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Abstract

Surface classification is one of the most fundamental problems
in geometric modeling. Surfaces can be classified accordingto
their conformal structures. In general, each topological equiv-
alent class has infinite conformally equivalent classes.

This paper introduces a novel method to classify surfaces by
their conformal structures. Surfaces in the same conformal
class share the same uniformization metric, which induces
constant Gaussian curvature everywhere on the surface. Un-
der the uniformization metric, each homotopy class of a closed
curves on the surface has a unique geodesic. The lengths of all
closed geodesics form the geodesic spectrum. The map from
the fundamental group to the geodesic spectrum completely
determines the conformal structure of the surface.

We first compute the uniformization metric using discrete
Ricci flow method, then compute the Fuchsian group gener-
ators, finally deduce the geodesic spectra from the generators
in a closed form.

The method is rigorous and practical. Geodesic spectra is ap-
plied as the signature of surfaces for shape comparison and
classification.

CR Categories: I.3.5 [Computer Graphics]: Computational
Geometry and Object Modeling—Geometric algorithms;
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1 INTRODUCTION

Surface matching and classification are fundamental problems
in geometric modeling, computer graphics and computer vi-
sion. Surfaces can be classified according to their geometric
structures, such as topological structure, conformal structure
or the Riemannian metric structure.

Comparing to topological classification, conformal classifica-
tion is much refiner. Each topological equivalent class has in-
finite conformally equivalent classes. Comparing to classifica-
tion by metrics, conformal classification is efficient to com-
pute and robust to noises. Further more, the dimension of
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conformal classes within the same topological class is finite,
therefore the conformal class can be indicated by a small set
of numbers, whereas the dimension of metric classes for the
same topology is infinite.

In this work, we propose to use geodesic spectra as the ”fin-
gerprint” of the conformal structure of a general surface. It has
many real applications, such as surface classification, surface
comparison, shape retrieval etc.

The computational process involves some advanced topologi-
cal and geometric concepts. We briefly explain the main ideas
and the intuitions in the following discussion. Their rigorous
definitions and more references will be given in section 3. We
illustrate the major concepts by real examples: Genus one sur-
face case shown in Figures 2, 3, and 6; High genus surface
case demonstrated in Figures 4, 5 and 6.

1.1 Main Ideas

Our ultimate goal is to classify surfaces by their conformal
structures. Two surfaces are conformally equivalent, if there
exists a homeomorphism between them, which is angle pre-
serving. It is extremely challenging to find such an angle pre-
serving map directly. Instead, we convert the conformal clas-
sification problem to computing geodesic spectrum. The fol-
lowing discussion will briefly explain the intuition of thisidea.

Converting Conformal Map to. Isometry
Suppose two surfacesΣ1,Σ2 with the Euclidean metricsg1,g2
are embedded inR3 with the same topology. A map between
them f : Σ1 → Σ2 is conformal, if it preserves angles.

According to Riemann uniformization theorem, given a met-
ric surface(Σ,g), there exists functionsu : Σ → R, such that
the new metric̄g = e2ug induces constant Gaussian curvature
on Σ. The constant is+1,0,−1, if Euler number ofΣ is pos-
itive, zero and negative respectively. Such a metric is called
the uniformization metric ofΣ, ande2u is called the conformal
factor. Under the uniformization metrics, the conformal map
f : (Σ1, ḡ1) → (Σ2, ḡ2) is an isometry.

Converting Isometry Verification to Geodesic Spectra
Comparison
In order to test whether a map is an isometry, we consider
the geodesics on the surfaces. A geodesic is a locally shortest
curve, which is solely determined by the metric, and reflects
the intrinsic properties of the metric.

Supposef : (Σ1, ḡ1) → (Σ2, ḡ2) is an isometry,γ1 is a closed
geodesic onΣ1 under the metric̄g1, then f (γ1) is also a closed
geodesic onΣ2 underḡ2. Further more the lengths ofγ1 and
f (γ1) are the same. We can sort all the closed geodesics onΣ1
according to their lengths in ascending order{γ1,γ2,γ3, · · ·},
then{ f (γ1), f (γ2), f (γ3), · · ·} are the corresponding ordered
geodesics onΣ2. The lengths of the above geodesic sequence
form the geodesic spectrum. Therefore, if two surfaces are
isometric, they share the same geodesic spectrum, which can
be computed individually without any knowledge of the map.



