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Abstract. Conformal geometry is in the core of pure mathematics. Conformal
structure is more flexible than Riemaniann metric but more rigid than topology.
Conformal geometric methods have played important roles in engineering fields.
This work introduces a theoretically rigorous and practically efficient method for
computing Riemannian metrics with prescribed Gaussian curvatures on discrete
surfaces - discrete surface Ricci flow, whose continuous counter part has been
used in the proof of Poincaré conjecture. Continuous Ricci flow conformally de-
forms a Riemannian metric on a smooth surface such that the Gaussian curvature
evolves like a heat diffusion process. Eventually, the Gaussian curvature becomes
constant and the limiting Riemannian metric is conformal to the original one.
In the discrete case, surfaces are represented as piecewise linear triangle meshes.
Since the Riemannian metric and the Gaussian curvature are discretized as the
edge lengths and the angle deficits, the discrete Ricci flow can be defined as the
deformation of edge lengths driven by the discrete curvature. The existence and
uniqueness of the solution and the convergence of the flow process are theoret-
ically proven, and numerical algorithms to compute Riemannian metrics with
prescribed Gaussian curvatures using discrete Ricci flow are also designed.
Discrete Ricci flow has broad applications in graphics, geometric modeling, and
medical imaging, such as surface parameterization, surface matching, manifold
splines, and construction of geometric structures on general surfaces.

Key words: Conformal geometry, Discrete Ricci flow, Riemannian metric, uni-
formization, global conformal parametrization, manifold

1 Introduction

Conformal geometry offers rigorous and powerful theoretic tools for practical engineer-
ing applications. Ricci flow is a novel curvature flow method in computational confor-
mal geometry, which will play important roles in practice because of its universality
and flexibility.

1.1 Conformal geometry

Conformal geometry is in the core of pure mathematics, which is the intersection of
complex analysis, algebraic topology, differential geometry, algebraic geometry, and
many other fields in mathematics.
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Conformal geometry studies the conformal structures of Riemann surfaces. Confor-
mal structure is a fundamental geometric structure, which is more rigid than topolog-
ical structure but more flexible than Riemannian metric structure. All surfaces can be
deformed to three canonical spaces preserving geometric information. This fact greatly
simplifies the theoretic arguments in mathematics. Furthermore, all surfaces can be clas-
sified according to their conformal structures. The ”shape space” of conformal equiv-
alent classes form a finite dimensional Riemannian manifold, which offers a universal
framework for shape analysis.

With the development of3D acquisition technologies and computational power,
conformal geometry plays more and more important roles in engineering fields. For ex-
ample, conformal geometry has been broadly applied in computer graphics, computer
vision, geometric modeling and medical imaging. The theoretic foundation for com-
putational conformal geometry is developing rapidly and many practical algorithms
converting classical theories in conformal geometry have been invented.

So far, the computational methodologies in conformal geometry for general surfaces
are mainly in the following categories: harmonic maps, holomorphic differentials, and
newly invented method in geometric analysis,Ricci flow. Ricci flow is very powerful
and flexible, which will cause great impact in engineering field. In this work, we mainly
focus on the introduction to the theories and algorithms of discrete surface Ricci flow.

1.2 Ricci Flow

Recently, the term ofRicci flowbecomes popular, due to the fact that it has been ap-
plied for the proof of the Poincaré conjecture on 3-manifolds [1–3]. Richard Hamilton
introduced the Ricci flow for Riemannian manifolds of any dimension in his seminal
work [4] in 1982. Intuitively, a surface Ricci flow is the process to deform the Rieman-
nian metric of the surface. The deformation is proportional to Gaussian curvatures, such
that the curvature evolves like the heat diffusion.

It has been considered as a powerful tool for computing the conformal Riemannian
metrics with prescribed Gaussian curvatures. For many engineering applications, it is
also highly desirable to compute Riemannian metrics on surfaces with prescribed Gaus-
sian curvatures, such as parameterization in graphics, spline construction in geometric
modeling, conformal brain mapping in medical images, and so on.

