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Abstract

We present a novel automatic method for high resolution;nigid dense 3D point tracking. High
quality dense point clouds of non-rigid geometry moving iakew speeds are acquired using a phase-
shifting structured light ranging technique. To use suctadar the temporal study of subtle motions
such as those seen in facial expressions, an efficient gah3D motion tracking algorithm is needed
to establish inter-frame correspondences. The novelthisfdaper is the development of an algorithmic
framework for 3D tracking that unifies tracking of intensityd geometric features, using harmonic maps
with added feature correspondence constraints. While tbeiqus uses of harmonic maps provided
only global alignment, the proposed introduction of imefieature constraints allows to track non-rigid
deformations accurately as well. The harmonic map betweertapological disks is a diffeomorphism
with minimal stretching energy and bounded angle distorficthe map is stable, insensitive to resolution
changes and is robust to noise. Due to the strong implicitexpdicit smoothness constraints imposed
by the algorithm and the high-resolution data, the resgltiagistration/deformation field is smooth,
continuous and gives dense one-to-one inter-frame canelgmces. Our method is validated through a

series of experiments demonstrating its accuracy and eaffigi

Index Terms

Vision and Graphics, Face and Gesture, Registration, Ma&ioalysis and Tracking.

I. INTRODUCTION AND PREVIOUS WORK

Automatic tracking of non-rigid 3D motion is essential in myacomputer vision and graphics
applications, especially dynamic facial expression aig)y\such as facial expression recognition,
classification, detection of emotional states, etc. In itegdture, most non-rigid object tracking
and registration algorithms utilize image data from 2D imagquences, e.g. [45], [6], [19],
[29], [1], [8], [42], [21], [35], [22], [44], [41], [34]. Preious methods establishing 3D inter-
frame correspondences for non-rigid motion largely fatbitwo categories: One depends on
markers attached to the object [24], [28], [2] or on featuperespondences manually selected
by the users [31]; the other calculates correspondencesdbas the geometry using a 3D
deformable/morphable model [19], [3], [33], [40], [15],4R [47], [12], [7], [46], [16], or other
3D shape registration algorithms such as [13], [5], [50]gémeral, most of the existing methods
rely on templates with relatively few degrees of freedom.ilé/the recovered low dimensional

configurations can often be used effectively in classifiegtthey are hardly sufficient in many
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analysis applications, especially dynamic facial expogsanalysis, since many distinct charac-
teristics of a person’s expression lie in the subtle detaith as the wrinkles and the furrows that
are generated by highly local skin deformations. This pgpesents an algorithmic framework
which makes use of the elements of conformal geometry thémryhe 3D facial expression
tracking problem. Although our method was implemented ia tlontext of facial expression
tracking, it is general and could be applied to other clasgesmilarly deforming objects.

Recent technological advances in digital imaging, digpgebjection display and personal
computers have made real time 3D shape acquisition inciglgsinore feasible. Such ranging
techniques include structured light [37], [36], and sptac® stereo [49], [14]. These systems
can capture dense 3D data at a high frame rate. Recentlyharésglution 3D expression data
acquisition system was developed in [37] which captureslfiigccurate geometry at speeds
that exceed regular video frame rate. Such high-qualita datvery attractive for the analysis
of facial expressions. However, since the dense data samplthese 3D face scans are not
registered in object space, inter-frame correspondenaasnot be established, which makes
the tracking of facial features, temporal study of facigbmssion dynamics and other analysis
difficult. For this purpose, a number of tracking algorithhese been proposed recently for 3D
facial expression data [49], [43]. Tracking methods basedptical flow estimation[49], [22]
can be sensitive to noise for textureless regions. A hibreat tracking framework for high
resolution 3D dynamic expression data was presented in {#3%hg a deformable generic face
model. However, it suffers from problems likelding and clustering which are inherent to
the methods employing local optimization techniques suxhrt@e-Form Deformation (FFD).
Furthermore, this face model needs to be manually dividéd several deformable regions,
with associated shape and motion control parameters. mhialisegmentation, along with the
associated parameters has to be recovered statisticadjyjring many experiments for each
different expression of every subject. Although this mightacceptable for certain applications
like motion capture for computer graphics, it requires [dogive amounts of time and effort
for processing of the large number of data-sets requiredd&ba driven applications in facial
expression analysis and synthesis[7].

In this paper, we present a novel method for high resolution;rigid dense 3D point tracking.
This proposed method is fully automatic, except for theiahititting step on the first frame.

