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Abstract

This paper proposes a new concept of polycube splines and develops novel modeling techniques for using the polycube splines in solid modeling
and shape computing. Polycube splines are essentially a novel variant of manifold splines which are built upon the polycube map, serving as
its parametric domain. Our rationale for defining spline surfaces over polycubes is that polycubes have rectangular structures everywhere over
their domains except a very small number of corner points. The boundary of polycubes can be naturally decomposed into a set of regular
structures, which facilitate tensor-product surface definition, GPU-centric geometric computing, and image-based geometric processing. We
develop algorithms to construct polycube maps, and show that the introduced polycube map naturally induces the affine structure with a finite
number of extraordinary points. Besides its intrinsic rectangular structure, the polycube map may approximate any original scanned data-set
with a very low geometric distortion, so our method for building polycube splines is both natural and necessary, as its parametric domain
can mimic the geometry of modeled objects in a topologicallycorrect and geometrically meaningful manner. We design a new data structure
that facilitates the intuitive and rapid construction of polycube splines in this paper. We demonstrate the polycube splines with applications in
surface reconstruction and shape computing.
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1. Introduction and Motivation

Real-world physical prototypes are frequently 2-manifolds of
complex geometry and arbitrary topology. With the rapid ad-
vancement of modern 3D scanning technologies, CAD-based
digital prototypes are routinely acquired in forms of raw points
and/or triangular meshes. In order to enable geometric design
and downstream product development processes (e.g., accurate
shape analysis, finite element simulation, and e-manufacturing)
in CAE environments, discrete data inputs must be converted
into continuous, compact representations for scientific comput-
ing and engineering applications. In order to model an arbi-
trary manifold in 3D using conventional spline schemes, current
approaches will segment the manifold to many smaller open
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patches, cover each patch by a single coordinate system, so that
each patch can be modelled by a spline surface. Finally, any
generic approach must glue all the spline patches together by
adjusting the control points and the knots along their common
boundaries in order to ensure continuity of certain degree.The
entire segmenting and patching process is primarily performed
manually, and it requires users’ knowledge and skills, and for
non-trivial topology and complicated geometry this task isla-
borious and error-prone.

To overcome the above modeling and design difficulties and
address the topological issue, we seek novel modeling tech-
niques that would allow designers to directly define continu-
ous spline models over any manifolds (serving as parametric
domains). Such a global approach would have many modeling
benefits, including no need of the transition from local patch
definition to global surface construction via gluing and abut-
ting, the elimination of non-intuitive segmentation and patching
process, and ensuring the high-order continuity requirements.
More importantly, we can expect a true “one-piece” represen-
tation for shapes of complicated topology, with a hope to au-
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tomate the entire reverse engineering process (by converting
points and/or polygonal meshes to spline surfaces with high
accuracy) without human intervention.

Towards the aforementioned goal, most recently the manifold
splines proposed by Gu, He, and Qin [10] also aim to provide
a technical solution for directly defining continuous surfaces
over arbitrary manifold domains. In their work, a manifold can
be equivalently treated as a set of coordinate charts inR2 via
local parameterization, and these local charts are then glued
coherently to form a complete manifold surface. As a result,
manifold splines are essentially piecewise polynomials orratio-
nal polynomials defined on affine manifolds, whose transition
functions between different charts are all affine transformation.
Thus, the evaluation algorithms and other computational pro-
cedures are both efficient and robust. They have also showed
that any planar spline schemes (defined over an open planar do-
main) which satisfy the parametric affine invariant property can
be straightforwardly extended to manifolds of arbitrary topol-
ogy within the manifold spline framework [14,13,15].

Despite this earlier success, certain drawbacks of manifold
splines still remain and demand more powerful modeling tech-
niques. First of all, there must be singularities for any closed
manifold except tori. Hence, for a closed manifold ofg > 1,
there has to be singularities of the atlas which can not be covered
by any chart within its collection set. The existence of singular-
ities comes from the topological obstruction, which can notbe
avoided within the current manifold spline framework. Given
a closed domain manifold of genusg, [10] proposed a method
to compute the affine structure with Euler number|2−2g| ex-
traordinary points and showed that the induced transition func-
tions are simply the translation. Although in theory singularity
points are simply points without occupying any regions or ar-
eas, in practice “small” holes must be punched in order to en-
able the easy construction of manifold splines in the finite di-
mension space. Their earlier work makes no efforts to actually
fill the “small” holes in the vicinity of extraordinary points, in
spite of their theoretic contributions. In addition, giventhe fact
that the number of singularities is actually fixed, but theirpo-
sitions are somehow globally related, which are determinedby
the intrinsic conformal structure of the underlying surface and
are usually difficult to control, i.e., it is impossible to specify
the locations of all the singularities on the domain manifold.

Aside from splines, subdivision surfaces have also been exten-
sively investigated during the recent past for the continuous
representation of discrete data inputs. It defines a smooth sur-
face as the limit of a sequence of successive refinements froma
given coarse polygonal mesh. All the chart transition functions
are rotation, translation and scaling. Despite their modeling
advantages for arbitrarily complicated geometry and topology,
subdivision surfaces have two drawbacks: (1) accurate surface
evaluation is frequently conducted via explicit, recursive sub-
division since most subdivision schemes (especially thosein-
terpolatory schemes) do not allow closed-form analytic formu-
lation for their basis functions; (2) extraordinary pointsdepend
on the connectivity of the control mesh and need special care,

as their behaviors and smoothness properties differ significantly
from other regular regions nearby. Subdivision surfaces can be
considered special cases of manifold splines according to [10].