Surface parameterization refers to the process of mapping a surface onto a planar
domain. If such a parameterization is known, any functions or signals (e.g., texture) on
the flat parametric domain can be easily pulled back to the surface, such that compli-
cated processing on surfaces can be transferred to easy computing on the flat parametric
domain. Therefore it is a key ingredient for digital geometry processing, such as textur-
ing [5], deformation [6], and resampling [7]. The process for parameterizing surfaces is
quadrivalent to finding a special flat Riemannian metric, withzeroGaussian curvatures
everywhere.

Constructing splines whose parametric domain is an arbitrarily topological manifold
is an important issue for computer-aided geometric modeling [8]. In order to define such
parameters and knots of the spline, a special atlas of the surface is required such that
all local coordinate transition maps are affine [9]. One way to construct such an atlas is
to find a flat metric of the surface first, then locate a collection of patches covering the
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whole surface, and flatten each patch using the flat metric to form an atlas. Here again,
the key step is to obtain the flat metric of the given surface.

In medical imaging field, it is important to deform the human brain cortex surface
to the unit sphere in order to easily compare and register several different brain cortexes
on a canonical domain [10]. This is equivalent to find a Riemannian metric on the
cortex surface, such that the Gaussian curvature induced by the metric equals toone
everywhere.

Comparing to existing methods, which can only handle a subproblem in the scope
of Euclidean parametrization, Ricci flow can handle arbitrary topologies and find arbi-
trary conformal mappings, which include not just Euclidean, but also hyperbolic and
spherical parameterizations.

The discrete Ricci flow on piecewise linear surfaces was introduced in [11]. The ex-
istence and convergence of the discrete Ricci flow for surfaces were established. How-
ever, the discrete Ricci flow is not a very efficient algorithm for practical use due to
the gradient nature of the flow. Recently, we improve the gradient descent method by
the Newton’s method and drastically speed up the search for the limiting metric by
the order of magnitudes. Furthermore, we generalize the results from constant discrete
curvature to arbitrarily prescribed discrete curvature, from the metric induced by the
combinatorial structure of the mesh to the induced Euclidean metric. We have devel-
oped an effective and complete system to compute Riemannian metrics with prescribed
Gaussian curvatures on generally topological surfaces has been developed in this pa-
per based on discrete Euclidean Ricci flow, discrete hyperbolic Ricci flow, and discrete
spherical Ricci flow.

1.3 Outline

In the next section 2, we will briefly review most related works in computer graph-
ics field and discrete complex analysis; in Sec. 3, theoretic background in differential
geometry and Rieman surface are introduced; in Sec. 4, the theories for major computa-
tional methodologies are introduces, including harmonic maps, holomorphic differen-
tial forms and Ricci flow; in Sec.5, the algorithm and theories of discrete Ricci flow are
thoroughly explained; practical applications are given in Sec.6; in the conclusion Sec.7,
future directions are pointed out.

2 Previous Work

In computer graphics and discrete mathematics, much sound research has focused on
discrete conformal parameterizations. Here, we briefly overview related work, and refer
readers to [12,13] for thorough surveys.

All parameterizations can be classified according to the type of output produced,
which can bea vector valued function, i.e. a mapping, a holomorphic differential form
or a flat Riemannian metric. In general, the derivative of a conformal map is a holomor-
phic 1-form; each holomorphic 1-form induces a flat metric. Therefore, methods which
compute metrics are the most general, although they are more expensive to compute.
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Mappings First order finite element approximations of the Cauchy-Riemann equations
were introduced by Levy et al. [5]. Discrete intrinsic parameterization by minimizing
Dirichlet energy was introduced by [14], which is equivalent to least-squares conformal
mapping [5]. Discrete harmonic maps were computed using the cotan-formula in [15].
Mean value coordinates were introduced in [16]; these generalize the cotan-formula.
All these linear methods can easily incorporate free boundary conditions to improve
the quality of the parameterization produced, such as the methods in [14] and [17].
Discrete spherical conformal mappings are used in [18] and [10].