(Automatic initial fitting can be achieved using the autoedatorrespondence selection technique
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[31] but it is outside the scope of this paper.) High qualignsge point clouds of facial geometry
moving at video speeds are acquired using a phase-shifingtred light ranging technique
[37]. To use such data for the temporal study of the subtleadyos in expressions, an efficient
non-rigid 3D motion tracking algorithm is needed to eswstblinter-frame correspondences. In
this paper, we propose such an algorithmic framework thas s mathematical tool called
harmonic maps [38], [32], [17], [18]. Harmonic maps weredige[48] to do surface matching,
albeit focusing on rigid transformations. Given the soumamnifold // and the target manifold,
only the boundary conditiom|s,, : 9M — 0D was used to constrain and uniquely determine
the harmonic map:. : M — D. For applications like high resolution facial tracking tiyh,
we need to account for non-rigid deformations, with a higleleof accuracy. To this end, we
introduce additional feature correspondence constraimtaddition to the boundary constraint
in our implementation of harmonic maps. Similar idea was aised in [30] where user-defined
feature sets are used to constrain the surface deformdimselect a set ahotion-representative
feature corners (for example, for facial expression tragkiwe select corners of eyes, lips,
eye brows etc.) and establish inter-frame correspondeusigg commonly used techniques
(for example, hierarchical matching used in [45]). We caentintegrate these correspondence
constraints with the boundary condition to calculate hammaonaps, which not only account
for global rigid motion, but also subtle non-rigid deformaats and hence achieve high accuracy
registration and tracking. It is important to point out tiiare are other approaches proposed to
perform surface matching based on Riemannian geometry, asigeneralized multidimensional
scaling (GMDS) [9], [11], where an isometry-invariant erdtang is used to compute an intrinsic-
geometric representation of the surface. Furthermorepowed the canonical parameterization,
other features, such as the texture information, can alsadweporated into the representation
to improve the matching performance [10].

An important contribution of our tracking method is to reduthe non-rigid 3D tracking
problem to a 2D image registration problem, which has beéensively studied. We are dealing
with 3D surfaces, but since they are manifolds, they havenherent 2D structure, which can
be exploited to make the problem more tractable using haiemoaps.

The theory of harmonic maps is based on conformal geometgry{23], [39]; the harmonic
map between two topological disks is a diffeomorphism witimimal stretching energy and

bounded angle distortion. Harmonic maps are invariantfersame source surface with different
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poses, thus making it possible to account for global rigidiom Harmonic maps are highly
continuous, stable and robust to noise. A very importanp@ry, which governs our registration
and tracking algorithm is that the harmonic map is one-te-d register two frames, we align
their respective harmonic maps as closely as possible bpsmg the suitable boundary and
feature constraintslhe motivation to do so is to establish a common parametnmado for the
two surfaceswhich, coupled with the above mentioned property, allavetover 3D registration
between the two frames. In our case, the harmonic maps deewibrphisms, that is one to one
and on-to, and hence lend themselves as a natural choicerfacs parameterization in tracking
applications. Because the harmonic mapping between twacas is computed by solving an
elliptic P.D.E., the resulting map has a higher continuitgrt the boundary condition [38], [20].
This implies that the harmonic maps depend on the geometycontinuous manner, and allow
certain approximation scheme to handle boundary variaioth occlusion as demonstrated in
[48]. Furthermore, in order to reduce the inconsistencgedby the changing boundaries during
the tracking process, we use the Neumann boundary condiiadhesoft boundary constraint
to give the boundary condition a relatively lower weightdarse the interior feature constraints
as thehard constraintdo minimize the overall harmonic energy.

As part of our framework, a deforming generic face model ipleyed to track the dense
3D data sequence moving at video speeds, with the harmonps aiding the deformation
field. The harmonic maps are constrained, and hence drivethdyfeature correspondences
established between adjacent frames usingerative schemethe feature correspondences are
made on texture and curvature images using standard temw®iquch as corner detection and
optical flow. Most surface regions have strong featureseeith intensity or shape images. Our
framework uses both simultaneously providing denser featxacking. Harmonic maps, thus,
help us to simplify a 3D surface registration problem to a 2iage matching problem. The
resulting harmonic map provides dense registration betwlee face model and the target frame,
thereby computing the motion vectors for the vertices ofgéeeric face model. Our system can
not only track global facial motion that is caused by musdgoa, but also subtler expression
details that are generated by highly local skin deformatidle have achieved high accuracy
tracking results on facial expression sequences, whiclt@rgarable to those reported in [43],
[26], using the same dense 3D data, while minimizing the arh@f human labor required

for preprocessing and initialization. The above mentioles@| of accuracy, coupled with the
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automatic natureof our method, demonstrates the merits of our framework liergurpose of
high resolution tracking of non-rigid 3D motion.

The remainder of the paper is organized as follows: In Sediiowe give an overview of
harmonic mapping. Section IIl explains our tracking methoddetail. We first describe the
global alignment of 3D scans, followed by a description @ tegistration algorithm based on
harmonic mapping and an iterative refinement scheme usoaj teatures. Experimental results

are presented in Section IV. We conclude with a discussi@hfature directions in Section V.