In this paper, we forge ahead with our new research efforts by
developing the polycube splines, with a goal to further improve
the current state of knowledge for manifold splines. In a nut-
shell, our polycube splines can be considered as a novel vari-
ant of manifold splines with many new and attractive modeling
properties. Unlike the previous manifold splines, the polycube
splines are built directly upon the polycube map, serving asits
parametric domain. Because of its regularity, the polycubeis
now only covered by charts which are uniquely associated with
faces and edges belonging to one of the cubes. As a result of the
polycube map, all the corner points are now becoming singu-
lar. The key motivation for us to pursue the definition and con-
struction of polycube splines is the fact that the polycube map
offers a rectangular structure which for sure will facilitate geo-
metric computing and shape analysis. Another main advantage
of the polycube spline is that its parametric domain can mimic
the geometry of any modeled objects in a topologically correct
way, hence, it is much easier to isolate and control the posi-
tion of the singularities. Furthermore, there are only fourkinds
of connectivity on the singularities, valence 3 to 6, which can
greatly simplify our procedures to handle extraordinary points.
The polycube domain can be constructed to approximate the
modeled geometry with better accuracy, but at the expense of
more cubes and more charts. So, users will have freedom to
control the complexity of the underlying parametric domainand
place singularity points with great flexibility. Figure 1 demon-
strates an example of our polycube splines. Similar to manifold
splines, polycube splines also afford a general theoretic and
engineering framework in which all the existing planar splines
can be generalized to any polycube domain via affine structure.
In this paper, we develop algorithms to construct T-splinesover
polycubes and demonstrate their applications in shape model-
ing and reverse engineering in order to take advantage of the
properties of partition-of-unity, level-of-detail control, and hi-
erarchical representation. It may be noted that other powerful
spline schemes, such as triangularB-splines, can be employed
in a similar fashion.

1.1. Contributions

The specific contributions of this paper are as follows:

(i) We present a systematic way to construct polycube maps
for surfaces of arbitrary topology. Our method is fun-
damentally different from Tariniet al.’s technique [29]
in that we do not need to compute the projection of the
points from the 3D shape to the polycube, thus, the poly-
cube can be flexibly constructed at any resolution and
complexity.

(ii) We show that the introduced polycube maps naturally
induce the affine structure by removing a finite number
of corner points. Thus, polycube splines become a novel
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Fig. 1. T-splines on polycubes. The polycube serves as the parametric domain
which mimics the geometry of the 3D model. All the corners aresingularities
which are colored in yellow.

variant of manifold splines with many new and attrac-
tive properties (outlined above). Taking advantage of the
low area distortion between the domain manifold and the
smooth spline surface (because polycubes can be built
to approximate the modeled geometry within any user-
specified accuracy), the polycube splines can be con-
structed easily and robustly by using simple and regular
charts and isolating all the user-controllable singularity
points.

(iii) Polycube splines offer a general framework in which any
existing planar spline scheme can be generalized to a
polycube domain via affine structure. Especially, in this
paper, we construct T-splines on polycubes and demon-
strate the efficiency of polycube splines to model surfaces
with high fidelity, while retaining the attractive proper-
ties of partition-of-unity, level-of-detail control, andhi-
erarchical representation.

The remainder of this paper is organized as follows. We review
the related work on splines and parameterizations in Section 2.
We present the detailed algorithms for constructing the poly-
cube map in Section 3. Next, we show the hierarchical surface
reconstruction in Section 4. Experimental results with statistics
and performance data are also shown in Section 4. Finally, we
conclude our paper in Section 5 with future research directions.

2. Related Work and Background

2.1. T-splines

In [25], Sederberget al. pioneered the T-spline, a general-
ization of the non-uniform B-spline surfaces. Unlike tensor-
product splines, T-spline control grids are no longer required
to be totally regular. In particular, they permit T-junctions, and
iso-parametric curves of control points need not to traverse the
entire column/row of control grids. Therefore, T-splines enable

a true local refinement without introducing additional, unnec-
essary control points in nearby regions. Sederberget al. also
developed an algorithm to convert industry standard NURBS
surfaces into T-spline surfaces, in which a large percentage
of superfluous control points are eliminated [26]. Zhenget al.
developed techniques for adaptively fitting T-splines to func-
tional data [34]. Wang and Zheng addressed the issue of con-
trol point removal for T-spline surfaces [30]. Yanget al.devel-
oped T-spline level sets for image segmentation and meshing
non-uniform sampled and incomplete data [31,32]. Denget al.
introduced the polynomial spline functions over T-meshes,an
extension of T-splines such that the splines are piecewise poly-
nomials instead of rational functions [4]. Recently, Liet al.
presented an automatic technique to convert polygonal meshes
to T-splines using periodic global parameterization [22,24]. Li
et al.’s method can be also viewed as manifold splines since
the transition functions of the periodic global parameterization
are composition of translations and rotations [24].