Holomorphic forms Holomorphic forms are used in [19] to compute global conformal
surface parameterizations for high genus surfaces. Discrete holomorphy was introduced
in [20] using discrete exterior calculus [21]. The problem of computing optimal holo-
morphic 1-forms to reduce area distortion was considered in [22]. Gortler et al. [23]
generalized 1-forms to the discrete case, using them to parameterize genus one meshes.
Recently, Tong et al. [24] generalized the 1-form method to incorporate cone singulari-
ties.

Metrics There are three major methods for computing edge lengths (or equivalently the
angles): angle based flattening, circle packing, and circle patterns.

Sheffer and Sturler [25] introduced the angle based mesh flattening method. This
works by posing a constrained quadratic minimization problem seeking to find corner
angles which are close to desired angles in a weightedL2 norm. The efficiency and
stability of ABF are improved in [26] by using advanced numerical algorithm and hier-
archical method.

The circle packing method was introduced in [27]. Continuous conformal map-
pings can be characterized as mapping infinitesimal circles to infinitesimal circles. Cir-
cle packings replace infinitesimal circles with finite circles. In the limit of refinement
the continuous conformal maps are recovered [28]. Collins and Stephenson [29] have
implemented these ideas in their software CirclePack.

The first variational principle for circle packings, was presented in a seminal pa-
per by Colin de Verdìere [30]. Circle patterns based on those in Bobenko and Spring-
born [31] have been applied for parameterization in [32]. Springborn [33] shows that in
theory, circle packing and circle patterns are equivalent.

Ricci Flow Recently, a novel curvature flow method in geometric analysis is introduced
to prove the Poincaré conjecture, theRicci Flow. Ricci flow refers to conformally de-
form the Riemannian metric of a surface by its Gaussian curvature, such that the cur-
vature evolves according to a heat diffusion process. Ricci flow is a powerful tool to
compute the Riemannian metric by the curvature. It can be applied for discrete confor-
mal parameterizations.

The connection between circle packing and smooth surface Ricci flow [34] was dis-
covered in [11]. Conventional circle packing only considers combinatorics. The discrete
Ricci flow method was introduced in [35, 36], which incorporate geometric informa-
tion and was applied for computing hyperbolic and projective structure and manifold
splines.
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3 Theoretical Background

In this section, we briefly introduce the major concepts in differential geometry and
Riemann surface theory, which are necessary to explain the theory of the Ricci flow.
We refer readers to [37,38] for detailed information.

3.1 Riemannian metric

SupposeD ⊂ R2 is a planar domain, a mapr : D → R3 is with at leastC2 continuity.
Let r i = ∂ r

∂ui
, i = 1,2 be the tangent vectors along the iso-parametric curves, if

r1× r2 6= 0,

thenr is called aregular surface. Thenormal is defined as

n =
r1× r2

|r1× r2| ,

the mapG : r(u1,u2) → n(u1,u2) ∈ S2 is called theGauss map, whereS2 is the unit
sphere. The length of a general tangent vectordr = r1du1 + r2du2 can be computed

ds2 =< dr ,dr >= (du1du2)
(

g11 g12

g21 g22

)(
du1

du2

)

where<,> is the inner product inR3, andgi j =< r i , r j >. The matrixg= (gi j ) is called
the Riemannian metric tensor, which defines the inner products<,>g on the tangent
planes of the surface. The angles between two tangent vectors can be measured byg.
Supposeδ r = r1δu1 + r2δu2 is another tangent vector, the angle betweendr andδ r
measured byg is θg, then

θg = cos−1 < dr ,δ r >g√
< dr ,dr >g

√
< δ r ,δ r >g

(1)

Supposeλ : (u1,u2)→R is a real function defined on the surface, thenḡ= e2λ (u1,u2)g
is another Riemannian metric,

< dr ,δ r >ḡ= e2λ < dr ,δ r >g (2)

The angle betweendr andδ r measured bȳg is θḡ, plug Eqn. 2 to 1 directly, we obtain

θg = θḡ.

