles are approximated by finite ones. Notice that a
circle in the texture appears in a scaled one in the texture mapping result. Also, the
angles in the checkerboard pattern preserved in the texture mapping result.

2.3 Conformal Deformation

Let S be a surface embedded in R3. S has a Riemannian metric induced from
the Euclidean metric of R3, denoted by g. Suppose u : S → R is a scalar function
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defined on S. It can be verified that ḡ = e2ug is also a Riemannian metric on S.
Furthermore, angles measured by g are equal to those measured by ḡ. Therefore,
we say ḡ is a conformal deformation from g.

A conformal deformation maps infinitesimal circles to infinitesimal circles and
preserves the intersection angles among the infinitesimal circles. In Fig. 1, we
illustrate this property by approximating infinitesimal circles by finite circles.
We put a regular circle packing pattern on the texture and map the texture
to the surface using a conformal parameterization, where all the circles on the
texture still look like circles on the surface, and all the tangency relations among
the circles are preserved.

When the Riemannian metric is conformally deformed, curvatures will also
be changed accordingly. Suppose g is changed to ḡ = e2ug. Then, the Gaussian
curvature will become

K̄ = e−2u(−∆gu + K), (3)

where ∆g is the Laplacian-Beltrami operator under the original metric g. The
geodesic curvature will become

k̄ = e−u(∂ru + k), (4)

where r is the tangent vector orthogonal to the boundary. According to the
Gauss-Bonnet theorem, the total curvature is still 2πχ(S), where χ(S) is the
Euler characteristic number of S.

2.4 Uniformization Theorem

Given a surface S with a Riemannian metric g, there exists infinitely many
metrics conformal to g. The following uniformization theorem states that, among
all of the conformal metrics, there exists a unique representative, which induces
constant curvature. Moreover, the constant will be one of {+1, 0,−1}.
Theorem 1 (Uniformization Theorem). Let (S,g) be a compact 2-dimensional
surface with a Riemannian metric g, then there is a metric ḡ conformal to g
with constant Gaussian curvature everywhere; the constant is one of {+1, 0,−1}.

We call such a metric the uniformization metric of S. According to the Gauss-
Bonnet theorem (Eq. 2), the sign of the constant Gaussian curvature must match
the sign of the Euler number of the surface: +1 for χ(S) > 0, 0 for χ(S) = 0,
and −1 for χ(S) < 0.

Therefore, we can embed the universal covering space of any closed surface
using its uniformization metric onto one of the three canonical surfaces: the
sphere S2 for genus zero surfaces with positive Euler numbers, the plane E2 for
genus one surfaces with zero Euler number, and the hyperbolic space H2 for high
genus surfaces with negative Euler numbers (see Fig. 2). Accordingly, we can
say that surfaces with positive Euler number admit spherical geometry; surfaces
with zero Euler number admit Euclidean geometry; and surfaces with negative
Euler number admit hyperbolic geometry.
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(a) χ > 0, S2 (b) χ = 0, E2 (c) χ < 0, H2

Fig. 2. Uniformization Theorem: Each surface in R3 admits a uniformization met-
ric, which is conformal to the original metric and induces constant Gaussian curvature;
the constant is one of {+1, 0,−1} depending on the Euler characteristic number χ of
the surface. Its universal covering space with the uniformization metric can be isomet-
rically embedded onto one of three canonical spaces: sphere, plane, or hyperbolic space.
Here, we shows the parameterizations computed by using discrete spherical, Euclidean,
and hyperbolic Ricci flows, respectively.

2.5 Spherical, Euclidean and Hyperbolic Geometry

The unit sphere is with Gaussian curvature +1 and admits the spherical geom-
etry. The rigid motions in spherical geometry are rotations. The geodesics are
great arcs. The Euclidean plane is with 0 curvature and admits the Euclidean
geometry. Planar translations and rotations form the rigid motion group.

The hyperbolic space model we used in this paper is the Poincaré disk, which
is a unit disk on the complex plane, with Riemannian metric

ds2 =
4dwdw̄

(1− w̄w)2
, w ∈ C.

In the Poincaré disk, rigid motion is a Möbius transformation,

z → eiθ z − z0

1− z̄0z
, z0 ∈ C, θ ∈ [0, 2π);

the geodesics are circular arcs which are orthogonal to the unit circle; the hy-
perbolic circle (c, r) (c represents the center, r the radius) coincides with an
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Euclidean circle (C, R) with

C =
2− 2µ2

1− µ2|c|2 c, R2 = |C|2 − |c|2 − µ2

1− µ2|c|2 ,

where µ = er−1
er+1 .

We also use the upper half plane model for hyperbolic space H2. H2 =
{(x, y) ∈ R2|y > 0}, with the Riemannian metric ds2 = dx2+dy2

y2 . In H2, hy-
perbolic lines are circular arcs and half lines orthogonal to the x-axis. The rigid
motion is given by the so-called Möbius transformation

az + b

cz + d
, ac− bd = 1, a, b, c, d ∈ R,

where z = x + iy is the complex coordinates.
Similarly, the three dimensional hyperbolic space H3 can be represented using

upper half space model,H3 = {(x, y, z) ∈ R3|z > 0}, with Riemannian metric

ds2 =
dx2 + dy2 + dz2

z2
.

In H3, the hyperbolic planes are hemispheres or vertical planes, whose equators
are on the xy-plane. The xy-plane represents all the infinity points in H3. The
rigid motion in H3 is determined by its restriction on the xy-plane, which is a
Möbius transformation on the plane, in the form

az + b

cz + d
, ac− bd = 1, a, b, c, d ∈ C.

Most of the computation is carried out on the xy-plane.

vi vj

vk

li
lj

lk

θi

θk

θj

vi vj

vk

vi vj

vk

lili

lk
lk

ljlj

θi θi

θk θk

θjθj

R2 H2
S2

Fig. 3. Euclidean, hyperbolic and Spherical triangles.

As shown in figure 4, triangles with spherical , Euclidean or hyperbolic back-
ground geometry (meaning triangles in S2, E2 and H2) satisfy different cosine
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laws:

S2 cos li =
cos θi + cos θj cos θk

sin θj sin θk
(5)

H2 cosh li =
cos θi + cos θj cos θk

sin θj sin θk
(6)

E2 1 =
cos θi + cos θj cos θk

sin θj sin θk
(7)

We can interchange the role of edge and angle and get another three cosine
laws:

S2 cos θi =
cos li − cos lj cos lk

sin lj sin lk
(8)

H2 cos θi =
− cosh li + cosh lj cosh lk

sinh lj sinh lk
(9)

E2 cos θi =
−l2i + l2j + l2k

2lj lk
(10)

l1

l2l3

θ1

θ2
θ3

Fig. 4. Hyperbolic right-angled hexagon.

For the right-angled hyperbolic hexagon, let l1, l2, l3 be three non-pairwise
adjacent edges of the hexagon and the opposite edges θ1, θ2, θ3, the cosine law is

H2 cosh li =
cosh θi + cosh θj cosh θk

sinh θi sinh θk
. (11)

Based on the cosine laws, curvature flows on smooth surfaces can be gener-
alized to discrete cases.

2.6 Smooth Surface Ricci Flow

Suppose S is a smooth surface with a Riemannian metric g. The Ricci flow
deforms the metric g(t) according to the Gaussian curvature K(t) (induced by
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itself), where t is the time parameter

dgij(t)
dt

= −2K(t)gij(t). (12)

There is an analogy between the Ricci flow and the heat diffusion process. Sup-
pose T (t) is a temperature field on the surface. The heat diffusion equation is
dT (t)/dt = −∆gT (t), where ∆g is the Laplace-Beltrami operator induced by
the surface metric. The temperature field becomes more and more uniform with
the increase of t, and it will become constant eventually.