2.2. Manifold Construction

In essence, manifold construction is to model surfaces using
charts. The shape (2-manifold) is covered by several charts.
One builds functions on each chart. Due to certain continu-
ity requirement of the transition functions between overlapping
charts, the smoothness properties of the manifold functions
areautomaticallyguaranteed. Therefore, there are no restric-
tions/constraints on the control points. All the control points
are free variables in the entire modeling process. Furthermore,
manifold constructions can generateCk smooth surfaces.

Grimm and Hugues [7] pioneered a generic method to extendB-
splines to surfaces of arbitrary topology, based on the concept of
overlapping charts. Cotrinaet al.proposed aCk construction on
manifold [2,3]. Ying and Zorin [33] presented a manifold-based
smooth surface construction method which hasC∞-continuous
with explicit nonsingular parameterizations only in the vicinity
of regions of interest.

Gu et al. [10] developed a general theoretical framework of
manifold splines in which spline surfaces defined over planar
domains can be systematically generalized to any manifold do-
main of arbitrary topology (with or without boundaries). Heet
al. further developed modeling techniques for applications of
manifold splines using triangularB-splines [14] and Powell-
Sabin splines [13].

2.3. Global Surface Parameterization

Surface parameterization has been a very active research area
in the past decade [5]. Parameterization can be viewed as a
mapping from a surface in 3D to a 2D canonical domain. Since
isometric mappings only exist in very special cases, many ap-
proaches to surface Euclidean parameterization thereforeat-
tempt to find a mapping which is either conformal (i.e., no angu-
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lar distortion) [27,8,21,24,16,19], or equiareal (i.e., no area dis-
tortion) [23,28,20]. Hyperbolic parametrization for highgenus
number surfaces is presented in [17]. Spherical parametrization
for genus zero surfaces are introduced in [6,9]. In sharp con-
trast to the above parameterization methods, which build the
map between the surface and one of the three canonical do-
mains (sphere, Euclidean disk, or hyperbolic disk), Tariniet al.
pioneered the concept of polycube maps, which has the same
topology of the input mesh and also mimics its rough geometry.
Thus, polycube can induce the map which minimizes both the
angular distortion and area distortion [29]. Tariniet al.demon-
strated that polycube maps naturally lead to a seamless texture
mapping method that is simple enough to be implemented in
currently available graphics hardware [29].

3. Construction of Polycube Maps

In this section, we explain in details our algorithm for construct-
ing affine atlas using polycube maps for surfaces of arbitrary
topology. The key difference between the techniques employed
in [29] and ours in this paper is that Tariniet al.’s technique
is trying to find the one-to-one mapping of the 3D shape and
polycube extrinsically, which typically requires the projection
of points from one shape to the other. As a result, their method
is usually quite difficult to handle cases where the two shapes
differ too much and the point projection does not establish the
one-to-one correspondence. In contrast, our method aims to
compute such a mapping in an intrinsic way. We first confor-
mally map the 3D shape and the polycube to the same canoni-
cal domains (e.g., sphere, Euclidean plane, or hyperbolic disk),
then we construct a map between these two domains, which
induces a one-to-one map between the 3D shape and the poly-
cube. Since our method avoids the direct projection of the 3D
shape to the polycube, the polycube can be constructed inde-
pendent of the actual geometry of 3D shape, allowing different
complexity and resolution for the polycube.

3.1. Riemannian Uniformization Metric

Constructing the polycube map is equivalent to seeking a bijec-
tive map between the 3D model and the polycube. Our method
for establishing such a mapping varies according to different
topologies of surfaces:genus zero surfaces, genus one surfaces,
and surfaces of high genus.

Suppose a surfaceS is embedded inR3, then it has a Rieman-
nian metric, which is represented by its first fundamental form,
induced from the Euclidean metric ofR3, denoted byg. Sup-
poseu : S→ R is a scalar function defined onS, then it can be
verified thate2ug is another Riemannian metric onS, denoted
by ḡ. It can be proven that angles measured byg are equal to
those measured bȳg. Therefore,̄g is conformal tog and now
e2u is called the conformal factor.

In essence, Riemannian metric determines the length, area,cur-
vature and differential operators onS. When the Riemannian
metric is conformally deformed, these geometric quantities will
be changed accordingly. Supposeg is changed tōg = e2ug.
Then the Gaussian curvature will become

K̄ = e−2u(−∆u+K), (1)

where∆ is the Laplacian-Beltrami operator under the original
metricg. The geodesic curvature will become

k̄ = e−u(∂nu+k), (2)

wheren is the tangent vector orthogonal to the boundary. Ac-
cording to Gauss-Bonnet theorem, the total curvature is

∫

S
KdA+

∫

∂S
kds=

∫

S̄
K̄dĀ+

∫

∂ S̄
k̄ds̄= 2πχ(S), (3)

whereχ(S) is the Euler characteristic number ofS and∂S is
the boundary ofS.

Riemann uniformization theorem [18] states that for any surface
S, there exists a unique conformal metric, such that it induces
constant Gaussian curvaturēK and zero geodesic curvaturēk.

K̄ =



















+1, χ(S) > 0

0, χ(S) = 0

−1, χ(S) < 0

(4)

Such kind of metric is called the uniformization metric ofS.