Namely, the angles measured byg equal to those measured bȳg. Therefore, we saȳg
andg areconformally equivalent. ’conformal’ means the angle preserving, while the
area distorted, withe2λ measuring the area distortion and being called theconformal
factor.

All Riemannian metrics are surfaces are classified by the conformal equivalence
relation, each conformal equivalent class is called aconformal structure. Any Rieman-
nian metric on the surface are locally conformal equivalent to the Euclidean flat metric.
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Namely, one can choose a special parameters, the change of parameterization doesn’t
affect the metric, such that the metric is represented as

ds2 = e2λ (du2
1 +du2

2), (3)

such kind of parameterizations are called theisothermal coordinatesof the surface.

3.2 Gaussian curvature

The Gauss map maps the surface to the unit sphere, the derivative map of the Gauss
map is the first order linear approximation to it. The Jacobin of the derivative map
measures the local area distortion between the surface and the image on the sphere,
which is called theGaussian curvatureK. Under the isothermal coordinates Eqn. 3, the
Gaussian curvature is represented as

K =−e−2λ ∆λ ,

where∆ is theLaplace operator,

∆ =
∂ 2

∂u2
1

+
∂ 2

∂u2
2

.

e−2λ ∆ is called theLaplace-Beltrami operator.
Along the boundary of the surface, the tangential component of the curvature of the

boundary curve is defined as thegeodesic curvaturek. Under the isothermal coordi-
nates, the geodesic curvature is represented as

k =−e−λ ∂nλ ,

wheren is the exterior tangent vector perpendicular to the boundary.
The total curvature of a surface is solely determined by the topology of the surface

and independent of the metric. Gauss-Bonnet theorem [37] explains the connection
between the total Gaussian curvatures on a surfaceSand the topology ofS.

∫

S
KdA+

∫

∂S
kgds= 2πχ(S), (4)

whereχ(S) is the Euler number ofS, χ(S) = 2− 2g− b, g,b are the genus and the
number of the boundaries of the surface.

3.3 Conformal Metric Deformation

Under a conformal metric̄g, the curvatures are changed accordingly, the followingYam-
abi equationsdescribe the relation between the conformal metric deformation and the
curvature change, supposeḡ = e2λ g, then

K̄ = e−2λ (K−∆λ ), k̄ = e−λ (k−∂nλ ), (5)
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Fig. 1. Uniformization Theorem: all surfaces with Riemannina metric can be conformally em-
bedded onto three canonical spaces: sphere, plane and hyperbolic space.

where∆ is the Laplace-Beltrami operator under the metricg.

It has the fundamental importance to solve the Riemannian metricḡ from the target
curvatureK̄ andk̄. In each conformal equivalent class, there exists a unique metric, such
that the induced curvature is one of the three constants everywhere{+1,0,−1}. This
fact is formulated as the Uniformization theorem [27] .

Theorem 1 (Uniformization Theorem). Let (S,g) be a compact 2-dimensional Rie-
mannian manifold with Riemannian metricg, then there is a unique metric̄g conformal
to g with constant Gaussian curvatures. The constant value is one of the{+1,0,−1}.