In a physical sense, the curvature evolution induced by the Ricci flow is
exactly the same as heat diffusion on the surface, as follows:

dK(t)
dt

= −∆g(t)K(t), (13)

where ∆g(t) is the Laplace-Beltrami operator induced by the metric g(t). If we
replace the metric in Eq. 12 with g(t) = e2u(t)g(0), then the Ricci flow can be
simplified as

du(t)
dt

= −2K(t), (14)

which states that the metric should change according to the curvature.
The following theorems postulate that the Ricci flow defined in Eq. 12 is

convergent and leads to a conformal uniformization metric. For surfaces with
non-positive Euler numbers, Hamilton proved the convergence of Ricci flow in
[Ham88]:

Theorem 2 (Hamilton 1988). For a closed surface of non-positive Euler
characteristic, if the total area of the surface is preserved during the flow, the
Ricci flow will converge to a metric such that the Gaussian curvature is constant
everywhere.

It is much more difficult to prove the convergence of Ricci flow on surfaces with
positive Euler numbers. The following result was proven by Chow in [Cho91]:

Theorem 3 (Chow 1991). For a closed surface of positive Euler characteris-
tic, if the total area of the surface is preserved during the flow, the Ricci flow will
converge to a metric such that the Gaussian curvature is constant everywhere.

The corresponding metric g(∞) is the uniformization metric. Moreover, at any
time t, the metric g(t) is conformal to the original metric g(0).

The Ricci flow can be easily modified to compute a metric with a user-defined
curvature K̄ as the following,

du(t)
dt

= 2(K̄ −K). (15)

With this modification, the solution metric g(∞) can be computed, which in-
duces the curvature K̄.



10 David Gu et.al.

3 Theoretical Background for Discrete Surface Ricci
Flow

In engineering fields, smooth surfaces are often approximated by simplicial com-
plexes (triangle meshes). Major concepts, such as metric, curvature, and con-
formal deformation in the continuous setting can be generalized to the discrete
setting. We denote a triangle mesh as Σ, a vertex set as V , an edge set as E,
and a face set as F . eij represents the edge connecting vertices vi and vj , and
fijk denotes the face formed by vi, vj , and vk.

3.1 Background Geometry

In graphics, it is always assumed that a mesh Σ is embedded in the three dimen-
sional Euclidean space R3, and therefore each face is Euclidean. In this case, we
say the mesh is with Euclidean background geometry (see Fig. 2(a)). The angles
and edge lengths of each face satisfy the Euclidean cosine law.

Similarly, if we assume that a mesh is embedded in the three dimensional
sphere S3, then each face is a spherical triangle. We say the mesh is with spherical
background geometry (see Fig. 2(b)). The angles and the edge lengths of each
face satisfy the spherical cosine law.

Furthermore, if we assume that a mesh is embedded in the three dimensional
hyperbolic space H3, then all faces are hyperbolic triangles. We say the mesh is
with hyperbolic background geometry (see Fig. 2(c)). The angles and the edge
lengths of each face satisfy the hyperbolic cosine law.

In the following discussion, we will explicitly specify the background geom-
etry for a mesh when it is needed. Otherwise, the concept or the algorithm is
appropriate for all kinds of background geometries.

3.2 Discrete Riemannian Metric

A Riemannian metric on a mesh Σ is a piecewise constant metric with cone
singularities. A metric on a mesh with Euclidean metric is a Euclidean metric
with cone singularities. Each vertex is a cone singularity. Similarly, a metric
on a mesh with spherical background geometry is a spherical metric with cone
singularities; a metric on a mesh with hyperbolic background geometry is a
hyperbolic metric with cone singularities.

The edge lengths of a mesh Σ are sufficient to define this Riemannian metric,

l : E → R+, (16)

as long as, for each face fijk, the edge lengths satisfy the triangle inequality:
lij + ljk > lki.
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v1

v2 v3

φ12

φ23

φ31γ1

γ2

γ3

θ1

θ2 θ3

o

(a) (b)

Fig. 5. Circle Packing Metric (a) Flat circle packing metric (b) Circle packing
metric on a triangle.

3.3 Discrete Gaussian Curvature

The discrete Gaussian curvature Ki on a vertex vi ∈ Σ can be computed from
the angle deficit,

Ki =

{
2π −∑

fijk∈F θjk
i , vi 6∈ ∂Σ

π −∑
fijk∈F θjk

i , vi ∈ ∂Σ
(17)

where θjk
i represents the corner angle attached to vertex vi in the face fijk, and

∂Σ represents the boundary of the mesh. The discrete Gaussian curvatures are
determined by the discrete metrics.

3.4 Discrete Gauss-Bonnet Theorem

The Gauss-Bonnet theorem (Eq. 2) states that the total curvature is a topological
invariant. It still holds on meshes as follows.

∑

vi∈V

Ki + λ
∑

fi∈F

Ai = 2πχ(M), (18)

where Ai denotes the area of face fi, and λ represents the constant curvature
for the background geometry; +1 for the spherical geometry, 0 for the Euclidean
geometry, and −1 for the hyperbolic geometry.

3.5 Discrete Conformal Deformation

Conformal metric deformations preserves infinitesimal circles and the intersec-
tion angles among them. The discrete conformal deformation of metrics uses
circles with finite radii to approximate the infinitesimal circles.

The concept of the circle packing metric was introduced by Thurston in
[Thu76] as shown in Fig. 5. Let Γ be a function defined on the vertices, Γ : V →
R+, which assigns a radius γi to the vertex vi. Similarly, let Φ be a function
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defined on the edges, Φ : E → [0, π
2 ], which assigns an acute angle Φ(eij) to each

edge eij and is called a weight function on the edges. The pair of vertex radius
function and edge weight function on a mesh Σ, (Γ, Φ), is called a circle packing
metric of Σ.

Fig. 5 illustrates the circle packing metrics. Each vertex vi has a circle whose
radius is γi. For each edge eij , the intersection angle φij is defined by the two
circles of vi and vj , which either intersect or are tangent.

Two circle packing metrics (Γ1, Φ1) and (Γ2, Φ2) on the same mesh are con-
formally equivalent if Φ1 ≡ Φ2. A conformal deformation of a circle packing
metric only modifies the vertex radii and preserves the intersection angles on
the edges.

3.6 Admissible Curvature Space

A mesh Σ with edge weight Φ is called a weighted mesh, which is denoted as
(Σ, Φ). In the following, we want to clarify the spaces of all possible circle packing
metrics and all possible curvatures of a weighted mesh.

Let the vertex set be V = {v1, v2, · · · , vn}, and the radii be Γ = {γ1, γ2, · · · , γn}.
Let ui be

ui =





log γi E2

log tanh γi

2 H
2

log tan γi

2 S2
(19)

where E2, H2, and S2 indicate the background geometry of the mesh. We repre-
sent a circle packing metric on (Σ, Φ) by a vector u = (u1, u2, · · · , un)T . Similarly,
we represent the Gaussian curvatures at mesh vertices by the curvature vector
k = (K1,K2, · · · ,Kn)T . All the possible u’s form the admissible metric space,
and all the possible k’s form the admissible curvature space.