Converting Geodesic length to Matrix Eigenvalue
SupposeΣ of negative Euler number has uniformization met-
ric ḡ, which induces−1 Gaussian curvature everywhere. Then
locally, Σ can be isometrically embedded in the hyperbolic
spaceH

2. The local embedding can be extended/developed,
such that the whole surface is periodically embedded inH

2.
A closed geodesic on the surface is developed to a hyperbolic
line segment onH2. A unique hyperbolic rigid motion can
be directly computed which maps the hyperbolic line to itself
and the starting point of the segment to its end point. The
eigenvalue of the matrix representation of this rigid motion is
exactly the length of the closed geodesic.

All homotopy classes on the surface can be traversed using
symbolic computation and represented as a string; Each homo-
topy class has a unique closed geodesic, whose corresponding
rigid motion can be computed directly from the string and rep-
resented as a matrix; The geodesic length can be derived from
the eigenvalues of the matrix. Therefore, the geodesic spec-
trum can be efficiently and accurately computed.

The remainder of the paper is organized as follows. Section 2
contains a summary of most related works. Section 3 briefly
introduces the necessary theoretic background to design the
algorithm. Section 4 describes our algorithms in details. Sec-
tion 5 presents results of our experiments on general models.
We summarize the paper and point out future directions in the
final section 6.

2 Related Works

Geodesics.Computing geodesic paths on discrete setting has
been intensively studied in the literature. The MMP algorithm
[Mitchell et al. 1987] firstly provided an exact solution forthe
single source, all destination shortest path problem on a trian-
gle mesh. [Surazhsky et al. 2005] implemented this algorithm,
and extend with a merging operation to obtain computation-
ally efficient (running timeO(nlogn)) and accurate approx-
imations with bounded error. Other works include an exact
geodesic algorithm with worst case time complexity of O(n2)
described by [Chen and Han 1996] and partially implemented
by [KANEVA and OROURKE 2000], an algorithm for the
single source, single destination geodesic path between two
given mesh vertices, inO(nlog2n) time described by [Kapoor
1999], and a variation of the fast-marching method to compute
approximate geodesics on meshes inO(nlogn) time by [KIM-
MEL and SETHIAN 1998]. [Dey 1994] proposes an improved
algorithm for detecting null-homotopic cycles on compact 2-
manifolds without boundary. An approach to compute closed
geodesics on surfaces constriction computation using surface
curvature is introduced in [Hetroy 2005]. An algorithm with
polynomial running time to compute a shortest simple loop
homotopic to a given simple loop is in [Éric Colin de Verdiére
and Lazarus 2002]. Our method to compute geodesics are
purely algebraic, simple and no local minimal problem.

Surfaces ClassificationThere are a lot of research works on
surfaces classification. The most related one for surface clas-
sification by conformal structure has been introduced in [Gu
and Yau 2003b] using period matrices. Their method can-
not avoid the intrinsic ambiguity of the homotopy. Current
geodesic spectrum approach does not have the ambiguity and
is better suited for the practical applications. [Elad and Kim-
mel 2003] proposes a surface classification method that uses

bending invariant signatures based on geodesic circles around
some key points on the surface, but the selection of corre-
sponding key points may also introduce ambiguity. A Multi-
resolutional Reeb Graph constructed based on computation of
Euclidean geodesic distance is used to measuring similarity in
[Hilaga et al. 2001]. [Reuter et al. 2005] extracts fingerprints
of surface by taking the eigenvalues of its respective Laplace-
Beltrami operator. And Other more statistical approaches in-
clude [Osada et al. 2001].

Ricci Flow.Ricci flow we used in this paper to compute sur-
face uniformization metric was first introduced by Hamilton
[Hamilton 1988], and later it is generalized to discrete cased
[Chow and Luo 2003]. It has been applied for constructions of
manifold splines [Gu et al. 2005] and geometric structures on
general surfaces [Jin et al. 2006].

Circle Packing and Circle Pattern. Circle packing was first
introduced by Thurston in [Thurston 1976], where he designed
an algorithm to find the circle packing of a graph by adjust-
ing the radii at vertices one at a time. Stephenson et al. im-
proved the algorithm and developed practical algorithms in
[Stephenson 2005]. Circle pattern is introduced in [Bobenko
and Schroder 2005] and [Kharevych et al. 2005], which is
closely related to circle packing. Instead of using circlescen-
tered at each vertex, this method uses the circum-circles of
triangles.Both circle packing and circle pattern can be applied
for approximating conformal deformation.