Such metric is called theuniformization metric. According to Gauss-Bonnet theorem
(Eqn. 4), the sign of the constant Gaussian curvatures is determined by the Euler number
of the surface. Therefore, any closed 2-manifold surface can be locally isometrically
embedded onto one of the three canonical surfaces with respect to its Euler numberχ;
thesphereS2 for genus zero surfaces withχ > 0, theplaneE2 for genus one surfaces
with χ = 0, and thehyperbolic spaceH2 for high genus surfaces withχ < 0 (see Fig.
1).
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3.4 Universal Covering Space

SupposeS is a surface, then(S̄,π) is called theuniversal coveringspace ofS, if S̄ is
simply connected and locallyπ : S̄→ S is bijective and continuous. Fig. 2(b) shows the
universal covering space of the genus one kitten surface (a). Adeck transformationis an
automorphismτ : S̄→ S̄, such thatπ ◦τ = π as shown in Fig. 3. All deck transformations
form a group, called thedeck transformation groupand denoted asDeck(S). Suppose
D⊂ S̄ is simply connected, for arbitrary2 deck transformationsτ1,τ2, τ1(D)∩τ2(D) =
/0, ∪τ∈Deck(S)τ(D) = S̄, thenD is called afundamental domainof S. The rectangles in
Fig.3 illustrate two fundamental domains.

Suppose a pointp∈ Son the surface, the pre-images ofp on the universal covering
space areπ−1(p) = {p̄0, p̄1, p̄2, · · ·} ⊂ S̄, then π−1(p) has a one to one map to the
deck transformation groupDeck(S). For any p̄k ∈ π−1(p), there exists a unique deck
transformationτk ∈ Deck(S), such thatτk(p̄0) = p̄k, see Fig. 3.

The deck transformations of̄Swith the uniformization metric are rigid motions in
the canonical spaces, which form a group (theFuchsian groupin hyperbolic space).
Such a group can represent the conformal structure of the surfaceS.

The universal covering space of a surface with negative Euler number can be embed-
ded isometrically onto the hyperbolic space with the uniformization metric. The com-
mon hyperbolic space models include Poincaré disk and Klein model. The Poincaré
disk is the unit disk on the complex plane,|z| < 1 with the metricds2 = dzd̄z

1−z̄z. The
geodesics are circular arcs perpendicular to the boundary. The Klein model is also the
unit disk. The map from the Poincaré model to the Klein model is

β (z) =
2z

1+zz̄
.

3.5 Riemann Surface

A Riemann surface is a surface with a complex structure, such that complex analysis
can be defined on the surface.

Fig. 2. (a) The kitten surface with the flat metric computed using Ricci flow method. (b) Its
universal covering space and one fundamental domain (the rectangle). (c) A loop on surface. (d)
The loop lifted to a path in UCS



Lecture Notes in Computer Science: Discrete Ricci Flow 9

Fig. 3. The universial covering space of the bunny surface, a deck transformation maps the left
foundamental domain to the right.

Supposef : C→ C is a complex functionf (x,y) = (u(x,y),v(x,y)), f is holomor-
phic, if it satisfies the followingCauchy-Riemann equations,

∂u
∂x

=
∂v
∂y

,
∂u
∂y

=−∂v
∂x

.

If a holomorphic functionf is bijection, and the inversef−1 is also holomorphic, then
f is biholomorphic.

φα
φβ

Uα Uβ

S

φαβ

φα (Uα) φβ (Uβ)

Fig. 4. A surface is covered by an atlas. If all chart transitions are holomorphic, the atlas is a
conformal atlas. If all local coordinates are isothermal, the surface is a Riemann surface.

As shown in Fig.4, supposeSis a surface covered by a collection of open sets{Uα},
S⊂⋃

α Uα . A chart is(Uα ,φα), whereφα :Uα →R2 is a homeomorphism, and the chart
transition functionφαβ : φα(Uα ∩Uβ )→ φβ (Uα ∩Uβ ), φαβ = φβ ◦φ−1

α . The collection
of the chartsA = {(Uα ,φα)} is called the atlas ofS. If all chart transition functions are
biholomorphic, then the atlas is called aconformal structureof the surface.

SupposeShas a Riemannian metricg, and all the local coordinates of the conformal
structure are isothermal, thenS is called aRiemann surface.
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Supposeω is a complex differential form, such that on each chart(Uα ,φα) with
local complex parameterzα , ω = fα(zα)dzα . Suppose two charts overlapUα ∩Uβ ,
then

fβ (zβ ) = fα(zα(zβ ))
dzα
dzβ

.