According to the Gauss-Bonnet theory (Eq. 18), the total curvature must be
2πχ(Σ), and therefore the curvature space is n − 1 dimensional. We add one
linear constraint to the metric vector u,

∑
ui = 0, for the normalized metric. As

a result, the metric space is also n− 1 dimensional. If all the intersection angles
are acute, then the edge lengths induced by a circle packing satisfy the triangle
inequality. There is no further constraint on u. Therefore, the admissible metric
space is simply Rn−1.

A curvature vector k is admissible if there exists a metric vector u, which
induces k. The admissible curvature space of a weighted mesh (Σ, Φ) is a convex
polytope, specified by the following theorem. The detailed proof can be found
in [CL03].

Theorem 4. Suppose (Σ, Φ) is a weighted mesh with Euclidean background ge-
ometry, I is a proper subset of vertices, FI is the set of faces whose vertices are
in I and the link set Lk(I) is formed by faces (e, v), where e is an edge and v is
the third vertex in the face,

Lk(I) = {(e, v)|e ∩ I = ∅, v ∈ I},
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then a curvature vector k is admissible if and only if
∑

vi∈I

Ki > −
∑

(e,v)∈Lk(I)

(π − φ(e)) + 2πχ(FI). (20)

The admissible curvature space for weighted meshes with hyperbolic or spher-
ical background geometries is more complicated. We refer the readers to [LGJ07]
for detailed discussion.

3.7 Discrete Surface Ricci Flow

Suppose (Σ, Φ) is a weighted mesh with an initial circle packing metric. The
discrete Ricci flow is defined as follows.

dui(t)
dt

= (K̄i −Ki), (21)

where k̄ = (K̄1, K̄2, · · · , K̄n)T is the user defined target curvature. Discrete Ricci
flow has exactly the same form as the smooth Ricci flow (Eq. 15), which deforms
the circle packing metric according to the Gaussian curvature, as in Eq. 21.

Discrete Ricci flow can be formulated in the variational setting, namely, it
is a negative gradient flow of a special energy form. Let (Σ, Φ) be a weighted
mesh with spherical (Euclidean or hyperbolic) background geometry. For two
arbitrary vertices vi and vj , the following symmetric relation holds:

∂Ki

∂uj
=

∂Kj

∂ui
.

Let ω =
∑n

i=1 Kidui be a differential one-form [Wei07]. The symmetric relation
guarantees that the one-form is closed (curl free) in the metric space.

dω =
∑

i,j

(
∂Ki

∂uj
− ∂Kj

∂ui
)dui ∧ duj = 0.

By Stokes theorem, the following integration is path independent,

f(u) =
∫ u

u0

n∑

i=1

(K̄i −Ki)dui, (22)

where u0 is an arbitrary initial metric. Therefore, the above integration is well
defined, and is called the discrete Ricci energy. The discrete Ricci flow is the
negative gradient flow of the discrete Ricci energy. The discrete metric which
induces k̄ is the minimizer of the energy.

Computing the desired metric with user-defined curvature k̄ is equivalent
to minimizing the discrete Ricci energy.For Euclidean or hyperbolic cases, the
discrete Ricci energy (see Eq. 22) was first proved to be strictly convex in the
seminal work of Colin de Verdiere [dVY91] for the Φ = 0 case, and was gener-
alized to all cases of Φ ≤ π/2 in [CL03]. The global minimum uniquely exists,
corresponding to the metric ū, which induces k̄. The discrete Ricci flow converges
to this global minimum.
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Theorem 5 (Chow & Luo: Euclidean Ricci Energy). The Euclidean Ricci
energy f(u) on the space of the normalized metric

∑
ui = 0 is strictly convex.

Theorem 6 (Chow & Luo: Hyperbolic Ricci Energy). The hyperbolic
Ricci energy is strictly convex.

Although the spherical Ricci energy is not strictly convex, the desired metric
ū is still a critical point of the energy. In our experiments, the solution can be
reached using Newton’s method.

4 Algorithm for Discrete Surface Ricci Flow

In this section, we explain the algorithms in detail. The unified pipeline for all
kinds of the discrete Ricci flow algorithms is as follows:
1. Determine the target curvature and the background geometry;
2. Compute the initial circle packing metric;
3. Optimize the Ricci energy using either gradient descent or Newton’s methods;
4. Compute the layout using the result metric.

Step 1. Determine the Target Curvature and the Background Geom-
etry
The user is free to define the target curvatures for different applications, while
obeying the Gauss-Bonnet theorem in Eq. 18 and admissible condition in Eq.
20.

For example, for constructing manifold splines (see [GHQ06] for details), it is
desirable to obtain a flat metric with a minimal number of cone singularities. One
can concentrate all the curvatures at a single vertex and make everywhere else
flat. In this case, the background geometry of the mesh is chosen to be Euclidean
and the curvature for the selected vertex is set to 2πχ(Σ). The curvature at all
other vertices is set to zero.

For the application of surface classification using conformal structures (see
[JLYG07] for details), no cone singularities are allowed. All of the curvatures
must be evenly distributed over the whole surface. In this case, the target curva-
ture is zero for all vertices and the background geometry is hyperbolic for high
genus meshes.
Step 2. Compute the Initial Circle Packing Metric
In this step, the initial circle packing metric (Γ, Φ) is computed. This metric
should approximate the original Euclidean metric as much as possible. Suppose
dij is the length of edge eij determined by the induced Euclidean metric in R3,
lij is the edge length determined by the circle packing metric. Let φij be the
edge weight, γi and γj be the circle radii on vertices vi and vj , then lij can be
computed according to the cosine law with different background geometries:

l2ij = γ2
i + γ2

j + 2γiγj cos φij , E2

cosh lij = cosh γi cosh γj + sinh γi sinh γj cos φij , H2

cos lij = cos γi cos γj − sin γi sin γj cos φij , S2
(23)
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The initial circle packing metric can be obtained by minimizing the following
energy

min
γi,φij

∑

eij∈Σ

|dij − lij |2,

such that φij ∈ (0, Π
2 ]. If the initial mesh has too many obtuse angles and the

requirement for the conformality is very high, we can use an extra re-meshing
step to improve the triangulation quality.
Step 3. Optimize Ricci Energy
In the following we introduce two methods to optimize the Ricci energy; one is
the gradient descent method and the other is Newton’s method.
Gradient Descent
The Ricci energy can be optimized using the gradient descent method, which is
the direct analogy of the smooth Ricci flow. Note that during the computation
the vertex radii Γ vary over time while the edge weights Φ are fixed. This reflects
the fact that conformal metric deformation preserves angles.
1.Compute edge lengthes lij from the current vertices radii γi and γj and the
fixed edge weight φij , using the cosine law (Eq. 23) for the background geometry.
2.Compute the corner angles θjk

i in each face fijk from the current edge lengths
by using the cosine law according to the background geometry.
3.Compute the discrete Gaussian curvature Ki of each vertex vi by using Eq.
17.
4.Update ui of each vertex vi by using Eq. 22, as follows.

ui = ui + ε(K̄i −Ki),

where K̄i is the target Gaussian curvature. In our experiments, ε is no greater
than 0.05.
5. Normalize the metrics. Let s =

∑
ui, then ui = ui − s

n , where n is the total
number of vertices.
6. Update the radius γi of each vertex vi, using ui and Eq. 19.
7. Repeat the steps from 1 through 5, until the maximal curvature error falls
below a threshold, max |K̄i−Ki| < δ, where δ is a user-specified error tolerance.

Newton’s Method
As described in Section 3.6, Ricci flow is the negative gradient flow of the discrete
Ricci energy in Eq. 22. We can further improve the convergence speed by using
Newton’s method.