We compute the uniformization metric with heat flow method
[9] for genus zero surfaces, holomorphic 1-form method [8,16]
for genus one surfaces, and hyperbolic Ricci flow method [17]
for surfaces with genus greater than one.

In the followings, we use notationsM andP to denote the 3D
model and its polycube approximation (serving as the paramet-
ric domain), respectively.

The overall flow of our algorithm for establishing the one-to-
one mapping can be summarized as follows:

(i) Given a 3D modelM from data acquisition, construct a
polycubeP which roughly resembles the geometry ofM
and is of the same topology ofM.

(ii) Compute the uniformization metric ofM and embedM
in the canonical domainDM, which is a domain inS2,
E2 or H2, i.e.,φM : M → DM.

(iii) Compute the uniformization metric ofP and embedP in
the canonical domainDP, i.e.,φP : P→ DP.

(iv) Construct the mapφDM→DP : DM → DP.

(v) Finally, the compositionφM→P = φ−1
P ◦ φDM→DP ◦ φM

gives the desired polycube map fromM to P as shown
in equation (5).
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M P

DM DP

-
φM→P

?

φM

?

φP

-

φDM→DP

(5)

Note that, our construction method varies depending on differ-
ent types of surfaces. Genus zero surfaces are mapped to the
unit sphereS2 with positive curvatureK̄ = 1. Genus one sur-
faces are mapped to Euclidean planeE2 with zero curvature
K̄ = 0. Surfaces of high genus are mapped to hyperbolic disk
H2 with negative curvaturēK = −1.

3.2. Genus-zero Polycube Map

Genus zero surfaces are topologically equivalent to sphere.
Thus, we use sphere as the canonical domain for bothM and
P. We use the heat flow method to construct conformal maps
between a closed genus zero surface and the unit sphereS2 [9].
The idea is that, for genus zero closed surfaces, conformal maps
are equivalent to harmonic maps.

Let φ : M → S2 denote the spherical mapping. The harmonic
energy is defined as

E(φ) =

∫

M
< ∇φ ,∇φ > dA, (6)

where<,> is the inner product inR3. The critical point of
the harmonic energy is the harmonic map. Define the normal
component of the Laplacian as

(∆φ)⊥ =< ∆φ ,n◦φ > n, (7)

wheren is the normal ofφ(M). If φ is the harmonic map, then
the tangent component of Laplace-Beltrami operator vanishes,
i.e.,

∆φ = (∆φ)⊥. (8)

Therefore, we can diffuseφ to harmonic map by the heat flow
method:

dφ
dt

= −(∆φ − (∆φ)⊥). (9)

After computing the mapsφM : M → S2 andφP : P → S2, we
need to find a mapφDM→DP : S

2 → S
2 which can align their

major features. For example, we want to align the eyes and
nose of the Isidore Horse model (see Figure 2) to be at certain
positions on the polycube. To do so, we conformally map the
sphere to the plane using stereographic projection

τ : (x,y,z) → (
2x

1−z
,

2y
1−z

), (x,y,z) ∈ S
2
. (10)

We then use a special conformal map from the plane to itself, a
Möbius transformation, to move three arbitrary feature points
into any new desired positions. Suppose for the first surface,
the three feature points arez0, z1 andz2. We first construct the
Möbius transformation which takes them into 0, 1, and∞:

ψ1 =
(z−z0)(z1−z2)

(z−z2)(z1−z0)
. (11)

We then constructψ2 for three positions onP in a similar way.
Thenψ−1

1 ◦ψ2 maps the feature points on the second surface
into those on the first one. Finally, the conformal mapφDM→DP :
S2 → S2 is defined as

φDM→DP = τ−1 ◦ψ−1
2 ◦ψ1◦ τ. (12)

Note that the polycube mapφM→P = φ−1
P ◦ φDM→DP ◦ φM is

conformal since each sub-map is conformal.1

Fig. 2. Conformal mapping of a genus zero surface to the unit sphere
induces the genus zero conformal polycube map. Both the original meshM
and the polycubeP are conformally mapped to the canonical domains, i.e.,
S2, E2 or H2. Denote these maps byφM : M → DM and φP : P→ DP. By
finding the optimal map betweenDM and DP, we get the polycube map
φM→P = φ−1

P ◦φDM→DP ◦φM .

Fig. 3. Holomorphic 1-formω on genus one surface is well defined every-
where.

3.3. Genus-one Polycube Map

SupposeM is a genus one closed surface,ω is a holomorphic
1-form. Then,ω is well-defined everywhere, i.e., there are no
zero points as shown in Figure 3.

By integratingω , M can be periodically mapped to the plane,
each period is called a fundamental polygon. Each canonical
fundamental polygon of genus one surface is a parallelogram.

1 Strictly speaking, the mapφP : P→ S2 is conformal everywhere except at
the corners of the polycube.
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(a) M (b) φM : M → DM ⊂ E2 (c) P (d) φP : P→ DP ⊂ E2 (e) φ : M → P

Fig. 4. Euclidean structure induces the genus-one polycubemap. The genus one Rockerarm modelM in (a) is conformally mapped to the Euclidean plane in
(b). The fundamental domain is a rectangle region enclosed by the green boundary in (b). Then, a polycubeP in (c) is also parameterized over the rectangular
region in the same way in (d). By matching the two fundamentalregions in (b) and (d) via an affine map, the conformal polycube map for the Rockerarm
model is established.

