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Abstract

We present a novel automatic method for high resolution, non-rigid dense 3D point tracking. High

quality dense point clouds of non-rigid geometry moving at video speeds are acquired using a phase-

shifting structured light ranging technique. To use such data for the temporal study of subtle motions

such as those seen in facial expressions, an efficient non-rigid 3D motion tracking algorithm is needed

to establish inter-frame correspondences. The novelty of this paper is the development of an algorithmic

framework for 3D tracking that unifies tracking of intensityand geometric features, using harmonic maps

with added feature correspondence constraints. While the previous uses of harmonic maps provided

only global alignment, the proposed introduction of interior feature constraints allows to track non-rigid

deformations accurately as well. The harmonic map between two topological disks is a diffeomorphism

with minimal stretching energy and bounded angle distortion. The map is stable, insensitive to resolution

changes and is robust to noise. Due to the strong implicit andexplicit smoothness constraints imposed

by the algorithm and the high-resolution data, the resulting registration/deformation field is smooth,

continuous and gives dense one-to-one inter-frame correspondences. Our method is validated through a

series of experiments demonstrating its accuracy and efficiency.

Index Terms

Vision and Graphics, Face and Gesture, Registration, Motion Analysis and Tracking.

I. INTRODUCTION AND PREVIOUS WORK

Automatic tracking of non-rigid 3D motion is essential in many computer vision and graphics

applications, especially dynamic facial expression analysis, such as facial expression recognition,

classification, detection of emotional states, etc. In the literature, most non-rigid object tracking

and registration algorithms utilize image data from 2D image sequences, e.g. [45], [6], [19],

[29], [1], [8], [42], [21], [35], [22], [44], [41], [34]. Previous methods establishing 3D inter-

frame correspondences for non-rigid motion largely fall into two categories: One depends on

markers attached to the object [24], [28], [2] or on feature correspondences manually selected

by the users [31]; the other calculates correspondences based on the geometry using a 3D

deformable/morphable model [19], [3], [33], [40], [15], [22], [47], [12], [7], [46], [16], or other

3D shape registration algorithms such as [13], [5], [50]. Ingeneral, most of the existing methods

rely on templates with relatively few degrees of freedom. While the recovered low dimensional

configurations can often be used effectively in classification, they are hardly sufficient in many
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analysis applications, especially dynamic facial expression analysis, since many distinct charac-

teristics of a person’s expression lie in the subtle detailssuch as the wrinkles and the furrows that

are generated by highly local skin deformations. This paperpresents an algorithmic framework

which makes use of the elements of conformal geometry theoryfor the 3D facial expression

tracking problem. Although our method was implemented in the context of facial expression

tracking, it is general and could be applied to other classesof similarly deforming objects.

Recent technological advances in digital imaging, digitalprojection display and personal

computers have made real time 3D shape acquisition increasingly more feasible. Such ranging

techniques include structured light [37], [36], and space-time stereo [49], [14]. These systems

can capture dense 3D data at a high frame rate. Recently, a high-resolution 3D expression data

acquisition system was developed in [37] which captures highly accurate geometry at speeds

that exceed regular video frame rate. Such high-quality data is very attractive for the analysis

of facial expressions. However, since the dense data samples in these 3D face scans are not

registered in object space, inter-frame correspondences can not be established, which makes

the tracking of facial features, temporal study of facial expression dynamics and other analysis

difficult. For this purpose, a number of tracking algorithmshave been proposed recently for 3D

facial expression data [49], [43]. Tracking methods based on optical flow estimation[49], [22]

can be sensitive to noise for textureless regions. A hierarchical tracking framework for high

resolution 3D dynamic expression data was presented in [43], using a deformable generic face

model. However, it suffers from problems likefolding and clustering, which are inherent to

the methods employing local optimization techniques such as Free-Form Deformation (FFD).

Furthermore, this face model needs to be manually divided into several deformable regions,

with associated shape and motion control parameters. This initial segmentation, along with the

associated parameters has to be recovered statistically, requiring many experiments for each

different expression of every subject. Although this mightbe acceptable for certain applications

like motion capture for computer graphics, it requires prohibitive amounts of time and effort

for processing of the large number of data-sets required fordata driven applications in facial

expression analysis and synthesis[7].

In this paper, we present a novel method for high resolution,non-rigid dense 3D point tracking.

This proposed method is fully automatic, except for the initial fitting step on the first frame.