The key to Newton’s method is to compute the Hessian matrix. Different
Ricci flows have different Hessian matrices according to their background ge-
ometries. The Hessian matrix for Euclidean Ricci energy is explained here. We
refer readers to [JKLG08] for other cases.

As shown in figure 5, for each face, there are three circles centered at its
vertices. Then there exists a unique circle, which is orthogonal to all three circles,
whose center is called the center of the face. Two circles centered at the end
vertices of an edge share a common chord. Three common chords intersect at
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the center o as shown in the figure. The center can be calculated explicitly. Let
eij be an edge, attaching to two faces f1 and f2, whose centers are o1 and o2.
The distance from ok to eij is hk, k = 1, 2. The edge coefficient wij is defined as

wij = h1 + h2.

If eij is on the boundary, f2 doesn’t exist, then wij = h1.
The elements in the Hessian matrix are ∂Ki/∂uj , which has the following

explicit formula
∂Ki

∂uj
=

{ −wij i 6= j∑
k wik i = j

Fig. 6. Hyperbolic Ricci flow (a) Genus two vase model marked with a set of canon-
ical fundamental group generators which cut the surface into a topological disk with
eight sides: a1, b1, a−1

1 , b−1
1 , a2, b2, a−1

2 , b−1
2 . (b) The fundamental domain is confor-

mally flattened onto the Poincaré disk with marked sides. (c) A Möbius transformation
moves the side b1 to b−1

1 . (d) Eight copies of the fundamental domain are glued coher-
ently by eight Möbius transformations. (e) A finite portion of the universal covering
space is flattened onto the Poincaré disk. (f) Zoom in on a region on the universal cov-
ering space, where eight fundamental domains join together. No seams or overlapping
can be found. (g) Conformal parameterization induced by the hyperbolic flattening.
The corners angle of checkers are well-preserved.

Step 4. Compute the Layouts
In this step, we flatten the mesh with the target metric onto one of the canonical
domains: the plane E2, the sphere S2, or the hyperbolic space H2. The algorithms
in this step involve several topological concepts, such as fundamental domain,
canonical fundamental group basis, universal covering space, etc. The following
is the unified pipeline for computing the layout:
1. Flatten a seed face.
2. Flatten a fundamental domain.
3. Flatten the universal covering space.
In the following, we focus on hyperbolic case only. The other two cases are very
similar, details can be found in [JKLG08].
1.Flatten a Seed Face
We randomly select a seed face f012, and compute the parametric positions of
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Fig. 7. Performance of Ricci flow The horizontal axis represents time, and the ver-
tical axis represents the maximal curvature error. The blue curves are for the Newton’s
method; the green curves are for the gradient descent method. The meshes have about
30k faces. The tests were carried out on a laptop with 1.7GHz CPU and 1G RAM. All
the algorithms are written in C++ on a Windows platform without using any other
numerical library.

the vertices v0, v1, and v2 using the edge lengths of f012. In the hyperbolic case,
the positions are set as τ(v0) = (0, 0):

τ(v1) =
el01 − 1
el01 + 1

(1, 0), τ(v2) =
el02 − 1
el02 + 1

(cos θ12
0 , sin θ12

0 );

Then we put faces adjacent to the seed face into a queue.
2. Flatten a Fundamental Domain
In this step, we propagate the flattening to the rest of all faces, namely we want
to embed a fundamental domain. We call the resulting layout a fundamental
polygon.

To propagate the flattening, we put all unprocessed faces adjacent to the
current face into the queue. We pop a face fijk from the queue and test whether
all its vertices have been set to parametric positions. If so, we continue to pop the
next one from the queue as long as the queue is nonempty. Otherwise, suppose
that vi and vj have been embedded, then τ(vk) can be computed as one of
the two intersection points between the two circles, c(τ(vi), lki) and c(τ(vj), lkj),
satisfying (τ(vj)−τ(vi))×(τ(vk)−τ(vi)) > 0. computing the intersection points
between hyperbolic circles boils down to finding intersections between Euclidean
circles.

Different choices of the seed faces induce different layouts, which differ by a
rigid motion. In the hyperbolic case, it is a Möbius transformation. Fig. 6 (b), (c)
and (d) are the layouts for the same genus two model, shown in Fig. 6 (a), with
different seed faces marked in red. The layouts in (c) and (d) are transformed
to align with the layout in (b) by different Möbius transformations, as shown in
Fig. 6(e).
3 Flatten the Universal Covering Space
For the purpose of texture mapping, it is enough to flatten a fundamental do-
main. For the purpose of constructing a manifold spline (see [GHQ06] for details)
or surface classification by conformal equivalence (see [JLYG07] for details), we
need to flatten a finite portion of the universal covering space.
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The universal covering space of a mesh with a negative Euler number can be
embedded onto the whole hyperbolic space H2. The algorithmic pipeline is as
follows:
1. Embed a canonical fundamental domain.
2. Compute the deck transformation group generators.
3. Tile the whole canonical domain R2 or H2.

In the first step, we find a canonical fundamental group basis, then generate
a canonical fundamental domain, then we flatten this canonical fundamental
domain.

Figure 6(b) gives the embedding of the canonical fundamental domain for
genus two amphora model on the Poincaré disk.
Compute Deck Transformation Group Generators
The embedding of a canonical fundamental domain for a closed genus g surface
has 4g different sides, which induce 2g rigid transformations (as explained in
below). These 2g rigid motions are the generators of the deck transformation
group.

Fig. 6 illustrates the process for a mesh with a negative Euler number. Let
{a1, b1, · · · , ag, bg} be a set of canonical fundamental group generators, where g
is the genus. The embedding of its canonical fundamental domain in hyperbolic
space has 4g sides, τ(a1), τ(b1), τ(a−1

1 ), τ(b−1
1 ), ..., τ(ag), τ(bg), τ(a−1

g ), τ(b−1
g ) (see

Fig. 6(b) in Poincaré disk). There exists unique Möbius transformations αk, βk,
which map the τ(ak) and τ(bk) to τ(a−1

k ) and ρ(b−1
k ) respectively, as shown in

Fig. 6(c) and (d). The Möbius transformations {α1, β1, α2, β2, · · · , αg, βg} form
a set of generators of the deck transformation group.
Tile the Canonical Domain
Any deck transformation can be produced by composing the generators {αk, βk}.
Then the whole canonical domain can be tiled by transforming a fundamental
polygon by all deck transformations. This induces a flattening of the universal
covering space of the mesh onto the canonical domain. Fig. 6(e) illustrates the
layout of the universal covering space of a genus two amphora model onto the
whole Poincaré disk.

The computation of the layout for a genus one surface is very similar, Fig. 8
shows the whole process for the kitten model.

5 Discrete Yamabe Flow

Similar to discrete Ricci flow, we introduced discrete Yamabe flow in [Luo04b].
For smooth surfaces, Ricci flow and Yamabe flow are equivalent. In discrete case,
there are subtle differences. The following summarizes the sharp distinctions:

1. Discrete Ricci flow requires circle packing, whereas discrete Yamabe flow is
directly defined on triangulations. Therefore, Yamabe flow is more flexible.