Given two arbitrary parallelograms, there exists a unique affine
map to map one to the other, such that corners are mapped to
corners, sides are mapped to sides.

The fundamental polygons ofM andP, DM andDP, are par-
allelograms. Denote the unique affine map between them as
φDM→DP, then the polycube mapφM→P : M → P is formulated
as

φM→P = φ−1
P ◦φDM→DP ◦φM. (13)

Figure 4 demonstrates the above mapping method for construct-
ing a polycube map of the Rockerarm model. The polycube
mesh is manually built. Then both the Rockerarm mesh and
the polycube model are parameterized using the holomorphic
1-form method [8]. Their fundamental polygons are extracted
and mapped by an affine map. The affine map further induces a
bijective map between the Rockerarm model and the polycube.

3.4. High Genus Polycube Map

Given a high genus surface with simple geometry like the 3-
hole torus model shown in Figure 1, the polycube map can be
constructed using the techniques in [29]. However, for surfaces
with complicated geometries like the model in Figure 5, the di-
rect projection techniques inR3 hardly generate bijective maps.
To avoid these difficulties, we use hyperbolic parameterization
method instead.

3.4.1. Hyperbolic Ricci Flow

Hyperbolic Ricci flow is introduced in [17]. A circle packing
on a mesh associates a circle with each vertex, circles intersect
each other. A mesh with circle packing is denoted as(M,Γ,Φ),
whereM represents the triangulation (connectivity) with vertex
set V, edge set E and face set F,Γ = {γi ,vi ∈V} are the vertex
radii andΦ = {φi j ,ei j ∈E} are the angles associated with each
edge. A circle packing metric is define as(M,Φ,Γ). A discrete
conformal mappingτ : (M,Γ,Φ) → (M, Γ̄,Φ) solely changes
the vertex radiiΓ, but preserves the intersection anglesΦ.

Given the circle packing metric, the lengthl i j associated with
the edgeei j is computed using the hyperbolic cosine law.

coshl2i j = coshγi coshγ j +sinhγi sinhγ j cosφi j , (14)

whereφi j is the intersection angle between two circles associ-
ated atvi andv j with radiusγi andγ j respectively.

The discrete Gaussian curvatureKi at an interior vertexvi with
surrounding facefi jk is defined as

Ki = 2π − ∑
fi jk∈F

θ jk
i , vi 6∈ ∂M, (15)

whereθ jk
i is the corner angle offi jk at vi . While the discrete

Gaussian curvature for a boundary vertexvi is defined as

Ki = π − ∑
fi jk∈F

θ jk
i , vi ∈ ∂M. (16)

Then the hyperbolic Ricci flow is defined as

∂γi

∂ t
= −sinhγiKi (17)

It can be proven that discrete Ricci Flow is convergent to the
uniformization metric and the convergence rate is exponen-
tial [1][17].

3.4.2. Hyperbolic Embedding

With the uniformization metric,M with g > 1 can be peri-
odically mapped onto the hyperbolic spaceH2. We use the
Poincaré hyperbolic disk model to represent the hyperbolic
spaceH2. The Poincaré disk is a two-dimensional space de-
fined in the unit disk{z∈ C : |z| < 1} on the complex planeC
with hyperbolic metric. The hyperbolic metric is defined as

ds2 =
dzd̄z

(1− z̄z)2 . (18)

The geodesic (hyperbolic lines) in the Poincaré disk are Eu-
clidean circular arcs perpendicular to the boundary|z|= 1. The
rigid motions in the hyperbolic plane are the Möbius transfor-
mationsz→ w, z∈ C with the form

w = eiθ z−z0

1− z̄0
, (19)
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(a) (b) (c) (d) (e) (f)

Fig. 5. Hyperbolic structures induce the high genus polycube map. The canonical homology basis of the genus-3 sculpturemodel are colored in blue in (a).
(b) shows the isometric embedding of its universal coveringspace on the Poincaré hyperbolic disk. We compute the hyperbolic uniformization metric of the
polycube in (c) using a similar approach. The canonical homology basis of the polycube are drawn in blue in (c), (d) shows the isometric embedding of its
universal covering space on the Poincaré hyperbolic disk.By establishing the correspondence between the fundamental domains, we construct the polycube
map (shown in (e) and (f)) between (a) and (c).

wherez0 is an arbitrary point inside the unit disk.

To embedM into Poincaré disk, we need to compute the
canonical homology basis, which is a set of 2g curves
{a1,b1,a2,b2, . . . ,ag,bg} satisfying the following criteria:

(i) All the curves meet at a single base point,v.

(ii) Each pair of curves{ai,bi} algebraically intersect each
other exactly once.

(iii) No curve in another pair{a j ,b j} algebraically intersects
either ofai ,bi .

We slice the meshM along{ai ,bi}
g
i=1 to form the fundamental

domainD whose boundary∂D is

∂D = a1b1a−1
1 b−1

1 · · ·agbga−1
g b−1

g .

Then the canonical homology basis are mapped to geodesics on
the Poincaré disk. Figure 6 illustrates the canonical homology
basis and the hyperbolic embedding with the uniformization
metric for a genus 2 model.