3 THEORETICAL BACKGROUND
In this section, we briefly introduce several important concepts
in topology and Riemann Geometry, also a brief review of dis-
crete Ricci flow, which we need in our algorithms. For more
details, we refer readers to [Thurston 1997] and [Chow and
Luo 2003]. Due to page limit, we refer readers to [Mika Sep-
pala 1992] for every equations and models we used in this pa-
per for hyperbolic geometry.

3.1 Uniformization Theorem

Theorem 1 (Uniformization Theorem) Let (Σ,g) be a com-
pact 2-dimensional Riemannian manifold, then there is a met-
ric ḡ conformal tog which has constant Gauss curvature.

Such a metric is called theuniformization metric. All closed
surfaces can be conformally mapped to three canonical spaces,
the sphere for genus zero surfaces withχ > 0, the plane for
genus one surfaces withχ = 0, and the hyperbolic space for
high genus surfaces withχ < 0.

There are two common models for the hyperbolic spaceH:
Poincaré disk model and upper half plane model. The con-
version from the upper half plane model to the Poincaré disk
model is given by

h =
iz+1
z+ i

. (1)

In our work, we use both models.

3.2 Geodesic Spectrum

The geodesics are the locally shortest curves on surfaces,
closely related to metric. The geodesic lengths reflects the
global information of the surface. On general surfaces, there
may be multiple geodesics in each homotopy class. For sur-
faces with uniformization metrics, the geodesics are unique in
each homotopy class.



Theorem 2 (Geodesic Uniqueness)Suppose (Σ,g) is a
closed compact surface with Riemannian metricg, if Gauss
curvature is negative everywhere, then each homotopy class
has a unique geodesic.

The proof is based on Gauss-Bonnet theorem. We refer readers
to [Mika Seppala 1992] for details.

For our study of conformal structures, we can always de-
form the surface metric to the uniformization metric, then the
geodesic lengths in each homotopy class form the length spec-
trum.

Definition 3 (Length Spectrum) Let (Σ, ḡ) be a surface with
uniformization metric, the set of the lengths of closed
geodesics onΣ is called the length spectrum of the surface
Σ.

The number of homotopy class of closed curves on a compact
surface is countable. Since each homotopy class contains only
one geodesic curve, also the length spectrum of a Riemann sur-
face is countable. If two surfaces are conformally equivalent,
they have same length spectra.

3.3 Discrete Surface Ricci Flow

The Riemannian metric on an Euclidean or hyperbolic meshS
(we say a mesh is Euclidean or hyperbolic if all its faces are
Euclidean or hyperbolic.) is determined by its edge lengths.
Therefore we define the discrete Riemannian metric on a mesh
as its edge lengths,l : E → R

+, such that for a face{i, j ,k},
the edge lengths satisfy the triangle inequality,l i j + l jk > lki..

A weighton the mesh is a functionΦ : E → [0, π
2 ], on each

edgeei j . A radiuson the mesh is a functionΓ : V → R
+, on

each vertexvi by assigning a positive numberγi . They realize
each edgeei j joining vi to v j by a Euclidean segment of length

l i j =
√

γ2
i + γ2

j +2γiγ j cosΦ(ei j ). (2)

And for each face{l i j , l jk, lki} satisfy triangle inequality. In
hyperbolic case, the length can be deduced from hyperbolic
cosine law

l i j = cosh−1(coshγi coshγ j +sinhγi sinhγ j cosΦ(ei j )). (3)

Definition 4 (Circle Packing Metric) The pair of vertex ra-
dius function and edge weight function on a meshΣ {Γ,Φ} is
called a circle packing metric ofΣ.

Definition 5 (Conformal Circle Packing Metrics) Two cir-
cle packing metrics{Γ1,Φ1} and {Γ2,Φ2} are conformally
equivalent, ifΦ1 ≡ Φ2.

Therefore, a conformal deformation of a circle packing metric
only modifies the vertex radii.