2. Both Ricci flow and Yamabe flow are variational. The energy form for Ricci
flow and Yamabe flow are convex. But, the metric space (domain of u) of
Ricci flow is convex, while the metric space of Yamabe flow is non-convex.
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(a) (b) (c) (d) (e) (f)

Fig. 8. Euclidean Ricci flow (a) Genus one kitten model marked with a set of canon-
ical fundamental group generators a and b. (b) A fundamental domain is conformally
flattened onto the plane, marked with four sides aba−1b−1. (c) One translation moves
the side b to b−1. (d) The other translation moves the side a to a−1. (e) The lay-
out of the universal covering space of the kitten mesh on the plane, which tiles the
plane. (f) The conformal parameterization is used for the texture mapping purpose. A
checkerboard texture is placed over the parameterization in b). The conformality can
be verified from the fact that all the corner angles of the checkers are preserved.

Therefore, it is stable to use Newton’s method for optimizing Ricci energy.
For Yamabe energy optimization, the algorithm takes more caution.

3. Yamabe flow can adapt the connectivity to the target curvature automati-
cally, which makes it valuable for practical purposes. During Yamabe flow, if
the algorithm detects a degenerate triangle, where one angle becomes π, then
the algorithm swaps the edge against the angle and continue the flow. Un-
fortunately, this important technique of adapting connectivity to the target
curvature during the flow can not be generalized to Ricci flow directly.

Using the symbols in the previous discussion, let M be a triangle mesh em-
bedded in R3. Let eij be an edge with end vertices vi and vj . dij is the edge
length of eij induced by the Euclidean metric of R3. A function defined on the
vertices u : V → R is the discrete conformal factor. The edge length lij is defined
as

lij = eui+uj dij . (24)

Let Ki and K̄i denote the current vertex curvature and the target vertex curva-
ture respectively. The discrete Yamabe flow is defined as

dui(t)
dt

= K̄i −Ki, (25)

with initial condition ui(0) = 0. The convergence of Yamabe flow is proven in
[Luo04b]. Furthermore, Yamabe flow is the gradient flow of the following Yamabe
energy, let u = (u1, u2, · · · , un),n is the total number of vertices,

f(u) =
∫ u

u0

n∑

i

(K̄i −Ki)dui. (26)
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Similar to Ricci flow, one can show that

∂Ki

∂uj
=

∂Kj

∂ui
(27)

The Yamabe energy is well defined and convex. The Hessian matrix can be easily
constructed as follows. Suppose faces fijk and fjil are adjacent to the edge eij ,
define the weight of the edge eij as

wij = cot θk + cot θl, (28)

where θk is the angle at vk in fijk, θl is the angle at vl in face fjil. If the edge
is on the boundary, and only attaches to fijk, then

wij = cot θk.

It can be shown by direct computation, the differential relation between the
curvature and the conformal factor is

dKi =
∑

j

wij(dui − duj). (29)

So the Hessian matrix of the yamabe energy is given by

∂2f(u)
∂ui∂uj

= −∂Ki

∂uj
=

{
wij , i 6= j
−∑

k wik , i = j
(30)

The Hessian matrix is positive definite on the linear subspace
∑

i ui = 0. By
using the Hessian matrix formulate 30, the Yamabe energy 26 can be optimized
effectively. But the major difficulty is that the admissible metric space Ω(u) for
a mesh with fixed connectivity is not convex,

Ω(u) = {u|∀fijk ∈ M, lij + ljl > lli}
Therefore, during the optimization process using Newton’s method, we need to
ensure that the metric u is in the admissible metric space Ω(u) at each step. If
a degenerated triangle fijk is detected, then we swap the longest edge of it. For
example, if θk exceeds π, then we swap edge eij as shown in figure 9. The major
difficulty for discrete Ricci flow is to find a good initial circle packing with all
acute edge intersection angles. This problem doesn’t exist for discrete Yamabe
flow. Therefore, yamabe flow in general produces better conformality in practice.
Figure 10 shows the conformal parameterizations using Yamabe flow. In frames
(a) and (b), the boundary target curvature is 2π

m , where m is the total number
of boundary vertices. In frames (c) and (d), the curvatures at the four corners
are π

2 ’s, and are zeros everywhere else. The number of edge swaps depends on
the initial connectivity, initial curvatures and the target curvatures.

There are many variations for discrete surface curvature flow. In the following,
we discuss two of them: out-of-core mesh curvature flow, and curvature flow
under mixed constraints.
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Fig. 9. Edge swap

(a) (b) (c) (d)

Fig. 10. Conformal parameterizations using Yamabe flow. (a) and (b), the
boundary curvature is constant. (c) and (d), the curvatures at the four corners are π

2
,

and are zeros everywhere else.

Out-of-Core Curvature Flow In practice, if the input mesh is too big to be
contained in the memory of the computer, we call it a out-of-core mesh. The
following method can be used to compute the desired metric for an out-of-core
mesh based on either Ricci flow or Yamabe flow. First, partition the vertex set
V to V1, V2, · · · , Vk, with each set being small enough to fit in the memory. We
require that V = ∪k

i=1Vi, and each vertex in V should be contained as inner
vertex in at least one set Vl. Then the energy can be defined for each set

fi(u) =
∫ u

u0

∑

vj∈Vi

(K̄j −Kj)duj .

Each fi(u) can be optimized separately and alternatively. Since the energy is
convex, the alternating optimization converges to the global minima, which gives
the desired metric.

Curvature Flow under Mixed Constraints Rather than specifying the target cur-
vature for each vertex, we can specify target curvatures K̄i for some vertices,
and specify conformal factor ūj for the rest. Let V = Vk ∪ Vu, Vk ∩ Vu = ∅,
for each vi ∈ Vk, the target curvature K̄i is given, for each vj ∈ Vu, the target
conformal factor ūj is given. By optimizing the following energy

f(u) =
∫ u

u0

∑

vi∈Vk

(K̄i −Ki)dui,
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under the constraints
uj = ūj ,∀vj ∈ Vu

Ki = K̄i,∀vi ∈ Vk

we can still get the unique solution, as long as the target curvatures and the
target conformal factors are compatible.

6 Introduction to Discrete Curvature Flow for
3-Manifolds

All surfaces admit metrics with constant Gaussian curvature. This fact also holds
for 3-manifolds. According to Poincaré conjecture and Thurston’s geometrization
conjecture, all 3-manifolds can be canonically decomposed to prime 3-manifolds.
All prime 3-manifolds can be further decomposed by tori into pieces so that each
piece has one of eight canonical geometries.

The study of topological and geometric structures of three dimensional man-
ifolds has fundamental impacts in science and engineering. Computational al-
gorithms for 3-manifolds can help topologist and geometers to investigate the
complicated structures of 3-manifolds. They also have great potentials for a wide
range of applications in the engineering world. The most direct applications in-
clude volumetric parameterizations, volumetric shape analysis, volumetric de-
formation, solid modeling and etc. Figure 11 shows a simple example of the
volumetric parameterization for the volumetric Max Planck model, which is a
topological ball.

Fig. 11. Volumetric parameterization for a topological ball.

Similar to the surface case, most 3-manifolds admit hyperbolic metric, which
induces constant sectional curvature. A hyperbolic 3-manifolds with boundaries
is shown in Fig. 12, where the 3-manifold is the 3-ball with a knotted pipe re-
moved, which is called Thurston’s knotted Y-shape. Hyperbolic 3-manifolds with
geodesic boundaries have the following topological properties:
1. The genus of boundary surfaces are greater than one.
2. For any closed curve on the boundary surface, if it can not shrink to a point
on the boundary, then it can not shrink to a point inside the volume.
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(a)Boundary surface (b) Boundary surface (c) Cut view (d) Cut view

Fig. 12. Thurston’s Knotted Y-Shape.