(Automatic initial fitting can be achieved using the automated correspondence selection technique
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[31] but it is outside the scope of this paper.) High quality dense point clouds of facial geometry

moving at video speeds are acquired using a phase-shifting structured light ranging technique

[37]. To use such data for the temporal study of the subtle dynamics in expressions, an efficient

non-rigid 3D motion tracking algorithm is needed to establish inter-frame correspondences. In

this paper, we propose such an algorithmic framework that uses a mathematical tool called

harmonic maps [38], [32], [17], [18]. Harmonic maps were used in [48] to do surface matching,

albeit focusing on rigid transformations. Given the sourcemanifoldM and the target manifoldD,

only the boundary conditionu|∂M : ∂M → ∂D was used to constrain and uniquely determine

the harmonic mapu : M → D. For applications like high resolution facial tracking though,

we need to account for non-rigid deformations, with a high level of accuracy. To this end, we

introduce additional feature correspondence constraints, in addition to the boundary constraint

in our implementation of harmonic maps. Similar idea was also used in [30] where user-defined

feature sets are used to constrain the surface deformation.We select a set ofmotion-representative

feature corners (for example, for facial expression tracking, we select corners of eyes, lips,

eye brows etc.) and establish inter-frame correspondencesusing commonly used techniques

(for example, hierarchical matching used in [45]). We can then integrate these correspondence

constraints with the boundary condition to calculate harmonic maps, which not only account

for global rigid motion, but also subtle non-rigid deformations and hence achieve high accuracy

registration and tracking. It is important to point out thatthere are other approaches proposed to

perform surface matching based on Riemannian geometry, such as generalized multidimensional

scaling (GMDS) [9], [11], where an isometry-invariant embedding is used to compute an intrinsic-

geometric representation of the surface. Furthermore, combined the canonical parameterization,

other features, such as the texture information, can also beincorporated into the representation

to improve the matching performance [10].

An important contribution of our tracking method is to reduce the non-rigid 3D tracking

problem to a 2D image registration problem, which has been extensively studied. We are dealing

with 3D surfaces, but since they are manifolds, they have an inherent 2D structure, which can

be exploited to make the problem more tractable using harmonic maps.

The theory of harmonic maps is based on conformal geometry theory [23], [39]; the harmonic

map between two topological disks is a diffeomorphism with minimal stretching energy and

bounded angle distortion. Harmonic maps are invariant for the same source surface with different
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poses, thus making it possible to account for global rigid motion. Harmonic maps are highly

continuous, stable and robust to noise. A very important property, which governs our registration

and tracking algorithm is that the harmonic map is one-to-one. To register two frames, we align

their respective harmonic maps as closely as possible by imposing the suitable boundary and

feature constraints.The motivation to do so is to establish a common parametric domain for the

two surfaces, which, coupled with the above mentioned property, allows to recover 3D registration

between the two frames. In our case, the harmonic maps are diffeomorphisms, that is one to one

and on-to, and hence lend themselves as a natural choice for surface parameterization in tracking

applications. Because the harmonic mapping between two surfaces is computed by solving an

elliptic P.D.E., the resulting map has a higher continuity than the boundary condition [38], [20].

This implies that the harmonic maps depend on the geometry ina continuous manner, and allow

certain approximation scheme to handle boundary variationand occlusion as demonstrated in

[48]. Furthermore, in order to reduce the inconsistency caused by the changing boundaries during

the tracking process, we use the Neumann boundary conditionas thesoft boundary constraint

to give the boundary condition a relatively lower weight, and use the interior feature constraints

as thehard constraintsto minimize the overall harmonic energy.

As part of our framework, a deforming generic face model is employed to track the dense

3D data sequence moving at video speeds, with the harmonic maps guiding the deformation

field. The harmonic maps are constrained, and hence driven bythe feature correspondences

established between adjacent frames using aniterative scheme; the feature correspondences are

made on texture and curvature images using standard techniques, such as corner detection and

optical flow. Most surface regions have strong features either in intensity or shape images. Our

framework uses both simultaneously providing denser feature tracking. Harmonic maps, thus,

help us to simplify a 3D surface registration problem to a 2D image matching problem. The

resulting harmonic map provides dense registration between the face model and the target frame,

thereby computing the motion vectors for the vertices of thegeneric face model. Our system can

not only track global facial motion that is caused by muscle action, but also subtler expression

details that are generated by highly local skin deformations. We have achieved high accuracy

tracking results on facial expression sequences, which arecomparable to those reported in [43],

[26], using the same dense 3D data, while minimizing the amount of human labor required

for preprocessing and initialization. The above mentionedlevel of accuracy, coupled with the
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automatic natureof our method, demonstrates the merits of our framework for the purpose of

high resolution tracking of non-rigid 3D motion.

The remainder of the paper is organized as follows: In Section II, we give an overview of

harmonic mapping. Section III explains our tracking methodin detail. We first describe the

global alignment of 3D scans, followed by a description of the registration algorithm based on

harmonic mapping and an iterative refinement scheme using local features. Experimental results

are presented in Section IV. We conclude with a discussion and future directions in Section V.