Fig. 6. A genus two surface with a set of canonical fundamental group
generators{a1,b1,a2,b2} is shown on the left. A finite portion of its universal
covering space is shown on the right. Different fundamentaldomains are
drawn in different colors. The boundary of each fundamentaldomain is the
preimage ofa1b1a−1

1 b−1
1 a2b2a−1

2 b−1
2 . The points{p0, p1, p2} are the primages

of p on the surface.

3.4.3. Constructing the Polycube Map

In order to find the map betweenM andP, we compute their
hyperbolic parameterizations by solving the discrete hyperbolic
Ricci flow in (17). Then, similar to the genus zero case, a har-
monic mapφDM→DP is constructed such that maps the funda-
mental polygon ofM to the fundamental polygon ofP. Finally,
the polycube map is constructed as

φM→P = φ−1
P ◦φDM→DP ◦φM. (20)

Figure 5 demonstrates the example of polycube map for a
genus-3 surface and highlight our construction pipeline.

3.5. The Affine Atlas via Polycube Map

We construct an affine atlas from the polycube map. Each face
and edge on the polycube are associated with its own local chart.
Each face chart covers only interior points of corresponding
face and leaves off all the edges of the face. Each edge chart
covers interior points of the edge but leaves off corner vertices.
Furthermore, there are overlaps between face charts and edge
charts. The transition functions between overlapped edge and
face charts are simply translations and rotations of 90 degrees.
Note that there isNO vertex chart for the corner vertex, i.e.,
the corners are singular points. Therefore, by removing allthe
corners, polycube map naturally induces the affine structure.
Figure 7 highlights face and edge charts of a polycube. The
extraordinary points are colored in yellow.

In [10], they have pointed out that any planar spline schemes
which satisfy the parametric affine invariant property can be
generalized to manifold domain via affine structure. By remov-
ing all the corner points, a polycube domain is just an affine
manifold preserving the affine structure. Therefore, we cande-
fine spline surfaces on polycube directly.
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(a) Face charts (b) Edge charts (c) Singularities

(d) Close-up view of one face chart and its
associated edge charts and singularities

(e) Face chart (f) Transition function

Fig. 7. Polycube map induces affine structure. The polycube is covered by
face and edge charts. Each face chart (drawn in blue) covers only interior
points of corresponding face and leaves off all the edges of the face. Each
edge chart (drawn in red) covers interior points of the edgesbut leaves off
corner vertices. The corners (drawn in yellow) are singularities which are NOT
covered by any charts. We highlight one face chart and its associated edge
charts and singularities in (d). By flattening the edge charts, we get the planar
domain shown in (e). Note that the transition functions between overlapped
edge and face charts are simply translations and rotations.Therefore, by
removing all the corners, the open polycubeP\C has the affine structure.

4. Hierarchical Surface Reconstruction Using Polycube
T-Splines

After constructing the domain manifold and affine atlas of the
original model by computing the polycube maps (section 3),
we are now ready to generalize T-spline from planar domains
to manifold domains via affine structure. This will enable the
automatic reverse engineering from polygonal models initially
acquired to a more compact spline representation with high
accuracy.

4.1. T-splines Via Polycube Maps

The key advantage for defining T-spline over polycube maps
is that each face chart of the polycube is nothing more than
a union of rectangles, conventional tensor-product splines are
special cases of T-splines, and they are all naturally defined
over rectangular regions. More importantly, the hierarchical

definition and level-of-detail control are attractive features in
practice.

Recall that for every control point in the T-mesh, the covering
region of its basis function is a rectangle, whose side lengths
(knot vectors) are determined by the connectivity of the T-mesh.
In polycube T-splines, we follow the rules defined in [25,26].
We further require that on each chart, the basis functions van-
ishes outside the boundary of the chart. Thus, the face charts
are totally separate from each other. Each edge chart connects
two face charts (one face chart if it is a boundary edge and not
shared by two faces). Therefore, given an arbitrary parameter
u ∈ P\C, it may be covered by a single face chart, or a single
edge chart, or by one face chart and one edge chart.

On each (edge and face) chart(Ui ,φi), the spline patch is defined
as a point-based spline whose control points form a T-mesh:

Fi(u) = ∑
j

c jB j(φi(u)),u ∈Ui , (21)

wherec j ∈ R3 are the control points.

Given an arbitrary parameteru ∈ P\C, the spline evaluation
can be carried out as follows:

(i) Find the set of charts which cover this pointu. This set
V contains one face chart, or one edge chart, or one face
chart and one edge chart.

(ii) The function value is the partition of unity of the spline
patches in the above chart(s), i.e.,

F(u) =
∑i∈V ∑ j c jB j(φi(u))

∑i∈V ∑ j B j(φi(u))
.

4.2. Least-Square Fitting and Hierarchical Refinement

We now discuss the problem of finding a good approximation
of a given polygonal meshS with vertices{pi}

m
i=1 by a mani-

fold T-spline. We assume that the polygonal meshS has been
normalized to be inside the unit cube centered at the origin.A
commonly-used technology is to minimize a linear combina-
tion of interpolation and fairness functionals, i.e.,

minE = Edist + λEf air . (22)

The first part is

Edist =
m

∑
i=1

‖F(ui)−pi‖
2
,

whereui ∈ M is the parameter forpi , i = 1, . . . ,m.
The second partEf air in (22) is a smoothing term. A frequently-
used example is the thin-plate energy,

Ef air =

∫∫

M
(F2

uu+2F2
uv+ F2

vv)dudv.