Compared to the surface curvature flow, 3-manifold curvature flow presents
some similar properties; meanwhile, it also owns some unique properties. Table
1 summaries the corresponding concepts involved in the curvature flow for sur-
faces and 3-manifolds respectively. For example, the primitive building blocks for
surfaces are right-angled hyperbolic hexagons (Fig.13(c)); while for 3-manifolds,
it is truncated hyperbolic tetrahedra (Fig.14). The discrete curvature used in
the surface case is the vertex curvature (Fig.15), while for 3-manifolds it is es-
sentially the edge curvature (Fig. 16). The parameter domain for the surface
case is the hyperbolic space H2 using the upper half plane model; the domain
for 3-manifold case is the hyperbolic space H3 using the upper half space model.
In the following part, we will address the similarities and differences in details
respectively.

6.1 Similarities between Surface and Volumetric Curvature Flow

There are many intrinsic similarities between surface curvature flow and volumet-
ric curvature flow. Discrete surface curvature flow can be naturally generalized to
3-manifold case. In particular, we have generalized the discrete hyperbolic Ricci
flow from surfaces to 3-manifolds with geodesic boundaries. The 3-manifold is
approximated by tetrahedra with hyperbolic background geometry, and the edge
lengths determine the metric. During the curvature flow, the edge lengths are
deformed according to the curvature. The resulting metric at the steady state
will induce the constant sectional curvature.

For the purpose of comparison, we first illustrate the discrete hyperbolic Ricci
flow for surface case using figure 13. A surface with negative Euler number is
parameterized and conformally embedded in the hyperbolic space H2. The three
boundaries are mapped to geodesics. Given two arbitrary boundaries, there exists
a unique geodesic orthogonal to both boundaries. Three such geodesics partition
the whole surface into two right-angled hexagons, as shown in (c). A finite portion
of the universal covering space is embedded in H2, as shown in(d).

For hyperbolic 3-manifolds with boundaries, things are quite similar. Given
such a 3-manifold, such as the Thurston’s knotted Y-shape in figure 12, discrete
curvature flow can lead to the canonical hyperbolic metric. The boundary surface
become hyperbolic planes, which are geodesic submanifolds. By finding certain
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hyperbolic planes orthogonal to the boundary surfaces, we can decompose the 3-
manifold into several hyperbolic truncated tetrahedra, as shown in Fig.14. Using
the canonical hyperbolic metric, a finite portion of the universal covering space
can be embedded in H3, as shown in Fig.25.

(a)Left view (b) Right view (c) Fundamental domain (d) Periodic embedding

Fig. 13. Surface with boundaries with negative Euler number can be conformally pe-
riodically mapped to the hyperbolic space H2.

6.2 Differences between Surface and 3-Manifold Curvature Flow

Although curvature flow presents many similarities for the surface case and 3-
manifold case, there are yet fundamental differences between them. One of the
most prominent differences is the so called Mostow rigidity [Mos68]. Mostow
rigidity states that the geometry of a finite volume hyperbolic manifold (for
dimension greater than two) is determined by the fundamental group. Namely,
for two complete finite volume hyperbolic n-manifolds (n > 2) M and N , if there
exists a topological isomorphism f : π1(M) → π1(N), it will induce a unique
isometry from M to N . For the surface case, however, the geometry cannot be
determined by the fundamental group. Suppose M and N are two surfaces with
hyperbolic metrics; even if M and N share the same topology (i.e. there exists
an isomorphisms f : π1(M) → π1(N)), there may not exist an isometry from M
to N . In another word, fixing the fundamental group of the surface M , there are

Surface 3-Manifold

Manifold with negative Euler Hyperbolic 3-manifold
number with boundaries with geodesic boundaries
Fig.13 Fig.12

Building hyperbolic right-angled Truncated hyperbolic
Block hexagons Fig.13 tetrahedra Fig.14

Curvature Gaussian curvature Sectional curvature
Fig 15 Fig.15, Fig.16

Algorithm Discrete Ricci flow Discrete curvature flow

Parameter Upper half plane H2 Upper half space H3

domain Fig.13 Fig.25
Table 1. Correspondence between surface and 3-manifold parameterizations.
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infinitely many pairwise non-isometric hyperbolic metrics on M ; each of them
corresponds to a certain conformal structure of M .

In a nutshell, surfaces have conformal geometry, while 3-manifolds don’t. All
the Riemannian metrics on a topological surface S can be classified by conformal
equivalence, each equivalence class is a conformal structure. If the surface is with
a negative Euler number, then there exists a unique hyperbolic metric in each
conformal structure.

As a consequence of Mostow rigidity, the conformality for 3-manifold pa-
rameterization is quite different to surface parameterization. Conformal surface
parameterization is equivalent to find a metric with constant Gaussian curva-
ture conformal to the induced Euclidean metric; that is, it requires the original
induced Euclidean metric. Namely, the vertex positions or the edge lengths are
essential parts of the input. In contrast, for 3-manifolds, only topological infor-
mation is required. Different 3-manifolds have the same conformal parameteriza-
tion if they have the same fundamental group. Consequently, the tessellation will
affect the conformality of the surface parameterization, while it doesn’t affect
the computational results of 3-manifolds parameterization. Utilizing this special
property, we can reduce the computational complexity of 3-manifold curvature
flow by using the simplest triangulation for a given 3-manifold. For example,
Thurston’s Knotted Y-Shape in Fig.12 can be either represented as a high res-
olution tetrahedral mesh or a mesh with only 2 truncated tetrahedra, and the
resulting canonical metrics are identical.

Besides the Mostow rigidity, there are some other unique properties of 3-
manifold curvature flow, such as the representation of discrete curvature. On
discrete surfaces, there are only vertex curvatures, which is measured as the
angle deficient at each vertex. For discrete 3-manifolds (e.g. tetrahedral mesh),
however, there are both vertex curvatures and edge curvatures. The vertex cur-
vature equals to 4π minus all the surrounding solid angles; the edge curvature
equals to 2π minus all the surrounding dihedral angles. And it turns out that
the vertex curvatures are totally determined by the edge curvatures. In our al-
gorithm, we use the edge curvature to drive the flow.

6.3 Theoretic Foundations of Discrete Curvature Flow for
Hyperbolic 3-Manifolds

In this section, we introduce the theoretical foundations of discrete curvature flow
for hyperbolic 3-manifolds. In particular, we will cover the discrete approxima-
tion of 3-manifolds, the representation of discrete curvature, and the principles
of discrete curvature flow.

Hyperbolic Tetrahedron and Truncated Hyperbolic Tetrahedron 2-
manifolds (surfaces) can be approximated by triangular meshes with different
background geometries. Similarly, 3-manifolds can be approximated by tetrahe-
dron meshes with different background geometry.



26 David Gu et.al.

v1

v2

v3

v4

f3f4

f1

f2

v1

v2

v4v3

f3f4

f2

f1

θ6
θ2

θ1

θ5

θ3

θ4

Fig. 14. Hyperbolic tetrahedron and truncated tetrahedron.

A closed 3-manifold can be triangulated using tetrahedra. The left frame in
Fig.14 shows a hyperbolic tetrahedron [v1v2v3v4]. Each face fi of a hyperbolic
tetrahedron is a hyperbolic plane, each edge eij is a hyperbolic line segment.