[I. HARMONIC MAPPING

A harmonic mapH : M — D can be viewed as an embedding from a manifdfdwith
disk topology to a planar grapbP. A harmonic map is a critical point for the harmonic energy
functional,

E(H) = / \dH|?duM,
M

and can be calculated by minimizing(H). The norm of the differentiald | is given by the
metric onM and D, andduM is the measure o [38], [32], [17], [18]. Suppose we want to
compute a harmonic mag/ : M — D, whereM is the domain manifold and is the target
manifold, H can be represented as two functiaif$,, H,), H; : M — R. More specifically,
in our case,M is the 3D face scanp is the unit disk on the plan&?, and (H,, H,) is the
parametric coordinatéu, v) in the unit diskD. Thereby the harmonic energy can be represented
as

B(H) = [ VI +|VH],

By minimizing the harmonic energy, a harmonic map can be edatpusing the Euler-Lagrange
differential equation for the energy functional, i&H = 0, where A is the Laplace-Beltrami
operator [38], [32], [17], [18].
Since our source manifold/ is in the form of adiscretetriangular mesh, we approximate
the harmonic energy as [17], [48], [23],
E(H) = 3 Ko |[H(v0) = H(v1)[, (1)

[vo,v1]

where [vy, v1] is an edge connecting two neighboring vertiegsand v,, and kj,, ., is defined

as

%(cotoz + cotf) = 1( (vo — va) * (v — vg) (vo — v3) - (v] — v3) ), @)

2" [(vo — v2) X (v1 —w2)| ~ [(vo —w3) X (v1 — v3)]
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Fig. 1. lllustration of two conjuncted triangle facegu, v1,v2} and{wvg, v1,v3}, wherea and are the two angles

used in Eqgn. 2.

where{vy, v1,v2} and{vg, v1,v5} are two conjuncted triangular faces, amand 5 are the two
angles against the edd®, v;|, as illustrated in Fig. 1.

By minimizing the harmonic energy, a harmonic map can be edatpusing the Euler-
Lagrange differential equation for the energy functiona, AE = 0, whereA is the Laplace-
Beltrami operator [38], [32], [17], [18]. This will lead took/ing a sparse linear least-square

system for the mapping/ of each vertex; [17], [48], [23]. If the boundary condition is given,
Hlon : OM — 0D, 3)

then the solution exists and is unique.

For tracking purposes though, we need to align the two haicnmaps closely together (as
explained in Section 1), and hence track interior non-rggdormations as well. For this purpose,
we also incorporate additional hard constraints to esthbiiterior feature correspondences and
to handle non-disk topologies (e.g., a 3D face scan with anapouth). Suppose we have a
point on an inner-boundary or an interior feature painon the 3D meshV/, which should
be mapped to a corresponding point on the target 2D plané. We can add it as a hard
constraintH (v;) = w; to the system from Equation 1 and 3. However, the resultimghbaic
energy is expected to increase due to the additional hardtreamts introduced. In order to
reduce the energy to achieve a smoother mapping, we use thmad@ boundary condition, a
soft constraint. This condition just constrains the boupgsoints of M to lie on the boundary

of the 2D disk D, the exact positions being governed by the minimizationafrionic energy
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criteria. It is different from the fixed boundary conditiosad for surface matching [48], in which
each boundary point on th&D) mesh M/ is mapped to a fixed point on thED disk, making

it a hard constraint. In our method, all the interior feataogrespondences on the face scans
which can be reliably established are given the maximum meend hence are chosenfesd
constraints However, because the boundary is not reliable due to thedayy variation and
occlusion, we give the boundary condition a relatively loweight, in the absence of any strong
features on the boundary, andsaft boundary constraint the Neumann boundary condition -
is employed to minimize the overall harmonic energy.

Intuitively, consider the manifold/ to be made of a sheet of rubber [17]. The harmonic map
with just the boundary constraint can be thought of as stiegcthe boundary of\/ over the
boundary of the targe?D disk D. In this case, each point on the boundaryldfis assigned
a fixed location on the boundary @?, where it will be nailed down The interior of the sheet
then rearranges to minimize the stretching (or foldingystminimizing the energy. Now, adding
extra feature constraints is analogous to clamping downubleer sheet at certain interior points.
The harmonic map with added feature constraints acts likaraped rubber sheet, rearranging
around the nailed down interior points to achieve the maatlstconfiguration. The points on
the boundary of the rubber shegt still remain on the boundary ab, though they are free to
slide along it (Neumann boundary condition, a soft constrainthétp achieve the most stable
configuration.