II. HARMONIC MAPPING

A harmonic mapH : M → D can be viewed as an embedding from a manifoldM with

disk topology to a planar graphD. A harmonic map is a critical point for the harmonic energy

functional,

E(H) =
∫

M
|dH|2dµM,

and can be calculated by minimizingE(H). The norm of the differential|dH| is given by the

metric onM andD, anddµM is the measure onM [38], [32], [17], [18]. Suppose we want to

compute a harmonic map,H : M → D, whereM is the domain manifold andD is the target

manifold, H can be represented as two functions(H1, H2), Hi : M → R. More specifically,

in our case,M is the 3D face scan,D is the unit disk on the planeR2, and (H1, H2) is the

parametric coordinate(u, v) in the unit diskD. Thereby the harmonic energy can be represented

as

E(H) =
∫

M
|∇H1|

2 + |∇H2|
2,

By minimizing the harmonic energy, a harmonic map can be computed using the Euler-Lagrange

differential equation for the energy functional, i.e.∆H = 0, where∆ is the Laplace-Beltrami

operator [38], [32], [17], [18].

Since our source manifoldM is in the form of adiscretetriangular mesh, we approximate

the harmonic energy as [17], [48], [23],

E(H) =
∑

[v0,v1]

k[v0,v1]|H(v0) − H(v1)|
2, (1)

where [v0, v1] is an edge connecting two neighboring verticesv0 and v1, andk[v0,v1] is defined

as
1

2
(cotα + cotβ) =

1

2
(

(v0 − v2) · (v1 − v2)

|(v0 − v2) × (v1 − v2)|
+

(v0 − v3) · (v1 − v3)

|(v0 − v3) × (v1 − v3)|
), (2)
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Fig. 1. Illustration of two conjuncted triangle faces:{v0, v1, v2} and{v0, v1, v3}, whereα andβ are the two angles

used in Eqn. 2.

where{v0, v1, v2} and{v0, v1, v3} are two conjuncted triangular faces, andα andβ are the two

angles against the edge[v0, v1], as illustrated in Fig. 1.

By minimizing the harmonic energy, a harmonic map can be computed using the Euler-

Lagrange differential equation for the energy functional,i.e. ∆E = 0, where∆ is the Laplace-

Beltrami operator [38], [32], [17], [18]. This will lead to solving a sparse linear least-square

system for the mappingH of each vertexvi [17], [48], [23]. If the boundary condition is given,

H|∂M : ∂M → ∂D, (3)

then the solution exists and is unique.

For tracking purposes though, we need to align the two harmonic maps closely together (as

explained in Section I), and hence track interior non-rigiddeformations as well. For this purpose,

we also incorporate additional hard constraints to establish interior feature correspondences and

to handle non-disk topologies (e.g., a 3D face scan with an open mouth). Suppose we have a

point on an inner-boundary or an interior feature pointvi on the 3D meshM , which should

be mapped to a corresponding pointwi on the target 2D planeD. We can add it as a hard

constraintH(vi) = wi to the system from Equation 1 and 3. However, the resulting harmonic

energy is expected to increase due to the additional hard constraints introduced. In order to

reduce the energy to achieve a smoother mapping, we use the Neumann boundary condition, a

soft constraint. This condition just constrains the boundary points ofM to lie on the boundary

of the 2D disk D, the exact positions being governed by the minimization of harmonic energy
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criteria. It is different from the fixed boundary condition used for surface matching [48], in which

each boundary point on the3D meshM is mapped to a fixed point on the2D disk, making

it a hard constraint. In our method, all the interior featurecorrespondences on the face scans

which can be reliably established are given the maximum weight, and hence are chosen ashard

constraints. However, because the boundary is not reliable due to the boundary variation and

occlusion, we give the boundary condition a relatively lower weight, in the absence of any strong

features on the boundary, and asoft boundary constraint- the Neumann boundary condition -

is employed to minimize the overall harmonic energy.

Intuitively, consider the manifoldM to be made of a sheet of rubber [17]. The harmonic map

with just the boundary constraint can be thought of as stretching the boundary ofM over the

boundary of the target2D disk D. In this case, each point on the boundary ofM is assigned

a fixed location on the boundary ofD, where it will benailed down. The interior of the sheet

then rearranges to minimize the stretching (or folding), thus minimizing the energy. Now, adding

extra feature constraints is analogous to clamping down therubber sheet at certain interior points.

The harmonic map with added feature constraints acts like a clamped rubber sheet, rearranging

around the nailed down interior points to achieve the most stable configuration. The points on

the boundary of the rubber sheetM still remain on the boundary ofD, though they are free to

slide along it (Neumann boundary condition, a soft constraint) tohelp achieve the most stable

configuration.