A 3-manifold with boundary can be tessellated using truncated tetrahedra.
The right frame in Fig.14 shows a truncated hyperbolic tetrahedron, where the
four vertices are truncated by hyperbolic planes. The cutting plane at vertex vi

is perpendicular to the edges eij , eik, eil. Therefore, each face of a truncated hy-
perbolic tetrahedron is a right-angled hyperbolic hexagon, each cutting section is
a hyperbolic triangle. If the given manifold is tessellated by multiple tetrahedra,
the face hexagons will be glued one another, while the cutting triangles form the
boundary surface.

The geometry of the truncated tetrahedron is determined by dihedral angles,
represented as {θ1, θ2, · · · , θ6} in Fig.14. For example, the hyperbolic triangle at
v2 has inner angles θ3, θ4, θ5, its edge lengths can be determined using formula
7. For face f4, the edge length e12, e23, e31 are determined by the hyperbolic
triangles at v1, v2, v3 using the right-angled hyperbolic hexagon cosine law 11.

For another point of view, the geometry of a truncated tetrahedron is reflected
by the length of edges e12, e13, e14, e23, e34, e42. Due to the fact that each face
is a right angled hexagon, the above six edge lengths will determine the edge
lengths of each vertex triangle, and therefore determines its three inner angles,
which equal to the corresponding dihedral angles.
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vj vk

α
jk
i

vlα
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i
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vj vk

vl

α
jkl
i

Fig. 15. Discrete vertex curvature for 2-manifold and 3-manifold.
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Discrete Curvature For 3-manifolds, each tetrahedron [vi, vj , vk, vl] (as shown
in Fig.15) has four solid angles at their vertices, denoted as {αjkl

i , αkli
j , αlij

k , αijk
l }.

For an interior vertex, the vertex curvature is 4π minus the surrounding solid
angles,

K(vi) = 4π −
∑

jkl

αjkl
i .

For a boundary vertex, the vertex curvature is 2π minus the surrounding solid
angles.

Besides vertex curvature, the discrete approximation of a 3-manifold owns
another type of curvature, edge curvature. Suppose [vi, vj , vk, vl] is a tetrahedron,
the dihedral angle on edge eij is denoted as βkl

ij . If edge eij is an interior edge
(i.e. not on the boundary surface), its edge curvature is defined as

K(eij) = 2π −
∑

kl

βkl
ij .

If eij is on the boundary surface, its curvature is defined as

K(eij) = π −
∑

kl

βkl
ij .

vi

vj

vk vl

βkl
ij

vi

vj

vk

vl

Fig. 16. Discrete edge curvature for a 3-manifold.

It turns out that edge curvature is more essential for 3-manifolds than vertex
curvature. The later is determined by the former.

Theorem Suppose M is a tetrahedron mesh, vi is an interior vertex of M .
Then ∑

j

K(eij) = K(vi).

Discrete Curvature Flow Given a hyperbolic tetrahedron in H3 with edge
lengths xij and dihedral angles θij , the volume of the tetrahedron V is a function
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of the dihedral angles V = V (θ12, θ13, θ14, θ23, θ24, θ34), and the Schlaefli formula
can be expressed as

∂V

∂θij
=
−xij

2
. (31)

Namely, the differential 1-form dV is −1
2

∑
ij xijdθij . It can be further proved

that the volume of a hyperbolic truncated tetrahedron is a strictly concave func-
tion of the dihedral angles.

If a 3-manifold is approximated by a set of truncated tetrahedra, we say that
it is ideally triangulated. Given an ideally triangulated 3-manifold (M, T ), let E
be the set of edges in the triangulation. An assignment x : E → R+ is called a
hyperbolic cone metric associated with the triangulation T if for each tetrahedron
t in T with edges e1, e2, · · · , e6, the x(ei) are the edge lengths of a hyperbolic
truncated tetrahedron in H3. The set of all hyperbolic cone metrics associated
with T is denoted as L(M, T ), which is an open set. The discrete curvature of
a cone metric is a map K(x) : L → R, mapping each edge e to its discrete
curvature. The discrete curvature flow is then defined by

dxij

dt
= Kij , (32)

where xij is the edge length of eij , Kij is the edge curvature of eij . The curvature
flow is the gradient flow of the hyperbolic volume of the M ,

V (x) =
∫ x

x0

∑
eij

Kijdxij , (33)

where x0 is the initial metric, which can be set to (1, 1, · · · , 1).

Theorem 7. For any ideal triangulated 3-manifold (M, T ), the equilibrium points
of the discrete curvature flow Eqn.32 are the complete hyperbolic metric with to-
tally geodesic boundary. Each equilibrium is a local attractor of the flow.

Furthermore, a hyperbolic cone metric associated with an ideal triangulation
is locally determined by its cone angles. For any ideal triangulated 3-manifold,
under the discrete curvature flow, the discrete curvature Kij(t) evolves based on
the discrete heat equation. Furthermore, the total curvature

∑
ij K2

ij is strictly
decreasing until all edge curvatures (and hence all the vertex curvatures) are
zeros. The theoretic proofs can be found in [Luo05a].

7 Algorithm for Discrete Curvature Flow for Hyperbolic
3-Manifolds

The input to the algorithm is the boundary surface of a 3-manifold, represented
as a triangular mesh. The output is a realization (i.e. fundamental domain) of
the 3-manifold in the hyperbolic space H3. The algorithm pipeline is as the fol-
lowing:
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1. Compute a triangulation of the 3-manifold as a tetrahedral mesh. Simplify
the triangulation such that the number of the tetrahedra is minimal.
2. Run discrete curvature flow on the tetrahedral mesh to obtain the hyperbolic
metric.
3. Realize the mesh in the hyperbolic space H3 using the computed hyperbolic
metric .

7.1 Triangulation and Simplification

Given the boundary surface of a 3-manifold, there are existing methods to tes-
sellate the interior and construct the tetrahedral mesh. In this work, we use
tetrahedral tessellation based on volumetric Delaunay triangulation.

The following algorithm will simplify the triangulation to a minimum number
of truncated tetrahedra.

1. Denote the boundary of a 3-manifold M as ∂M = {S1, S2, · · · , Sn}. For each
boundary surface component Si, create a cone vertex vi; for each triangle
face fj ∈ Si, create a new tetrahedron T i

j whose vertex set consists of vi and
the vertices of fj . In this way, M is augmented with a set of cone vertices
and a set of new tetrahedra.

2. Use edge collapse as shown in Fig.18 to simplify the triangulation, such
that all vertices are removed except for those cone vertices {v1, v2, · · · , vn}
inserted in the previous step. Denote the simplified tetrahedral mesh as M̃ .

3. For each tetrahedron T̃i ∈ M̃ , cut it with the original boundary surface,
remove the parts containing cone vertices, and thus make it a truncated
tetrahedron (hyper ideal tetrahedron), denoted as Ti.

The simplified triangulation is represented as a collection of truncated tetrahedra
and their gluing pattern. For the example in Fig.17, the simplified tetrahedral
mesh consists of only two truncated tetrahedra T1, T2. Let Ai, Bi, Ci, Di rep-
resent the four faces of the tetrahedron Ti; ai, bi, ci, di represent the truncated

a1

c1

b1

d1

B1 A1

C1

b2

a2

c2

B2

C2 A2

d2

a1

c1

b1

d1

B1 A1

C1

b2

a2 c2

B2

C2 A2

d2

d1

d1

Fig. 17. Simplified triangulation and gluing pattern of Thurston’s knotted-Y. The two
faces with the same color are glued together.
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Fig. 18. Edge collapse in tetrahedron mesh.

vertices of Ti. The gluing pattern is given as follows:

A1 → B2 {b1 → c2, d1 → a2, c1 → d2}
B1 → A2 {c1 → b2, d1 → c2, a1 → d2}
C1 → C2 {a1 → a2, d1 → b2, b1 → d2}
D1 → D2 {a1 → a2, b1 → c2, c1 → b2}

The first row means that face A1 ∈ T1 is glued with B2 ∈ T2 by identifying b1

with c2, d1 with a2 and c1 with d2. Other rows can be interpreted in the same
way.