Discrete Gauss CurvatureThe discrete Gauss curvature is
defined as the angle deficit on a mesh, for an interior vertexvi ,
the discrete Gauss curvature

Ki = 2π − ∑
fi jk∈F

α jk
i , (4)

whereα jk
i represents the corner angle attached to vertexvi in

the face fi jk . Similarly, for a boundary vertex, the discrete
Gauss curvature is

Ki = π − ∑
fi jk∈F

α jk
i . (5)

Definition 6 (Discrete Ricci Flow) An Euclidean triangle
mesh with circle packing metric, the Euclidean Ricci flow is

dγi(t)
dt

= −Kiγi(t). (6)

A Hyperbolic mesh with circle packing metric, the discrete Hy-
perbolic Ricci flow is

dγi(t)
dt

= −Ki sinhγi(t) (7)

The following theoretic results guarantee the convergenceof
the discrete Ricci flow.

Theorem 7 (Convergence of Discrete Ricci Flow)The dis-
crete Ricci flows 6 and 7 are convergent to the uniformization
metric and the convergence rate is exponential.

More theoretic details can be found in [Chow and Luo 2003].

Discrete Ricci flows can be treated as the gradient flows of
minimizing special energies.

Definition 8 (Discrete Ricci Energy) Let ui = logγi in Eu-
clidean case, and ui = ln tanhγi

2 , then both the Euclidean Ricci
energy and Hyperbolic Ricci energy are defined as

f (u) =
∫ u

u0

n

∑
i=1

Kidui , (8)

whereu = (u1,u2, · · · ,un), u0 = (0,0, · · · ,0).

4 ALGORITHMS TO COMPUTE

GEODESIC SPECTRA OF SUR-

FACES

This section introduces the algorithms for computing geodesic
spectra in details for surfaces with different topologies.

4.1 Genus Zero Surfaces

All closed genus zero surfaces are conformally equivalent.
That means they are indistinguishable under their conformal
structures. For genus zero surfaces with boundaries, theircon-
formal structures are not identical any more. For example, for
genus zero surfaces with three boundaries, there are infinite
conformally equivalent classes, which form a 3 dimensional
space.

Figure 1 gives an example for genus zero surfaces with three
boundaries.

Figure 1: Conformal structures of the genus zero surface with
3 boundaries are determined by the lengths of the boundaries
under the uniformization metric.



4.2 Genus One Surfaces

By the Uniformization theorem, a surfaceΣ with zero Euler
number can be represented asR

2/Deck(Σ), where the deck
transformation group consists of translations mapping theEu-
clidean planeR2 onto itself. The set of the lengths of closed
geodesics onΣ can be computed algebraically from group
Deck(Σ). Therefore the whole procedure is to compute Eu-
clidean Uniformization metric first, then the deck transforma-
tion group generators and finally the geodesic spectrum.

4.2.1 Computing Euclidean Uniformization Metric

The flat uniformization metric on a genus one closed surface
can be induced either by the holomorphic 1-forms on it or
discrete Euclidean Ricci flow. The algorithms for computing
holomorphic 1-forms are introduced in [Gu and Yau 2003a]
and [Jin et al. 2004]. Here we introduce the algorithm for
computing the Euclidean uniformization metric using discrete
Euclidean Ricci flow.

Given a triangular mesh, we first compute a circle packing
metric {Γ,Φ} to approximate its induced Euclidean metric.
Then we use Newton’s method to minimize the Euclidean
Ricci energy 8. The Hessian matrix of the energy is

∂ 2 f
∂ui∂u j

=
∂Ki

∂u j
=

∂Ki

∂γ j
γ j ,

The Hessian matrix can be easily verified to be positive def-
inite, therefore the energy is strictly convex, with a unique
global minimum. Newton’s method can be used to find the
minimum with stable convergence.

4.2.2 Computing Deck Transformation Group Gener-
ators in the Plane

Computing Canonical Fundamental Group Generators
We first compute a set of canonical fundamental group gener-
ators{a1,b1}. From definition,a1 andb1 are closed loops and
with only one geometric intersection point. The algorithms
to compute the canonical fundamental group generators have
been studied in computational topology and computer graph-
ics literature. We adopted the methods introduced in [Carner
et al. 2005] directly because of its simplicity.

The surfaceΣ is then sliced open along the fundamental group
generators to form a topological diskD, which is a canonical
fundamental domain, with its boundary taking the form∂D =

a1b1a−1
1 b−1

1 .