Suppose(S1,A1) and(S2,A2) are two Riemann surfaces,Ai ’s are their conformal
structures. Suppose(Uα ,φα) is a local chart ofA1, (Vβ ,ψβ ) is a local chart ofA2.
φ : S1 → S2 is aconformal mapif and only if

ψβ ◦φ ◦φ−1
α : φα(Uα)→ ψβ (Vβ )

is biholomorphic. A conformal map preserves angles.

4 Computational Methodology

In this section, we briefly introduce the theoretic aspects of different computational
methodologies. These methods inspire the discrete computational algorithms.

4.1 Harmonic Maps

Supposeφ : S→R is a real function on the surfaceS, which has a metricg, theharmonic
energyof φ is defined as

E(φ) =
∫

S
|∇gφ |2dAg, (6)

where∇g anddAg are the gradient operator and the area element under the metricg,
respectively. If(u1,u2) are isothermal coordinates withe−2λ as the conformal factor,
then

∇g = e−λ (
∂

∂u1

∂
∂u2

)T ,dAg = e2λ du1du2.

A harmonic functionis a critical point of the harmonic energy. A harmonic function
satisfies the following Laplace equation,

∆gφ = 0,∆g = e−2λ (
∂ 2

∂u2
1

+
∂ 2

∂u2
2

),

where∆g is called theLaplace-Beltrami operatordetermined by the metricg. A har-
monic map satisfies themean-valueproperty, for any pointp

φ(p) =
∫

D
φ(q)dA,

whereD is a small disk centered at pointp.
Supposeφ is a mapφ : S→Rn, thenφ is a harmonic map, if all its components are

harmonic functions. All conformal maps must be harmonic, but the inverse is not true,
except genus0 closed surface, whose harmonic map is also conformal.

Fig. 5 illustrates a conformal parameterization result using harmonic map method.
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Fig. 5. Conformal parameterization using harmonic map.

The common way to compute a harmonic map is to construct a map first, then use
the following heat flow method to diffuse the map to be harmonic:

dφ
dt

=−∆gφ , (7)

the heat flow is with specific constraints. For example, in order to compute the confor-
mal map from a genus zero closed surface to the unit sphere, the nonlinear heat flow
method is applied in [10].

4.2 Holomorphic 1-forms

Definition 1 (Holomorphic 1-forms). Supposeω is a complex differential form, such
that on each chart(Uα ,φα) with local complex parameterzα , ω = fα(zα)dzα . Suppose
two charts overlapUα ∩Uβ , then

fβ (zβ ) = fα(zα(zβ ))
dzα
dzβ

.

A holomorphic 1-formf (z)dzon a Riemann surface, defines a field of line elements
dz, by the requirement thatf (z)dz is real, namelyarg f (z) = −argdz(modπ). The in-
tegral curves of this field of line elements are called ahorizontal trajectories. If f (z)dz
is imaginary, then the integral curves of the field of line elements are called avertical
trajectories.

Figure 6 illustrates the trajectories on surfaces. On the bunny surface, the horizontal
and the vertical trajectories are explicitly illustrated. On the David head surface and the
David body surface, the conformal grids formed by the trajectories are illustrated using
checker board texture mapping.

According to Poincaŕe-Hopf theorem, each holomorphic 1-form has zero points,
where f (zα) = 0. In general, the total number of zero points equals to the Euler number
|χ(S)|. Locally, one can construct a conformal chart in a neighborhood of a zero point,
such that the 1-form iszαdzα . Fig.7 shows the two zero points of a holomorphic 1-form
on a genus two surface.
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Fig. 6. Holomorphic forms on surfaces. The horizontal and vertical trajectories of the holomor-
phic forms are illustrated on the bunny surface. The conformal grids formed by the horizontal and
vertical trajectories are demonstrated by the checker board texture mapping on the David head
surface and the David body model.