7.2 Hyperbolic Embedding of 3-Manifolds

Once the edge lengths of the tetrahedral mesh are obtained, we can realize it
in the hyperbolic space H3. First, we introduce how to construct a single trun-
cated tetrahedron; then we explain how to glue multiple truncated tetrahedra
by hyperbolic rigid motion.

Construction of a Truncated Hyperbolic Tetrahedron The geometry of a
truncated hyperbolic tetrahedron is determined by its dihedral angles. This sec-
tion explains the algorithm to construct a truncated tetrahedron in the upper
half space model of H3. The algorithm consists of two steps. First, construct a
circle packing on the plane; second, compute a CSG (Constructive Solid Geome-
try) surface. The resulting surface is the boundary of the truncated tetrahedron.

Construct a Circle Packing Suppose the dihedral angles of a truncated tetra-
hedron are given. The tetrahedron can be realized in H3 uniquely, up to rigid
motion. The tetrahedron is the intersection of half spaces, the boundaries of these
half spaces are the hyper planes on faces f1, f2, f3, f4 and the cutting planes at
the vertices v1, v2, v3, v4. Each plane intersects the infinity plane at a hyperbolic
line, which is a Euclidean circle on the xy-plane. By abusing the symbols, we use
fi to represent the intersection circle between the hyperbolic plane through the
face fi and the infinity plane. Similarly, we use vj to represent the intersection
circle between the cutting plane at vj and the infinity plane. The goal of this
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θ1

θ2

θ3

θ2 θ6

θ4

θ3

θ5

θ4

f1
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f3
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v3

v4

v1

v2

θ6

θ5

Fig. 19. Circle packing for the truncated tetrahedron.

step is to find planar circles (or lines) fi’s and vj ’s, such that
1. fi and circle fj intersect at the given corresponding angle βkl

ij .
2. circle vi is orthogonal to circles fj , fk, fl.

As shown in Fig.19, all the circles can be computed explicitly with two extra
constraints, f1 and f2 are lines with two intersection points 0 and ∞, the radius
of f3 equals to one. The dihedral angle on edges {e34, e14, e24, e12, e23, e13} are
{θ1, θ2, θ3, θ4, θ5, θ6} as shown in Fig.14.

After finding v1, v2, v3, v4, we transform them back using φ. Let w1, w2, w3

be points on the circle v1, the φ(w1), φ(w2), φ(w3) are the points on the circle
φ(v1).

f1

f2

f3

f4

v1

v2

v3

v4

Fig. 20. Constructing an ideal hyperbolic tetrahedron from circle packing using CSG
operators.

CSG Modeling After we obtain the circle packing, we can construct hemispheres
whose equators are those circles. If the circle is a line, then we construct a half
plane orthogonal to the xy-plane through the line. Computing CSG among these
hemispheres and half-planes, we can get the truncated tetrahedron as shown in
Fig.20.

Each hemisphere is a hyperbolic plane, and separates H3 to two half-spaces.
For each hyperbolic plane, we select one half-space; the intersection of all such
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half-spaces is the desired truncated tetrahedron embedded in H3. We need to
determine which half-space of the two is to be used. We use fi to represent both
the face circle and the hemisphere whose equator is the face circle fi. Similarly,
we use vk to represent both the vertex circle and the hemisphere whose equator
is the vertex circle. As shown in Fig.19, three face circles fi, fj , fk bound a
curved triangle ∆ijk, which is color coded, one of them is infinite. If ∆ijk is
inside the circle fi, then we choose the half space inside the hemisphere fi;
otherwise we choose the half-space outside the hemisphere fi. Suppose vertex
circle vk is orthogonal to the face circles fi, fj , fk; if ∆ijk is inside the circle vk,
then we choose the half-space inside the hemisphere vk; otherwise we choose the
half-space outside the hemisphere vk.

Fig.21 demonstrates a realization of a truncated hyperbolic tetrahedron in
the upper half space model of H3, based on the circle packing in Fig.19.

Fig. 21. Realization of a truncated hyperbolic tetrahedron in the upper half space
model of H3, based on the circle packing in figure 19.

v1

v2

v3

v4

f3f4

f1

f2
vi

vj

vk

vl

fi

fj

fkfl

T1 T2

Fig. 22. Glue T1 and T2 along f4 ∈ T1 and fl ∈ T2, such that {v1, v2, v3} ⊂ T1 are
attached to {vi, vj , vk} ⊂ T2.

Glue two Truncated Hyperbolic Tetrahedra Suppose we want to glue
two truncated hyperbolic tetrahedra, T1 and T2, along their faces. We need to
specify the correspondence between the vertices and faces between T1 and T2.
As shown in Fig.22, suppose we want to glue f4 ∈ T1 to fl ∈ T2, such that
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{v1, v2, v3} ⊂ T1 are attached to {vi, vj , vk} ⊂ T2. Such a gluing pattern can be
denoted as a permutation {1, 2, 3, 4} → {i, j, k, l}. The right-angled hyperbolic
hexagon of f4 is congruent to the hexagon of fl.

f1

f2

f3

f4

v1

v2

v3

v4

f1

f2

f3

f4

v1

v2

v3

v4

Fig. 23. Glue two tetrahedra by using a Möbius transformation to glue their circle
packings, such that f3 → f4, v1 → v1, v2 → v2, v4 → v3.

As shown in Fig.23, the gluing can be realized by a rigid motion in H3, which
induces a Möbius transformation on the xy-plane. The Möbius transformation
aligns the corresponding circles, f3 → f4, {v1, v2, v4} → {v1, v2, v3}. The Möbius
transformation can be explicitly computed, and determines the rigid motion in
H3.

Fig. 24. Glue T1 and T2. Frames (a)(b)(c) show different views of the gluing f3 → f4,
{v1, v2, v4} → {v1, v2, v3}. Frames (d) (e) (f) show different views of the gluing f4 →
f3,{v1, v2, v3} → {v2, v1, v4}.

Fig.24 shows the gluing between two truncated hyperbolic tetrahedra. By
repeating the gluing process, we can embed the universal covering space of the
hyperbolic 3-manifold in H3. Fig.25 shows different views of the embedding of
the (finite portion) universal covering space of Thurston’s knotted Y-Shape in
H3 with the hyperbolic metric.
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Fig. 25. Embed the 3-manifold periodically in the hyperbolic space H3.

8 Future Work

Designing discrete curvature flow algorithms for general 3-manifolds is a chal-
lenging problem. The rigorous algorithms lead to a discrete version of a construc-
tive proof of the Poincaré’s conjecture and Thurston’s geometrization conjecture.
One of the approach is to study the property of the map from the edge length to
the edge curvature. If the map is globally invertible, then one can design metrics
by curvatures. If the map is locally invertible, then by carefully choosing a spe-
cial path in the curvature space, one can design metrics by special curvatures.
One of the major difficulties is to verify whether the prescribed curvature is ad-
missible by the mesh. The degenerated tetrahedra may emerge in the process of
the curvature flow. The understanding of the formation of the degeneracies will
be the key to design the discrete 3-manifold curvature flow.
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