In our work, we compute harmonic maps between a surface gouey non-rigid deformations
(e.g. a human face) and a canonical unit disk on the planeordioty to Rado’s Theorem [38],
an arbitrary convex domain could be adopted to compute thmadrac mapping and the resulting
map depends on the boundary in a continuous manner. Howéngmproperty does not hold
for a concave domain in general. Therefore, in order to sfgnphe implementation, we use a
unit disk as the target domain in our tracking method. Funtioge, based on Riemann Mapping
Theorem on Conformal Geometry [38], we can compute the nmgpfipom any simply connected
surface to a disk domain. This provides the theoretical dation for our tracking method to
be applied to arbitrary simply connected surfaces and natdd to convex surfaces only. The
Harmonic maps between the source surface and the targetidbange many merits which are
valuable for tracking purposes:

« First, the harmonic map is computed through global optitiona and takes into account
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the overall surface topology. Thus it does not suffer fiocal minima, folding, clustering
which are common problems due to local optimization.

« Secondthe harmonic map is not sensitive to the resolution of the faface, and to the
noise on the surfaceEven if the data for the input surface is noisy, the result ‘wbe
affected significantly.

« Third, the harmonic map doesn't require the surface to be smoadthan be accurately
computed even when the surface includes sharp features.

« Forth, in our case, since the range of the map is a unit disktwisi convex, the harmonic
map exists, and is diffeomorphismnamely, the map is one to one and on-to. So it can
allow us to establish correspondences on 2D and recover @iStnaion from the same
mapping.

« Fifth, the harmonic map is determined by the metric, not tmdedding. This implies that
the harmonic map is invariant for the same face surface withedgffit poses. Furthermore,
if there is not too much stretching between two faces witterdint expressions, they will
induce similar harmonic mapsSimilar observations have also been used in other 3D face
matching methods, such as GMDS-based methods proposedobgtBinet al. [10], [11].
Because our dynamic range sequences are acquired at a amgé fate (40 Hz), we can

assume that the local deformation between two adjacentesamsmall.

Furthermore, harmonic maps are easy to compute and robuasinterical errors. By using a

traditional finite element method [27], they are easy to enpént.

[II. THE NON-RIGID TRACKING ALGORITHM

In this section, we present our novel method for high regmiutnon-rigid dense 3D point
tracking using harmonic maps. This proposed method is falijomatic, except for the initial
fitting step on the first frame. (Automatic initial fitting cdre achieved using the automated
correspondence selection technique [31] but it is outsidestope of this paper.) We first describe
the global alignment of 3D scans, followed by a descriptibthe registration algorithm based
on harmonic mapping and an iterative refinement scheme Usoad) features.

The outline of the algorithm is given in Table I.
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10

. Data Preparation and Initialization: Identify the boundary and fit a coarse
generic face mesh model to the first frame using Free-Fornorbeition (FFD).
« Coarse Registration
1) Rough alignment: Globally align the 3D face scans of thaaeht frames
using the standard Iterative Closest Points (ICP) teclasqu
2) Since we have the boundary of the first frame, identify tberuary for
all the subsequent frames automatically given the globghalent achieved
with the previous frame. Calculate the initial harmonic samto 2D disks
using the boundary condition.
3) For coarse level registration between successive framesduce more con;
straints on the harmonic map using feature point correspacel constraints,
where features are detected using standard methods likercdetection.

« lterative Refinement

1) Ilteratively augment the list of constraints for the hanmeaonap with the local
feature correspondences obtained using optical flow method

2) Repeat the previous step to progressively refine the hdomap until the
difference between the new source harmonic maps and thet taagmonic
maps recedes below a pre-defined threshold.

3) Overlay the new source and the target harmonic map diskstédlish dense

174

registration, and hence recover the deformation paraméterthe generic
face mesh model between two consecutive frames.

4) Continue this process over the whole sequence to achigverésolution

tracking.

TABLE |

THE OUTLINE OF OUR TRACKING ALGORITHM.

A. Data Preparation and Initialization

The dynamic range sequences used in this paper are collegtadohase-shifting structured

light ranging system [37]. When scanning faces, the rea¢tBD shape acquisition system
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11

() (b) (© (d)

Fig. 2. Initial Fitting for Tracking. (a) The acquired 3D face scan data. (b) The 3D face data withtiftbd
boundary (marked in green). (c) The generic face model witmunally selected feature points (marked as red
dots). (Automatic initial fitting can be achieved using theécmated correspondence selection technique [31] but it

is outside the scope of this paper.) (d) The result of théainiitting to a 3D face scan data.

returns high quality dense point clouds of facial geometithwan average of 75 thousand 3D
measurements per frame, at a 40Hz frame rate. The RMS (Reat#4Squared) error of the
3D range data is about 0.05mm.Small holes around brows, eyes, nose, etc. are filled by a
simple interpolation technique.