Embedding in the Plane
Let ρ : D → R

2 denote the desired isometric embedding of
D under the uniformization flat metric. We randomly choose
f012 in D as a seed face, and simply set the parametric position
of v0, v1, andv2, as follows:τ(v0) = (0,0), τ(v1) = (l01,0),
τ(v2) = l02(cosθ0,sinθ0). Then we put faces sharing one edge
with the seed face into a queue.

We pop a facefi jk out of the queue. If all vertices have been
embedded, we continue to pop another face out of the queue.
Otherwise, assumevk has not been embedded,vi andv j have
embedded already. Then the parametric positionρ(vk) is the
intersection of two circles(ρ(vi), l ik) and (ρ(v j ), l jk). Also,

the orientation ofρ(vi),ρ(v j ),ρ(vk) should be counter clock
wise. Then, we put all faces sharing one edge withfi jk into
the queue. We repeat embedding faces out of the queue until
the queue is empty.

Figure 2 shows the genus one closed kitten model marked with
a set of canonical fundamental group generators and its em-
bedding in plane with Euclidean uniformization metric.

Figure 2: (a) Genus one Kitten model, marked with a set of
canonical fundamental group generators{a,b}. (b) Embedded
in the planeR2 with Euclidean Uniformization metric.

Computing Deck Transformation Group Generators
Deck transformations of a genus one closed surface are simply
translations in the plane.

The image of the embedding ofD has four different sides,
ρ(a),ρ(b),ρ(a−1),ρ(b−1) (see Fig 2(b)). a coincides with
a−1 in original kitten model, same asb andb−1.

A deck transformationβ : R
2 → R

2 mapsρ(a−1) to ρ(a),
therefore the boundary segmentρ(a) of ρ(D) coincides the
boundary segmentρ(a−1) of β ◦ρ(D), two fundamental do-
mainsρ(D) andβ ◦ρ(D) are glued along the common bound-
ary segment as shown in figure 3 (a). Supposep is an interior
point on the mesh, we choose an arbitrary pathγ̄ connecting
ρ(p) andβ ◦ρ(p) either the blue curve or the green curve in
3 (a), the projection ofγ = π(γ̄) is a closed loop onΣ, which
is homotopic tob, therefore the deck transformationβ corre-
sponds to the homotopy classb, Φ(β ) = b. We can chooseγ
as the straight line segment, thenγ is one geodesic homotopic
to b.

Similarly, we can find another deck transformationα, such
thatα ◦ρ(b) = ρ(b−1), thenα corresponds toa.

The two translations{α,β} are the generators ofDeck(Σ) for
the kitten model. We can periodically embedD ontoR

2 with
elements of groupDeck(Σ) and compute the closed geodesics
for each homotopy class as illustrated in Figure 6(a).

4.2.3 Computing Geodesic Spectrum

All elements in the fundamental group ofΣ has the formγm,n =
ma+ nb, therefore the corresponding deck transformation is
τm,n = αm◦β n. All deck transformations are translations. We
use a planar vector to represent each deck transformation. In
practice, we normalizeα to be(1,0) by scaling and rotating
on R

2, this won’t affect the conformal structure ofΣ, assume
β = (x,y), then τm,n = (m+ nx,ny), the geodesic length in
homotopy classγm,n is

√

(m+nx)2 +n2y2. Figure 6 shows a
finite portion of the universal covering space embedded in the
plane with the pre-images of geodesics,straight line segments.



Figure 3: (a) One deck transformation which maps the left
period to the right one, which corresponds tob−1. (b) Two
closed loops homotopic to the pink one on the kitten model
lift as blue and green paths.

4.3 High Genus Surfaces

The computation for geodesic spectra of closed surfacesΣ
with negative Euler number is very similar but more compli-
cated. The whole procedure to compute Geodesic Spectra for
a given surface with negative Euler number is as follows:
1. Computing hyperbolic uniformization metric of the surface
Σ.
2. Computing its Fuchsian group generators in the hyperbolic
space using Poincaré model.
3. Converting the deck group generators to the matrix repre-
sentations in the upper half plane model, then computing the
multipliers of deck transformations, which give the geodesic
spectrum.

4.4 Computing hyperbolic uniformization met-

ric

Similarly as computing Euclidean uniformization metric us-
ing Discrete Euclidean Ricci flow, we compute the Hyperbolic
uniformization metric using Discrete Hyperbolic Ricci flow.
First, we compute a circle packing metric onΣ to approximate
the induced Euclidean metric onΣ. Then we minimize the
hyperbolic Ricci energy 8 using Newton’s method, for more
details in [Jin et al. 2006].