In our work, we compute harmonic maps between a surface undergoing non-rigid deformations

(e.g. a human face) and a canonical unit disk on the plane. According to Rado’s Theorem [38],

an arbitrary convex domain could be adopted to compute the harmonic mapping and the resulting

map depends on the boundary in a continuous manner. However,this property does not hold

for a concave domain in general. Therefore, in order to simplify the implementation, we use a

unit disk as the target domain in our tracking method. Furthermore, based on Riemann Mapping

Theorem on Conformal Geometry [38], we can compute the mapping from any simply connected

surface to a disk domain. This provides the theoretical foundation for our tracking method to

be applied to arbitrary simply connected surfaces and not limited to convex surfaces only. The

Harmonic maps between the source surface and the target domain have many merits which are

valuable for tracking purposes:

• First, the harmonic map is computed through global optimization, and takes into account

March 29, 2007 DRAFT



9

the overall surface topology. Thus it does not suffer fromlocal minima, folding, clustering,

which are common problems due to local optimization.

• Second,the harmonic map is not sensitive to the resolution of the face surface, and to the

noise on the surface.Even if the data for the input surface is noisy, the result won’t be

affected significantly.

• Third, the harmonic map doesn’t require the surface to be smooth. It can be accurately

computed even when the surface includes sharp features.

• Forth, in our case, since the range of the map is a unit disk which is convex, the harmonic

map exists, and is adiffeomorphism, namely, the map is one to one and on-to. So it can

allow us to establish correspondences on 2D and recover 3D registration from the same

mapping.

• Fifth, the harmonic map is determined by the metric, not the embedding. This implies that

the harmonic map is invariant for the same face surface with different poses. Furthermore,

if there is not too much stretching between two faces with different expressions, they will

induce similar harmonic maps. Similar observations have also been used in other 3D face

matching methods, such as GMDS-based methods proposed by Bronsteinet al. [10], [11].

Because our dynamic range sequences are acquired at a high frame rate (40 Hz), we can

assume that the local deformation between two adjacent frames is small.

Furthermore, harmonic maps are easy to compute and robust tonumerical errors. By using a

traditional finite element method [27], they are easy to implement.

III. T HE NON-RIGID TRACKING ALGORITHM

In this section, we present our novel method for high resolution, non-rigid dense 3D point

tracking using harmonic maps. This proposed method is fullyautomatic, except for the initial

fitting step on the first frame. (Automatic initial fitting canbe achieved using the automated

correspondence selection technique [31] but it is outside the scope of this paper.) We first describe

the global alignment of 3D scans, followed by a description of the registration algorithm based

on harmonic mapping and an iterative refinement scheme usinglocal features.

The outline of the algorithm is given in Table I.
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• Data Preparation and Initialization : Identify the boundary and fit a coarse

generic face mesh model to the first frame using Free-Form Deformation (FFD).

• Coarse Registration:

1) Rough alignment: Globally align the 3D face scans of the adjacent frames

using the standard Iterative Closest Points (ICP) techniques.

2) Since we have the boundary of the first frame, identify the boundary for

all the subsequent frames automatically given the global alignment achieved

with the previous frame. Calculate the initial harmonic maps onto 2D disks

using the boundary condition.

3) For coarse level registration between successive frames, introduce more con-

straints on the harmonic map using feature point correspondence constraints,

where features are detected using standard methods like corner detection.

• Iterative Refinement:

1) Iteratively augment the list of constraints for the harmonic map with the local

feature correspondences obtained using optical flow methods.

2) Repeat the previous step to progressively refine the harmonic map until the

difference between the new source harmonic maps and the target harmonic

maps recedes below a pre-defined threshold.

3) Overlay the new source and the target harmonic map disks toestablish dense

registration, and hence recover the deformation parameters for the generic

face mesh model between two consecutive frames.

4) Continue this process over the whole sequence to achieve high resolution

tracking.

TABLE I

THE OUTLINE OF OUR TRACKING ALGORITHM.

A. Data Preparation and Initialization

The dynamic range sequences used in this paper are collectedby a phase-shifting structured

light ranging system [37]. When scanning faces, the real-time 3D shape acquisition system
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(a) (b) (c) (d)

Fig. 2. Initial Fitting for Tracking. (a) The acquired 3D face scan data. (b) The 3D face data with identified

boundary (marked in green). (c) The generic face model with manually selected feature points (marked as red

dots). (Automatic initial fitting can be achieved using the automated correspondence selection technique [31] but it

is outside the scope of this paper.) (d) The result of the initial fitting to a 3D face scan data.

returns high quality dense point clouds of facial geometry with an average of 75 thousand 3D

measurements per frame, at a 40Hz frame rate. The RMS (Root-Means-Squared) error of the

3D range data is about 0.05mm.1 Small holes around brows, eyes, nose, etc. are filled by a

simple interpolation technique.