However, since the dense data samples in these 3D face seams aegistered in object space,
inter-frame correspondences can not be established.dfortine, the dense point clouds differ
across the scans both in terms of the number of data samplesliaas the relative positions
of the samples on the surfaces. To solve these problems, aigdéace model (a coarser face
mesh) is fitted to the first 3D scan frame in the initializatgiep, by a variational Free-Form
Deformation (FFD) shape registration method [43], [25]eTHFD technique is employed only
for fitting of the first frame, and not for subsequent trackimhgjtial fitting is illustrated in

Figure 2.

B. Global Alignment and Boundary Identification

In the captured sequences, in addition to the non-rigicafaeipression motion, there is also

a certain amount of rigid head motion involved. To accounttife latter, we align th& D face

The RMS error is calculated using a planar board with a measemt area 060 x 244mm [37].

March 29, 2007 DRAFT



12

scans globally. To start with, we manually mark and identifg boundary of the first frame.
(See Figure 2) We can then apply the Iterative Closest RGiR)(algorithm: for each sample
on theidentified boundary of the first fram&e find the closest sample on subsequent frames
and apply a rigid body transformation that minimizes theatise between corresponding points
[5]. Once we have the boundary of the initial frame and thértgansformation, we can align

the face scans globally and identify the boundaries of thseguent frames.

C. Initial Coarse Registration

Once we have the global alignment, we want to capture therigah-deformation between
two adjacent framed/; and M, ;. This inter-frame registration problem, resulting in a sen
map R : M; — M,,,, is solved by finding a coarse set of interior feature cowadpnces
between)M; and M, ;. These correspondence constraints, along with the boyratardition
define the mapRk for the purpose of registration.

The relative ease of finding both texture and geometric featarrespondences on 2D images
as compared to 3D scans is the motivation for the next stepapping)/; and M, 1, to 2D disks
D; and D, respectively, using the boundary constraint as describeSection Il. According
to [48], the harmonic mapping is robust to boundary variamd occlusion. We define these
mappings asd;: M; — D; and H,.{: M;.1 — D,;.,. Following the disk mapping, we select a
sparse set of easily detectable motion representativaréeabrners on the disks (for example,
for facial expression tracking, we select corners of eyesnars of lips, tip of the nose etc.)
using texture and shape information. For the latter, we atkipted the idea of harmonic shape
images as in [48], associating the curvature informationestices in)/; to the corresponding
ones inD;. In practice, these feature corners usually have peak ttuevaalue and can be easily
detected by a pre-defined threshold. Figure 3 shows an eraaigiarmonic maps generated
from one frame.

Once we have the set of correspondences on2fhedisks D; and D,,;, we can establish
the correspondences on tB® face scan); and the diskD,,, since the harmonic mag;
is one-to-one. Following this, as explained in Section I& augment the boundary constraint
used to calculate?; with these additional feature-correspondence conssramidefine a new
harmonic mapH! : M; — Di.

As H! is driven by motion representative feature correspondembedween the two frames,
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@ (b) (c)

Fig. 3. Harmonic Maps: Texture and Shape Images.(a) The acquired 3D face scan data. (b) The resulting
harmonic map onto @D disk with associated texture information. (¢) The resgltirmrmonic map with associated

curvature information, where brighter intensity signifrégher curvature.

it captures the inter-frame non-rigid deformation at a sealevel. We can then overlag).
onto D, to recover the inter-frame registration on 2D. Once agai@,use the fact that the
harmonic maps are one-to-one to calculate the dense khagquired for registration o8D
frames. Harmonic maps, thus, help us simplify a 3D non-riga@king problem to a 2D image
registration problem.

The algorithm is illustrated in Figure 4 by considering th@mple of a synthetic surfacg
undergoing non-rigid deformatioty,, and S, are the initial and final configurations respectively,
and D, and D, are the corresponding harmonic maps with only the boundamgtcaint. We can
notice that althoughD, and D, conform to each other around the boundary, the interior non-

rigid deformation is still unaccounted for. Now),

107

a new harmonic map fa$, is calculated by
mapping certain motion representative featuresSpmo their corresponding positions dny, as
described earlier. This is done in order to align the two m@psnd D, as closely as possible,
so that using the one-to-one property of harmonic maps, aedesgistration betweesi, and S,
can be recovered. As we can obserig,and D, are similar to each other even in the interior,

thus providing accurate registration.
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(CY

(© (d) (e)

Fig. 4. lllustration of Harmonic Map: A Synthetic Example. (a) S,: Initial configuration of surface (byp;:
Surface after non-rigid deformation (&),: Harmonic Map ofS, with the hard boundary constraints only (B):
Harmonic map ofS; with the hard boundary constraints only @}: Harmonic map ofS, with the 'tip of the nose’
as an additional feature-correspondence constraint. Wesea that imposing correspondence constraints aligns

and D, better (as explained in Section II), resulting in accuragistration.