4.5 Computing Fuchsian Group Generators in

the Poincaré Disk Model

Computing Fundamental Group Generators
This step is exactly the same as for genus one closed
surfaces. We use the same method [Carner et al. 2005] to
compute a set of canonical fundamental group generators
{a1,b1,a2,b2, · · · ,ag,bg} for surface with genusg larger than
one, then slice the surface open along the fundamental group
generators to form a topological diskD. The boundary ofD
has the form∂D = a1b1a−1

1 b−1
1 a2b2a−1

2 b−1
2 · · ·agbga−1

g b−1
g .

Isometric Embedding in Hyperbolic Disk
Then we isometrically embedD onto the Poincaré disk using
the Hyperbolic uniformization metric computed from the first
step, details in [Jin et al. 2006].

Figure 4 shows the original vase model and its embedding in
the Poincaré disk with the Hyperbolic Uniformization metric.

Fuchsian Group Generators
Given two pairs of pointsp0,q0 and p1,q1 in the Poincaré

Figure 4: (a) Vase model marked with a set of canonical fun-
damental group generators. (b) Embedded in the Poincaré disk
with the Hyperbolic Uniformization metric

disk, such that the geodesic distance fromp0 to q0 equals
to the geodesic distance fromp1 to q1. Then there is a
unique Möbius transformationτ, such thatp1 = τ(p0) and
q1 = τ(q0). τ can be constructed in the following way: Con-
struct a Möbius transformationτ0 to mapp0 to the origin,q0
to a positive real number, with

τ0 = e−iθ0
z− p0

1− p̄0z
,θ0 = arg

q0− p0

1− p̄0q0
.

Similarly, we can define a Möbius transformationτ1, which
mapsp1 to the origin,q1 to a real number, andτ1(q1) must
equals toτ0(q0). Then the desired Möbius transformationτ
is τ = τ−1

1 ◦ τ0. Generators for Fuchsian group are Möbius
transformations and can be constructed in a similarly way.

Let {ρ(ak),ρ(a−1
k )} ⊂ ∂D are two boundary curve seg-

ments. We want to find a Möbius transformationβk, such
that βk(ρ(a−1

k )) = ρ(ak). Let their starting and ending ver-

tices are∂ρ(a−1
k ) = {q0, p0} and ∂ρ(ak) = {p1,q1}, then

the Möbius transformationβk maps(p0,q0) to (p1,q1). βk
is the Fuchsian generator corresponding tobk. Similarly, we
can computeαk which mapsρ(bk) to ρ(b−1

k ). Therefore,
we can compute a set of canonical Fuchsian group generators
{α1,β1,α2,β2, · · · ,αg,βg}.

Figure 5(a) shows one Fuchsian group generator acting on the
fundamental domain of a vase model. The two red points are
the pre-images of a same point on the vase model. Paths con-
necting them are projected to closed loops homotopic to the
red curve on vase model, see Figure 5(b). Figure 6(b) shows
a finite portion of the universal covering space of vase model
embedded in the Poincaré disk model, generated by the actions
of Fuchsian group elements.

Figure 5: (a) One Deck transformation maps the left period
to the right one. (b) Two closed loops homotopic to the red
one on the vase model lift as two blue Paths in the universal
covering space.



Figure 6: (a) A finite portion of the universal covering spaceof
kitten model, generated by the actions of deck transformation
group elements. (b) A finite portion of the universal cover-
ing space of vase model, generated by the actions of Fuchsian
group elements.

4.6 Computing Geodesic Spectra of Surface

After computing the Fuchsian group generators, the geodesic
spectrum of the surface can be algebraically computed in a
straightforward way. SupposeΣ is a closed surface (ifΣ
is open, we use its double covering) with hyperbolic uni-
formization metric,{a1,b1,a2,b2, · · · ,ag,bg} is a set of fun-
damental group generators and{α1,β1,α2,β2, · · · ,αg,βg} is
the set of corresponding Fuchsian group generators. we want
to compute the length of the geodesic in the homotopy class
γ = w1w2 · · ·wn, wherewk is one of theai ’s or bi ’s. We re-
placeai in γ by αi , b j by β j in γ to get a Fuchsian transfor-
mation τ. For example, Supposeγ = a1b1a−1

1 b−1
1 , then its

corresponding Fuchsian transformation isτ = α1β1α−1
1 β−1

1 .
We transformτ from Poincaré disk model to upper half plane
model withh−1 ◦τ ◦h using formulae 1.