However, since the dense data samples in these 3D face scans are not registered in object space,

inter-frame correspondences can not be established. Furthermore, the dense point clouds differ

across the scans both in terms of the number of data samples aswell as the relative positions

of the samples on the surfaces. To solve these problems, a generic face model (a coarser face

mesh) is fitted to the first 3D scan frame in the initializationstep, by a variational Free-Form

Deformation (FFD) shape registration method [43], [25]. The FFD technique is employed only

for fitting of the first frame, and not for subsequent tracking. Initial fitting is illustrated in

Figure 2.

B. Global Alignment and Boundary Identification

In the captured sequences, in addition to the non-rigid facial expression motion, there is also

a certain amount of rigid head motion involved. To account for the latter, we align the3D face

1The RMS error is calculated using a planar board with a measurement area of260× 244mm [37].
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scans globally. To start with, we manually mark and identifythe boundary of the first frame.

(See Figure 2) We can then apply the Iterative Closest Point(ICP) algorithm: for each sample

on the identified boundary of the first frame, we find the closest sample on subsequent frames

and apply a rigid body transformation that minimizes the distance between corresponding points

[5]. Once we have the boundary of the initial frame and the rigid transformation, we can align

the face scans globally and identify the boundaries of the subsequent frames.

C. Initial Coarse Registration

Once we have the global alignment, we want to capture the non-rigid deformation between

two adjacent framesMi and Mi+1. This inter-frame registration problem, resulting in a dense

map R : Mi → Mi+1, is solved by finding a coarse set of interior feature correspondences

betweenMi and Mi+1. These correspondence constraints, along with the boundary condition

define the mapR for the purpose of registration.

The relative ease of finding both texture and geometric feature correspondences on 2D images

as compared to 3D scans is the motivation for the next step of mappingMi andMi+1, to 2D disks

Di and Di+1 respectively, using the boundary constraint as described in Section II. According

to [48], the harmonic mapping is robust to boundary variation and occlusion. We define these

mappings asHi: Mi → Di andHi+1: Mi+1 → Di+1. Following the disk mapping, we select a

sparse set of easily detectable motion representative feature corners on the disks (for example,

for facial expression tracking, we select corners of eyes, corners of lips, tip of the nose etc.)

using texture and shape information. For the latter, we alsoadopted the idea of harmonic shape

images as in [48], associating the curvature information ofvertices inMi to the corresponding

ones inDi. In practice, these feature corners usually have peak curvature value and can be easily

detected by a pre-defined threshold. Figure 3 shows an example of harmonic maps generated

from one frame.

Once we have the set of correspondences on the2D disks Di and Di+1, we can establish

the correspondences on the3D face scanMi and the diskDi+1, since the harmonic mapHi

is one-to-one. Following this, as explained in Section II, we augment the boundary constraint

used to calculateHi with these additional feature-correspondence constraints to define a new

harmonic mapH ′

i : Mi → D′

i.

As H ′

i is driven by motion representative feature correspondences between the two frames,
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(a) (b) (c)

Fig. 3. Harmonic Maps: Texture and Shape Images.(a) The acquired 3D face scan data. (b) The resulting

harmonic map onto a2D disk with associated texture information. (c) The resulting harmonic map with associated

curvature information, where brighter intensity signifieshigher curvature.

it captures the inter-frame non-rigid deformation at a coarse level. We can then overlayD′

i

onto Di+1 to recover the inter-frame registration on 2D. Once again, we use the fact that the

harmonic maps are one-to-one to calculate the dense mapR required for registration of3D

frames. Harmonic maps, thus, help us simplify a 3D non-rigidtracking problem to a 2D image

registration problem.

The algorithm is illustrated in Figure 4 by considering the example of a synthetic surfaceS

undergoing non-rigid deformation.So andSt are the initial and final configurations respectively,

andDo andDt are the corresponding harmonic maps with only the boundary constraint. We can

notice that althoughDo and Dt conform to each other around the boundary, the interior non-

rigid deformation is still unaccounted for. Now,D′

o, a new harmonic map forSo is calculated by

mapping certain motion representative features onSo to their corresponding positions onDt, as

described earlier. This is done in order to align the two mapsD′

o andDt as closely as possible,

so that using the one-to-one property of harmonic maps, a dense registration betweenSo andSt

can be recovered. As we can observe,D′

o andDt are similar to each other even in the interior,

thus providing accurate registration.
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(a) (b)

(c) (d) (e)

Fig. 4. Illustration of Harmonic Map: A Synthetic Example. (a) So: Initial configuration of surface (b)St:

Surface after non-rigid deformation (c)Do: Harmonic Map ofSo with the hard boundary constraints only (d)Dt:

Harmonic map ofSt with the hard boundary constraints only (e)D′

o
: Harmonic map ofSo with the ’tip of the nose’

as an additional feature-correspondence constraint. We can see that imposing correspondence constraints alignsD′

o

andDt better (as explained in Section II), resulting in accurate registration.