Note that both parts are quadratic functions of the unknown
control points, leading to a linear system.
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S Polycube N1
c = 1218 N3

c = 4325 N5
c = 6475

Nv = 31K map L1
∞ = 5.8% L3

∞ = 1.9% L5
∞ = 0.54%

Fig. 8. Hierarchical surface reconstruction of Polycube T-splines.Ni
c and Li

∞ are the number of control points and maximal fitting error in iteration i. Nv is
the number vertices in the input polygonal meshS. The input data is normalized to a unit cube.

We solve Equation (22) for unknown control points using Con-
jugate Gradient method. The value and gradient of the inter-
polation functional and fairness functional can be computed
straightforwardly.

In our method, we control the quality of the manifold T-
spline spline by specifying the maximal fitting toleranceL∞ =
max‖F(ui)−pi‖, i = 1, . . . ,m. If the current surface does not
satisfy this criterion, we employ adaptive refinement to intro-
duce new degrees of freedom into the surface representation
to improve the fitting quality. Because of the natural and el-
egant hierarchial structure of T-splines, this step can be done
easily. Suppose a domain rectangleI violates the criterion and
denoteLI

∞ theL∞ error on rectangleI . If the LI
∞ > 2ε, split the

rectangleI using 1-to-4 scheme; Otherwise, we divideI into
two rectangles by splitting the longest edge. After adaptive
refinement, we then re-calculate the control points until the
maximal fitting tolerance is satisfied.

Figure 8 shows the whole procedure of hierarchical fitting
of T-splines. For example, the initial spline of the Head
model(Figure 8) contains only 1218 control points and the
maximal errorL∞ = 5.8%. Through five iterations, we can
obtain a much more refined spline surface with 6475 control
points by inserting only necessary control points. The maximal
fitting error reduces to 0.54%. As shown in the close-up view
(Figure 9), our hierarchical data fitting procedure can produce
high quality polycube T-splines with high-fidelity and we will
be able to recover all the surface details.

4.3. Handling the Extraordinary Points

In [10], Gu et al. proved that manifold splinesMUST have
singularities if the domain manifold is closed and not a torus.
The number of extraordinary points of the domain manifold via
conformal structures and polycube maps are different. Given
the surfaceM with genusg andb boundaries, the number of
zero points of the holomorphic 1-form is fixed, i.e.,|2g−2+
b|. Using polycube maps, the number of extraordinary points
depends on the geometry of the polycube, i.e., each corner isa
singularity.

Although the singularities are just points on the domain man-
ifold, in practice, we have to remove these points and their 1-
ring or 2-ring neighbors. As a result, the holes are unavoidably
in the spline surface. Thus, we need to find a blending surface
patch to fill the holes smoothly. In our implementation, we use
a cubic triangular spline to fill each hole such that the surface
is C2 inside andG1 along the boundaries of the hole. The rea-
son that we choose triangularB-spline [11] is its flexibility in
the domain construction and its potential to match with any
number of sides of holes.

Thus, our goal is to solve the following optimization problem:

E(s) =

∫∫

Ω
(

∂ 2s
∂u2 )2 +2(

∂ 2s
∂u∂v

)2 +(
∂ 2s
∂v2 )2dudv. (23)

wheres is the triangularB-spline surface, andΩ is the paramet-
ric domain ofs. Our strategy to fill the hole is to finds solving
the following minimization problem:

min{E(s) : s|∂Ω = f ,
∂s
∂u

×
∂s
∂v

|∂Ω = n}. (24)
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(a) Polygonal mesh (b) T-spline

(c) T-junctions (d) Control points

(e) Polygonal mesh (f) T-spline

(g) T-junctions (h) Control points

Fig. 9. Close-up views of the reconstructed details. Our hierarchical surface
reconstruction algorithm can faithfully reconstruct the details in the original
model. (a) and (e) show the original polygonal model. (b) and(f) show the
T-spline surfaces ofC2 continuity. (c) and (g) highlight the T-junctions on the
spline surfaces. (d) and (h) show the splines overlaid by thecontrol points.

where f andn are the boundary positions and normals.

The boundary conditions are represented by several sampling
points on the boundary of the spline surface. The boundary po-
sition constraints naturally lead to a system of linear equations
on the control points. The normal constraints are expressedas

<
∂s
∂u

,n >= 0, <
∂s
∂v

,n >= 0.

Therefore, Equation (24) is a linear least-square problem with
linear constraints, which can be solved easily using Lagrange
Multiplier method. Figure 10 demonstrates the procedure
pipeline to handle the extraordinary points on the Rocker Arm
model.

(a) (b)

(c) (d)

Fig. 10. Handing the extraordinary points of the manifold T-spline whose
affine atlas is constructed using polycube maps, where all the corners are
extraordinary points (shown in (a)). (b) shows the domain manifold after
removing all the corners. (c) shows the open manifold T-spline surface
with many holes. For each hole, we construct a cubic triangular B-spline
surface which minimizes the thin-plate energy functional (24) and satisfies
the boundary condition. (d) shows the final result after hole-filling (hole areas
are all colored in green).