D. lterative Refinement

The registration achieved from the previous step, althaagtable of capturing the coarse level
facial deformation, is still insufficient to track subtlepgrssions. We adopt an iterative refinement
scheme to improve the accuracy of the registration by pssgrely incorporating correspondence
constraints of more local features. As part of this scheme keep on augmenting the set of
sparse correspondences established in the previous Btdpetnew set of correspondences is
dense enough to capture the facial deformation.

In particular, we define the difference imaggf; for D, andD;., asD f;(u,v) = |Di(u,v) —
D;y1(u,v)|?. Using D! and D, as calculated in the previous step, we find their differentage

D f; and identify the regions corresponding to significant défees. These regions indicate the
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areas on the face undergoing deformation, the motion of lwhis not been captured by the
existing correspondence constraints. Because our dynamge sequence is acquired at a high
frame rate (40 Hz), we can assume that the local deformasioalatively small, which allows
us to apply standard 2D image registration methods withex diference regions. For high
accuracy, we only consider areas with local features, wharh be detected easily by applying
a Laplacian filter to the imag®; and D, ;.

A new D! is calculated by augmenting the set of correspondencesthgtimew ones, which
are kept if the new difference error betweél) and D,,, decreases, and discarded otherwise.
We keep on iterating until the difference-error drops betbe prescribed threshold,. When
we stop, as described in the previous subsection, we ovélayn D, ., to establish a dense
set of correspondences, and hence recover inter-framstnagn. This process is illustrated in
Figure 5.

We tackle the problem dadrifting, a common issue in most tracking methods, in the following
manner. During the initial fitting step, we identify some betfeature nodes on the mesh, like
corners of the mouth etc. We then find the data pointd/inclosest to these feature nodes,
and constrain them to correspond to the respective featnrdse next data frame, i.e\/;, .
Consequently, the distinct features on the face are alwagked correctly, thereby reducing the
drift for other parts of the face.

Once we have the dense registration, we calculate the me#otors for the vertices of the
generic face mesh. For instance, to deform the generic fash inom\/; to M, ., we localize
each mesh vertex:; inside a data triangle al/;, followed by finding the corresponding data
triangle of M, and localizingm; in M, using bilinear interpolation. We continue this process
for every frame, thereby calculating the motion vectorsthar vertices of the generic face mesh

across the whole sequence.

IV. EXPERIMENTAL RESULTS AND ERROR ANALYSIS

In this section we provide experiments on real data and emalysis to measure the ac-
curacy of our tracking algorithm. We performed tracking awirf subjects performing various
expressions for a total of twelve sequences of 250-300 fsagaeh (at 30Hz). Each frame
contains approximately 80K 3D points, whereas the genade iesh contains 8K nodes. The

accompanying video clips show tracking results on one mateane female face undergoing
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(b) (d) ®

Iterative Tracking Refinement

Average Intensity Error (0—-255)

o 2 4 6 8 10 12

Feature Number

(9)

Fig. 5. Tracking Algorithm: Iterative Refinement Step. (a) and (b) The initial diskD;, with associated texture
and curvature information respectivelfp,; is the harmonic map of\/; (the source frame), with the boundary as
the only constraint (as described in Section IIl). SimitatD;; would be the harmonic map a¥/,., the target
frame. In order to registeM; and M, , we iteratively augment the list of feature point constigito obtain a
progressively refined harmonic map 8f;, i.e. D,. We repeat the process until the difference-error betw@én
and D, is less tharey. () and (d) are obtained by adding the feature corner caingtr(the corners of the eyes,
the tip of the nose, and the corners of the mouth) for the tatiom of the harmonic map. (e) and (f) are a further
refinement, with additional local features (marked with erag), which are detected using optical flow, being
added to the constraints list. In our experiments, we olestirat typically10 — 15 feature correspondences place
enough constraints on the harmonic map to reduce the ertowhke threshold:.. (g) plots the difference-error
betweenD, and D;;, against the number of feature constraints used to defineahadnic map (in addition to
the boundary constraint). As is evident, the error reced#s tlve addition of new features, until it becomes less
than the threshold;,.
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(CY (b) © (d) ©)

Fig. 6. Snapshots from a Tracking Sequence of Subject Aa) Initial data frame. b) Initial tracked frame. c)

Data at the expression peak. d) Tracked data at the peakos@-Qp at the peak.

expressions of different intensity, including opening ataking of the mouth (female subject)
or strongly asymmetric smile (male subject). Our technitraeks very accurately even in the

case of topology change and severe ‘folding’ of the datae (S8gure 6)

A. Results

Figures 7-10 show tracking results on two male and two ferfedes who were instructed
to perform expressions of different intensity, which we adsed as:Soft Affectionate Smile,
Coy Flirtatious Smile and Devious Smirk The sequences include opening and closing of the
mouth (female subject), strongly asymmetric expressionsragid head motion as well. As the
results show, our method tracks very accurately even in &lse of topology change and severe
'folding’ of the data.