D. Iterative Refinement

The registration achieved from the previous step, althoughcapable of capturing the coarse level

facial deformation, is still insufficient to track subtle expressions. We adopt an iterative refinement

scheme to improve the accuracy of the registration by progressively incorporating correspondence

constraints of more local features. As part of this scheme, we keep on augmenting the set of

sparse correspondences established in the previous step till the new set of correspondences is

dense enough to capture the facial deformation.

In particular, we define the difference imageDfi for D′

i andDi+1 asDfi(u, v) = |D′

i(u, v)−

Di+1(u, v)|2. UsingD′

i andDi+1 as calculated in the previous step, we find their difference image

Dfi and identify the regions corresponding to significant differences. These regions indicate the
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areas on the face undergoing deformation, the motion of which has not been captured by the

existing correspondence constraints. Because our dynamicrange sequence is acquired at a high

frame rate (40 Hz), we can assume that the local deformation is relatively small, which allows

us to apply standard 2D image registration methods within the difference regions. For high

accuracy, we only consider areas with local features, whichcan be detected easily by applying

a Laplacian filter to the imageDi andDi+1.

A new D′

i is calculated by augmenting the set of correspondences withthe new ones, which

are kept if the new difference error betweenD′

i and Di+1 decreases, and discarded otherwise.

We keep on iterating until the difference-error drops belowthe prescribed thresholdǫL. When

we stop, as described in the previous subsection, we overlayD′

i on Di+1 to establish a dense

set of correspondences, and hence recover inter-frame registration. This process is illustrated in

Figure 5.

We tackle the problem ofdrifting, a common issue in most tracking methods, in the following

manner. During the initial fitting step, we identify some of the feature nodes on the mesh, like

corners of the mouth etc. We then find the data points inMi closest to these feature nodes,

and constrain them to correspond to the respective featuresin the next data frame, i.e.Mi+1.

Consequently, the distinct features on the face are always tracked correctly, thereby reducing the

drift for other parts of the face.

Once we have the dense registration, we calculate the motionvectors for the vertices of the

generic face mesh. For instance, to deform the generic face mesh fromMi to Mi+1, we localize

each mesh vertexmj inside a data triangle ofMi, followed by finding the corresponding data

triangle ofMi+1 and localizingmj in Mi+1 using bilinear interpolation. We continue this process

for every frame, thereby calculating the motion vectors forthe vertices of the generic face mesh

across the whole sequence.

IV. EXPERIMENTAL RESULTS AND ERROR ANALYSIS

In this section we provide experiments on real data and erroranalysis to measure the ac-

curacy of our tracking algorithm. We performed tracking on four subjects performing various

expressions for a total of twelve sequences of 250-300 frames each (at 30Hz). Each frame

contains approximately 80K 3D points, whereas the generic face mesh contains 8K nodes. The

accompanying video clips show tracking results on one male and one female face undergoing
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Fig. 5. Tracking Algorithm: Iterative Refinement Step. (a) and (b) The initial disk,Di, with associated texture

and curvature information respectively.Di is the harmonic map ofMi (the source frame), with the boundary as

the only constraint (as described in Section III). Similarly, Di+1 would be the harmonic map ofMi+1, the target

frame. In order to registerMi and Mi+1, we iteratively augment the list of feature point constraints to obtain a

progressively refined harmonic map ofMi, i.e. D′

i
. We repeat the process until the difference-error betweenD′

i

andDi+1 is less thanǫL. (c) and (d) are obtained by adding the feature corner constraints (the corners of the eyes,

the tip of the nose, and the corners of the mouth) for the calculation of the harmonic map. (e) and (f) are a further

refinement, with additional local features (marked with magenta), which are detected using optical flow, being

added to the constraints list. In our experiments, we observe that typically10 − 15 feature correspondences place

enough constraints on the harmonic map to reduce the error below the thresholdǫL. (g) plots the difference-error

betweenD′

i
and Di+1 against the number of feature constraints used to define the harmonic map (in addition to

the boundary constraint). As is evident, the error recedes with the addition of new features, until it becomes less

than the thresholdǫL.
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(a) (b) (c) (d) (e)

Fig. 6. Snapshots from a Tracking Sequence of Subject A:a) Initial data frame. b) Initial tracked frame. c)

Data at the expression peak. d) Tracked data at the peak. e) Close-up at the peak.

expressions of different intensity, including opening andclosing of the mouth (female subject)

or strongly asymmetric smile (male subject). Our techniquetracks very accurately even in the

case of topology change and severe ‘folding’ of the data. (See Figure 6)

A. Results

Figures 7-10 show tracking results on two male and two femalefaces who were instructed

to perform expressions of different intensity, which we described as:Soft Affectionate Smile,

Coy Flirtatious Smile, and Devious Smirk. The sequences include opening and closing of the

mouth (female subject), strongly asymmetric expressions and rigid head motion as well. As the

results show, our method tracks very accurately even in the case of topology change and severe

’folding’ of the data.