Denoting the length of the geodesic homotopy toγ as l , with
the trace of the matrixτ satisfying the following relation:
tr(h−1 ◦ τ ◦ h) = 2cosh( l

2), the geodesic lengthl can be de-
rived as:

l = 2acosh(
tr(h−1 ◦τ ◦h)

2
) (9)

5 EXPERIMENTAL RESULTS

The algorithm introduced in above sections for computing
geodesic spectrum from Möbius transformations is purely al-
gebraic, easy to implement and fast to compute. In this sec-
tion, in order to verify our algorithm, we performed extensive
experiments on general triangular meshes with complicated
topologies.

Figure 7(a) shows six genus one closed surfaces. Table 1 lists
part of their geodesic spectra, lengths of the first 8 shortest
geodesic. And figure 8(a) depicts the spectra for easier com-
parison purpose.

Figure 8(b) and Table 2 demonstrate the experimental results
for genus three surfaces in Figure 7.

Because the geodesic spectrum indicates the conformal struc-
tures, the experimental results show that all the surfaces are
conformally inequivalent.

The programs are coded in C++ and on Windows platform.
The most time consuming part of the pipeline is the compu-
tation of uniformization metric. Due to page limit, we refer

model Geodesic Spectra of Genus One Surfaces
Kitten 1.00000 2.00000 2.17160 2.38896

2.39265 2.94930 2.95526 2.99999
Teapot 1.00000 2.00000 3.00000 3.02754

3.18818 3.18865 3.62808 3.62893
Rocker Arm 1.00000 1.29513 1.62606 1.64638

2.00001 2.36872 2.39663 2.59026
Torus 1.00000 2.00000 2.29208 2.50072

2.50072 3.00000 3.04198 3.04198
Elk 1.00000 2.00000 3.00000 3.76495

3.89411 3.89687 4.26068 4.26570
Knot 1.00000 1.99999 2.99999 3.99999

4.99999 5.99999 6.99999 7.99999

Table 1: Geodesic Spectrum of Genus One Surfaces.

model Geodesic Spectra of Genus Three Surfaces
David 0.837531 1.031991 1.092184 1.675063

2.063981 2.184367 3.369938 3.549802
3.728019 4.276527 4.402193 4.499322

Genus3 2.608251 2.750676 2.848831 3.841951
3.841954 3.841958 3.841965 5.032769
5.216501 5.225431 5.290124 5.423762

Three-Hole 1.676075 1.690413 1.708316 3.319118
3.352150 3.380825 3.393546 3.409811
3.416633 3.977163 4.040855 4.054275

Holes3 2.349592 2.354404 2.358875 2.376324
2.702315 3.588764 3.605088 3.614748
3.675990 3.698398 4.699184 4.708807

Table 2: Geodesic Spectrum of Genus Three Surfaces.

readers to [Jin et al. 2006] for time table of computing uni-
formization metric. The experimental results shows the algo-
rithm is efficient and robust.

6 Conclusion

In this paper, we introduce a rigorous and efficient algorithm to
compute the geodesic spectrum for surfaces with non-positive
Euler number with uniformization metrics, which indicatesthe
conformal structure of the surface. The method can be ap-
plied for surface classification, shape comparison and shape
retrieval purposes.

Geodesic spectra are not only for conformal structures, they
are also reflect the information of the Riemannian metrics. It is
still an open problem for computing closed geodesics for gen-
eral surfaces embedded inR3. In the future, we will explore
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Figure 8: (a) Comparison of geodesic spectrum of genus one
models. (b) Comparison of geodesic spectrum of genus three
models.



Figure 7: From left to right, genus one models: Kitten model,Teapot model, Rocker Arm model, Torus model, Elk model, Knotty
torus Model; genus three models: David model, Genus3 model,Three-Hole model, Holes3 model.

along this direction to find geodesic spectra for general Rie-
mannian manifolds. The discrete Ricci flow and hyperbolic
geometry method can be applied for much broader applica-
tions such as surface parametrization and shape matching, reg-
istration, spline construction. In the future, we will investigate
further on these related applications.
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