Fig. 11. Polycube T-splines for the Isodore Horse model.

4.4. Discussions

This subsection compares the T-splines constructed using con-
formal structure [15] and polycube map, respectively. From
the chart-relation’s point of view, these methods differ inthree
aspects, the number and the locations of singularities, thean-
gle/area distortion, and the type of transition functions.Each
method has its own merits and users may choose one or an-
other depending on their specific application needs. Table 1
summaries the salient differences between these methods.

Conformal structure induces the affine structure with the fixed
number of extraordinary points, i.e.,|2g−2+ b|. For genus-
zero surfaces, we usually intentionally cut two boundarieson
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(a) Polycube map (b) T-spline (c) T-junctions (d) Control points

Fig. 12. Polycube T-splines for the Chinese Dragon model.

Table 1
Comparison of the methods to compute affine structures.g, genus of the domain manifoldM; b, number of boundaries ofM.

Method # of singularitiesLocation of singularities Area distortion Angle distortion Transition function

Conformal structure |2g−2+b| difficult to control large on extruding parts no translation

Polycube map many easy to control low low translation and 90 degree rotation

the model. Note that, we do not modify the geometry of the
original model, the number of extraordinary points drop to zero.
Although conformal structure preserves the angles very well,
they inevitably introduce large area distortion if the model has
some long, extruding parts. These large area distortions usually
make the spline construction very difficult, since we need toin-
troduce more control points in such areas. The transition func-
tions of the affine atlas via conformal structure is simply the
translations, which facilitates the implementation of T-splines
on manifolds. The valence of extraordinary points of T-splines
via conformal structure is eight, i.e., the hole is sixteen-sided.

Fig. 13. Extraordinary point (marked in red) with valence 3,4, 5 and 6.

Polycube maps are ideal to reduce both the area and angle dis-
tortion in the affine atlas, as shown in the 3-hole torus models
in Figure 1. Thus, it facilitates the spline construction proce-

dures. However, the side-effect to reduce the area distortion
is to introduce more extraordinary points simultaneously.Usu-
ally, the lesser the area distortion, the more number of extraor-
dinary points. The transition functions of the affine atlas via
polycube maps is the composition of translation and 90 degree
rotation. The valence of singularities of T-spline via polycube
map is three, four, five or six, thus, the hole is six, eight, ten or
twelve-sided (see Figure 13).

4.5. Experimental Results

Our prototype system is implemented in C++ on Windows plat-
form. We built a complete system for computing the conformal
structures, the polycube maps and T-splines. We tested our al-
gorithms on various models from genus zero to genus three.
The statistics of the test cases are shown in Table 2. Figure 8
illustrates the hierarchical surface reconstruction. As shown in
Figure 8 and 9, we can get high-quality spline surfaces by grad-
ually increasing the number of control points. More compli-
cated models are shown in Figure 11, Figure 12, and Figure 14.
The results demonstrate both the theoretic rigor and feasibility
in practice for methodologies and computational techniques.

5. Conclusion

We have developed the polycube splines which not only in-
herit all the features of general manifold splines but also have
new and more attractive properties of its own, including hier-
archical representation, level-of-detail control, regular domain,
partition-of-unity for basis functions, easy chart construction,
and easy handling of extraordinary points. The polycube splines
are naturally built upon the polycube map which serve as its
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Table 2
Statistics of test examples.Ns, # of singularities;Nc, # of control points;rms,
root-mean-square error.

Object genusNs Nc rms

Head (Figure 8, 9) 0 8 6475 0.05%

Bimba (Figure 14) 0 16 109640.07%

Buddha (Figure 14) 0 16 110670.04%

Rockerarm (Figure 14) 1 24 4132 0.03%

3-hole Torus (Figure 1) 3 32 5180 0.02%

Isidore Horse (Figure 11) 0 20 121580.07%

Chinese Dragon (Figure 12)0 28 113350.07%

Ramesses (Figure 14) 0 24 9874 0.04%

parametric domain. The use of polycubes for spline surface def-
inition and construction is the first attempt to take advantage of
the rectangular structure defined by the boundary of polycubes,
allowing the parametric domain to actually mimic the geom-
etry of the modeled objects with lower area distortion while
enforcing their topological consistence. We have presented our
algorithms to construct polycube maps as the first step to enable
spline construction over polycubes of arbitrary topology.We
show that the introduced polycube maps easily induce the affine
structures except at the finite number of corner points, where
we also articulate our strategy for the hole-filling procedure.
Through extensive experiments on various models, we demon-
strate that polycube splines are a very good candidate for accu-
rately representing complicated geometric models of arbitrarily
complicated topology with low fitting errors and fewer control
points (in comparison with polygonal models). Although the
immediate application documented in this paper is data fitting
for reverse engineering and shape presentation, we foreseea
broader application scope in solid computing, shape analysis,
data compression, FEM-based dynamic simulation, and virtual
prototyping in CAD environments.
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(a) Polycube map (b) T-spline (c) T-junctions (d) Control points

Fig. 14. Construction of manifold T-splines using polycubemaps.
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