Figure 10 provides the tracking results for Subject A performing a transition expression,

starting from aSoft Affectionate Smile, moving to aCoy Flirtatious Smile. The sequence is

about300 frames long. The transition occurs around Frame150 (e). Frames135 − 165 (d-f)

show ablendedexpression. We can observe that our method does well, even for unusualfacial

motion, arising, in this case, from a transition between twoexpressions.

B. Error Analysis

A first error analysis is based on the difference in the intensity values of the nodes of the

generic face mesh, between the initial and the subsequent frames. Initial intensity values at the
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 7. (a-f) Tracking Results for Subject C Performing a Soft Affectionate Smile. (g-i) Close-Ups
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i) (j)

Fig. 8. (a-f) Tracking Results for Subject B Performing a Devious Smirk. (g-j) Close-Ups.We can observe

that our method does well even in the presence of asymmetry (i) and topology change (j) (opening of mouth)
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 9. (a-f) Tracking Results for Subject D Performing a Soft Affectionate Smile. (g-i) Close-Ups
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 10. Tracking Results for Subject A Performing a transition expression, starting from aSoft Affectionate

Smile, moving to a Coy Flirtatious Smile. The sequence is about300 frames long. The transition occurs around

Frame150 (e). (d-f) (Frames135, 150, 165 respectively) show ablendedexpression. We can observe that our

method does well, even forunusualfacial motion, arising, in this case, from a transition between two expressions.
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mesh nodes are assigned after the initial fitting step, and are taken as the ground truth. The

intensity value of each mesh node is calculated using bilinear interpolation of the intensities

of the nearest 3D data points. The intensity values for the mesh nodes are calculated again

for each subsequent frame of the sequence, as explained above. If tracking was perfect, then

the intensities of the nodes would change only due to shadowing and shading effects, which

appear due to changing geometry. For comparison purposes, we use a traditional method based

on optical flow estimation [4] and local optimization techniques (FFD [25]) to track the same

sequence. We present the comparison between the two techniques in Figure 11 by plotting the

averaged difference in intensities for the mesh vertices, where the difference for each frame

is calculated with respect to the first frame. To ensure fairness for comparison, we have used

the same set of feature constraints for our harmonic map based tracking methodas well as

for the FFD based method. We can see that our method does considerably better than the FFD

based method, which fails to track large non-rigid motion and breaks down. The error, increases

significantly as the sequence progresses for FFD whereas it remains relatively stable for our

method, indicating minimal tracking drift issues.

Figure 12 depicts the error plots for different subjects performing various expressions, using

the same error measure as in figure 11. The average intensity error is observed to be less than

0.03 (on a scale of0− 1), even at the peak of the expression, thus establishing the accuracy of

our tracking method.There is somedrift however, as the intensity error doesn’t come back

to zero towards the end of the expression.

Another measure that can be used to establish the accuracy ofa tracking method is the

displacement error of the mesh nodes from the ground truth. As part of our second experiment

to calculate the error measure in terms of absolute displacements, we chose a setDe of points

spread uniformly over the data surface as test points, such that their motions form a representative

subset of the motion vectors for all the vertices, i.e. the set of all the motion vectors is sampled

sufficiently. To establish the ground truth, we attach markers on the face of the subject at locations

given by the setDe. The markers are for verification purpose only and are not used for tracking.

In order to be detected, the diameter of each marker is about 3mm. For error analysis, we need

to compare the ground truth against our tracking results, which requires identification of the

corresponding setMe of mesh nodes on the face modelM . To this end, we register the first

data frame with the face modelM( about16K nodes) during the initial fitting phase.
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Fig. 11. Error Comparison between Our Method and an FFD Based Method.(a) The plot of error between

Our method and the FFD Based method (b) FFD breaks down while tracking large deformations. To ensure fairness

for comparison, we have used the same set of feature constraints for our harmonic map based tracking method

as well asfor the FFD based method.For the FFD based method, we can see clusters and folds developing

near the selected features (corners of the eyes, mole on the cheek, corners of the lips etc.). Due to the local

nature of the method, the rest of the points do not catch up (around lips, eyes), even though the feature

correspondences match. We do not encounter such local minima problems with our harmonic map based

method, since it uses global optimization

For each frame, we can calculate the tracking error by comparing the positions of the nodes in

Me to the ground truth, i.e. the positions of points inDe. Figure 13 (a-f) show the snap-shots of

the tracking sequence at different instances; the green dots are the markers representing points

in De and the red dots are the corresponding nodes inMe, i.e. the tracking results. Figure 13

(g-h) exhibit a comparative analysis of the tracking errorsfor different representative points.