Figure 10 provides the tracking results for Subject A periiog a transition expression,
starting from aSoft Affectionate Smilanoving to aCoy Flirtatious Smile The sequence is
about300 frames long. The transition occurs around Framhé (e). Framesl35 — 165 (d-f)
show ablendedexpression. We can observe that our method does well, evamtsualfacial

motion, arising, in this case, from a transition between &xpressions.

B. Error Analysis

A first error analysis is based on the difference in the intgngmlues of the nodes of the

generic face mesh, between the initial and the subsequanes. Initial intensity values at the
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Fig. 8. (a-f) Tracking Results for Subject B Performing a Devious Smirk. (g-j) Close-Ups.We can observe

that our method does well even in the presence of asymmetry)(@nd topology change (j) (opening of mouth)
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Fig. 9. (a-f) Tracking Results for Subject D Performing a Soft Affectionate Smile. (g-i) Close-Ups
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© (h ()

Fig. 10. Tracking Results for Subject A Performing a transition expression, starting from aSoft Affectionate
Smile, moving to a Coy Flirtatious Smile. The sequence is abo800 frames long. The transition occurs around
Frame150 (e). (d-f) (Framesl35, 150, 165 respectively) show dlendedexpression. We can observe that our

method does well, even famusualfacial motion, arising, in this case, from a transition bedéw two expressions.
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mesh nodes are assigned after the initial fitting step, aadiaken as the ground truth. The
intensity value of each mesh node is calculated using lfineterpolation of the intensities
of the nearest 3D data points. The intensity values for thehnmeodes are calculated again
for each subsequent frame of the sequence, as explaineeé.albdracking was perfect, then
the intensities of the nodes would change only due to shadpand shading effects, which
appear due to changing geometry. For comparison purposess& a traditional method based
on optical flow estimation [4] and local optimization tectmes (FFD [25]) to track the same
sequence. We present the comparison between the two teelsnilg Figure 11 by plotting the
averaged difference in intensities for the mesh verticasgres the difference for each frame
is calculated with respect to the first frame. To ensure ésisnfor comparison, we have used
the same set of feature constraints for our harmonic mapdbgiaeking methodas well as
for the FFD based method. We can see that our method doedeaady better than the FFD
based method, which fails to track large non-rigid motiod areaks down. The error, increases
significantly as the sequence progresses for FFD whereasniins relatively stable for our
method, indicating minimal tracking drift issues.

Figure 12 depicts the error plots for different subjectdgrening various expressions, using
the same error measure as in figure 11. The average intemsityi® observed to be less than
0.03 (on a scale of) — 1), even at the peak of the expression, thus establishingdtweacy of
our tracking methodThere is somedrift however, as the intensity error doesn’'t come back
to zero towards the end of the expressian

Another measure that can be used to establish the accuraaytm@icking method is the
displacement error of the mesh nodes from the ground trushpakt of our second experiment
to calculate the error measure in terms of absolute displanés, we chose a sél, of points
spread uniformly over the data surface as test points, fiathitieir motions form a representative
subset of the motion vectors for all the vertices, i.e. theo$all the motion vectors is sampled
sufficiently. To establish the ground truth, we attach mexka the face of the subject at locations
given by the se).. The markers are for verification purpose only and are nat ésetracking.

In order to be detected, the diameter of each marker is aboot.3-or error analysis, we need
to compare the ground truth against our tracking resultdchvhequires identification of the
corresponding sebd/. of mesh nodes on the face modél. To this end, we register the first

data frame with the face model( about16 K nodes) during the initial fitting phase.
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Fig. 11. Error Comparison between Our Method and an FFD Based Method.(a) The plot of error between
Our method and the FFD Based method (b) FFD breaks down whitkihg large deformations. To ensure fairness
for comparison, we have used the same set of feature cartstfar our harmonic map based tracking method
as well asfor the FFD based methodror the FFD based method, we can see clusters and folds devgilag
near the selected features (corners of the eyes, mole on theeek, corners of the lips etc.). Due to the local
nature of the method, the rest of the points do not catch up (asund lips, eyes), even though the feature
correspondences match. We do not encounter such local minamproblems with our harmonic map based

method, since it uses global optimization

For each frame, we can calculate the tracking error by coimgahne positions of the nodes in
M, to the ground truth, i.e. the positions of pointsiin. Figure 13 (a-f) show the snap-shots of
the tracking sequence at different instances; the greenatetthe markers representing points
in D, and the red dots are the corresponding node&/jni.e. the tracking results. Figure 13
(g-h) exhibit a comparative analysis of the tracking errfans different representative points.
As we can see, the tracking error for most cases is aroundm,5mhich is low, given that
the resolution of the 3D range scan data is about 0.5mm. Thiewaex accuracy of tracking
is comparable to that reported in [43], [26], using the saraesd 3D data. However overall
processing time including initialization and parameteles#gon is approximately 6 hours per
sequence on 2.2GHZ, 1GB PC (approximately 1 min per framentsmostly on harmonic map
calculation and the method can be easily parallelized orustaa. In comparison, the methods
in [43], [26] required up to 2 days per sequence with most ef time spent on tuning and

parameter selection by the operator.
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Fig. 12. Error Plots for Various Expressions Performed by Different Subjects. Error Plots for : (a) Subject A
PerformingCoy Flirtatious Smile(b) Subject A Performing the transition expression (frBoft Affectionatéo Coy

Flirtatious Smilg, (¢) Subject D Performin@oy Flirtatious Smile(d) Subject D Performin&oft Affectionate Smile
(e) Subject C Performin@oy Flirtatious Smile(f) Subject C Performindevious SmirKg) Subject C Performing
Soft Affectionate Smil€h) Subject B Performin@evious Smirk(i) Subject B Performingsoft Affectionate Smile
The average intensity error is observed to be less thaf.03 (on a scale of0 — 1), even at the peak of the

expression, thus establishing the accuracy of our trackingnethod.
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(d) Frame 70
Tracking Error Measurement (Cheeks)

b) Frame 30

(e) Frame 80
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c) Frame 60

(f) Frame 95
Tracking Error Measurement (Lips)
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(g) Error measurement around the cheeks.
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(h) Error Measmearound the lips.

Fig. 13. Error Measurement Using Markers. Error analysis on the tracking results of a smile expressamuence.

An additional sequence with green markers attached to tevas acquired for error analysis; the green markers
are attached for verification purposes only and are not usettdcking. (a-f) are the snap-shots of the tracking
sequence at different instances, from neutral to the pelaé.r@&d dots illustrate the corresponding tracking results.
(g,h) exhibit a comparative analysis of the tracking erronsdifferent representative points, around the cheeks
and the lips respectively. Since this is a smile sequencet far points on the cheeks is expected to be relatively

smaller than that for points on or near the lips, as is evidem (g) and (h)
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Fig. 14. Potential Issue with the Method: A Synthetic Example.In the presence of large deformations,
ambiguities might arise while making feature corresporédsnresulting in incorrect correspondence constraints.
(a) Initial Surface. (b) Surface after undergoing largeod®iation. (c-d) Harmonic maps of initial and final surfaces
respectively, with just the boundary constraint. We obsehat featurd in (c) (circled in yellow) gets aligned with
feature2 in (d) (circled in blue), thus giving result to a corresponce mismatch. This, howevedpes not pose
any problems in our caseas we do not encounter such large deformations in real, ld@gblution (40fps) facial

expression data.

One potential issue with the methodis its inability to track large deformations, as illus-
trated in Figure 14, with the help of syntheticexample. We observe that in the presence of
large deformations, ambiguities might arise while makiegtéire correspondences, resulting in
incorrect correspondence constraints. This, howevess doé pose any problems in our case as
we do not encounter such large deformations in real, higblugen (40fps) facial expression
data. Since the motion is relatively small, corresponderzan be established within a small

neighborhood, thus preventing any ambiguous and hencer@ataorrespondence constraints.
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V. CONCLUSIONS ANDFUTURE WORK

In this paper, we have presented a novel automatic methdddhrresolution, non-rigid dense
3D point tracking using harmonic maps. An important conitiiin of our tracking method is to
reduce the non-rigid 3D tracking problem to a 2D image regjfistn problem, where the feature
correspondences are made on both texture and curvatureesmeging standard techniques,
such as corner detection and optical flow. A deforming gen&ce model is employed to
track the dense 3D data sequence moving at video speedstheitimrmonic maps guiding the
deformation field. The harmonic maps are constrained, andehdriven by the correspondences
established between adjacent frames using an iterativersghthe features are detected using
corner detection and other standard techniques on texhdecarvature images. The resulting
harmonic map provides dense registration between the facelnand the target frame, thereby
making available the motion vectors for the vertices of tlemagic face model. The use of
harmonic maps, in this manner, reduces the problem of éstt@dny correspondences in 3D, to
that of 2D image registration, which is more tractable. Weehachieved high accuracy tracking
results on facial expression sequences, without manuatvienition, demonstrating the merits
of our algorithm for the purpose. In future work, we will egflthe knowledge of underlying
facial muscle structure to impose more constraints on theking process, in order to further
increase accuracy. We also plan to use the proposed fratkdaromore applications like face

recognition and dynamic expression recognition for deri3ed8ta.
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