As we can see, the tracking error for most cases is around 1.5mm, which is low, given that

the resolution of the 3D range scan data is about 0.5mm. The achieved accuracy of tracking

is comparable to that reported in [43], [26], using the same dense 3D data. However overall

processing time including initialization and parameter selection is approximately 6 hours per

sequence on 2.2GHZ, 1GB PC (approximately 1 min per frame) spent mostly on harmonic map

calculation and the method can be easily parallelized on a cluster. In comparison, the methods

in [43], [26] required up to 2 days per sequence with most of the time spent on tuning and

parameter selection by the operator.
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Fig. 12. Error Plots for Various Expressions Performed by Different Subjects.Error Plots for : (a) Subject A

PerformingCoy Flirtatious Smile, (b) Subject A Performing the transition expression (fromSoft Affectionateto Coy

Flirtatious Smile), (c) Subject D PerformingCoy Flirtatious Smile, (d) Subject D PerformingSoft Affectionate Smile,

(e) Subject C PerformingCoy Flirtatious Smile, (f) Subject C PerformingDevious Smirk(g) Subject C Performing

Soft Affectionate Smile, (h) Subject B PerformingDevious Smirk, (i) Subject B PerformingSoft Affectionate Smile.

The average intensity error is observed to be less than0.03 (on a scale of0 − 1), even at the peak of the

expression, thus establishing the accuracy of our trackingmethod.
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(g) Error measurement around the cheeks. (h) Error Measurement around the lips.

Fig. 13. Error Measurement Using Markers. Error analysis on the tracking results of a smile expressionsequence.

An additional sequence with green markers attached to the face was acquired for error analysis; the green markers

are attached for verification purposes only and are not used for tracking. (a-f) are the snap-shots of the tracking

sequence at different instances, from neutral to the peak. The red dots illustrate the corresponding tracking results.

(g,h) exhibit a comparative analysis of the tracking errorsfor different representative points, around the cheeks

and the lips respectively. Since this is a smile sequence, error for points on the cheeks is expected to be relatively

smaller than that for points on or near the lips, as is evidentfrom (g) and (h)
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(a) (b)

(c) (d)

Fig. 14. Potential Issue with the Method: A Synthetic Example. In the presence of large deformations,

ambiguities might arise while making feature correspondences, resulting in incorrect correspondence constraints.

(a) Initial Surface. (b) Surface after undergoing large deformation. (c-d) Harmonic maps of initial and final surfaces

respectively, with just the boundary constraint. We observe that feature1 in (c) (circled in yellow) gets aligned with

feature2 in (d) (circled in blue), thus giving result to a correspondence mismatch. This, however,does not pose

any problems in our caseas we do not encounter such large deformations in real, high resolution (40fps) facial

expression data.

One potential issue with the methodis its inability to track large deformations, as illus-

trated in Figure 14, with the help of asyntheticexample. We observe that in the presence of

large deformations, ambiguities might arise while making feature correspondences, resulting in

incorrect correspondence constraints. This, however, does not pose any problems in our case as

we do not encounter such large deformations in real, high resolution (40fps) facial expression

data. Since the motion is relatively small, correspondences can be established within a small

neighborhood, thus preventing any ambiguous and hence incorrect correspondence constraints.
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V. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented a novel automatic method forhigh resolution, non-rigid dense

3D point tracking using harmonic maps. An important contribution of our tracking method is to

reduce the non-rigid 3D tracking problem to a 2D image registration problem, where the feature

correspondences are made on both texture and curvature images using standard techniques,

such as corner detection and optical flow. A deforming generic face model is employed to

track the dense 3D data sequence moving at video speeds, withthe harmonic maps guiding the

deformation field. The harmonic maps are constrained, and hence driven by the correspondences

established between adjacent frames using an iterative scheme; the features are detected using

corner detection and other standard techniques on texture and curvature images. The resulting

harmonic map provides dense registration between the face model and the target frame, thereby

making available the motion vectors for the vertices of the generic face model. The use of

harmonic maps, in this manner, reduces the problem of establishing correspondences in 3D, to

that of 2D image registration, which is more tractable. We have achieved high accuracy tracking

results on facial expression sequences, without manual intervention, demonstrating the merits

of our algorithm for the purpose. In future work, we will exploit the knowledge of underlying

facial muscle structure to impose more constraints on the tracking process, in order to further

increase accuracy. We also plan to use the proposed framework for more applications like face

recognition and dynamic expression recognition for dense 3D data.
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