The computational algorithm for holomorphic 1-forms is as the following: first a
cohomology group basis is constructed using algebraic topological methods, then co-
homology basis are diffused to be harmonic forms using the heat flow method in Eqn.9,
finally the conjugate of harmonic forms are computed to form the holomorphic 1-forms.
Details can be found in [19].

4.3 Ricci Flow

SupposeSis a smooth surface with a Riemannian metricg. The Ricci flow is the process
to deform the metricg(t) by its induced Gaussian curvatureK(t), wheret is the time
parameter, such that the curvature evolves according to a heat diffusion,

dgi j (t)
dt

=−2K(t)gi j (t). (8)

SupposeT(u1,u2, t) is a temperature field on the surface, then according to the
thermal dynamics, the temperature field will evolve governed by the following heat
diffusion equation,

T(t)
dt

=−∆gT(t).

In Ricci flow, the curvature evolution is exactly the same as heat diffusion on the
surface, as follows:

K(t)
dt

=−∆g(t)K(t), (9)

where∆g(t) is the Laplace-Beltrami operator induced by the metricg(t). We can sim-

plify the Ricci flow equation 8. Letg(t) = e2λ (t)g(0), then Ricci flow is

dλ (t)
dt

=−2K(t). (10)
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Fig. 7. The octagons in the centers are zero points of a holomorphic 1-form on a genus two
surface.

The following theorems postulate that the Ricci flow defined in Eqn. 8 is convergent
and lead to conformal uniformization metric.

Theorem 2 (Hamilton 1982 [34]).For a closed surface of non-positive Euler charac-
teristic, if the total area of the surface is preserved during the flow, the Ricci flow will
converge to a metric such that the Gaussian curvature is constant everywhere.

Theorem 3 (Chow 1991 [39]).For a closed surface of positive Euler characteristic, if
the total area of the surface is preserved during the flow, the Ricci flow will converge to
a metric such that the Gaussian curvature is constant everywhere.

The corresponding metricg(∞) is theuniformization metric. Moreover, at any time
t, the metricg(t) is conformal to the original metricg(0).

The Ricci flow can be easily modified to compute a metric with aprescribedcurva-
tureK̄, and then the flow becomes

dgi j (t)
dt

= 2(K̄−K)gi j (t). (11)

With this modification, any target curvatures̄K , which are admissible with the Gauss-
Bonnet theorem, can be induced from the solution metricg(∞).

5 Discrete Ricci Flow

In engineering fields, smooth surfaces are often approximated by simplicial complexes
(triangle meshes). We consider a triangle meshΣ with vertex setV, edge setE and face
setF .

We sayΣ is with Euclidean background geometry, or simplyΣ is an Euclidean
mesh, if each of its faces is realizable on the Euclidean plane. Similarly, we can define
meshes with spherical or hyperbolic background geometries respectively.
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Fig. 8.Conformal parameterizations map infinitesimal circles to infinitesimal circles and preserve
the intersection angles among the circles.

The relations among angles and edge lengths are governed by cosine laws. Meshes
with different background geometries require the corresponding cosine laws.
Discrete Riemannian Metric In the discrete setting, the edge lengths on a meshΣ
simply define thediscrete Riemannian metricon Σ ,

l : E→ R+,

such that for a facefi jk the edge lengths satisfy the triangle inequality,

l i j + l jk > lki.

The discrete metric determines the angles. Suppose we have a trianglefi jk with edge
lengths{l i j , l jk, lki}, and the angles against the corresponding edges are{θk,θi ,θ j}. The
cosine laws with respect to the background geometries are

l2
i j = l2

jk + l2
ki−2l jklki cosθk, E2

coshl i j = coshl jk coshlki−sinhl jk sinhlki cosθk, H2

cosl i j = cosl jk coslki +sinl jk sinlki cosθk. S2
(12)

Discrete Gaussian CurvatureThe discrete Gauss curvature is defined as the angle
deficit on a mesh,

Ki =

{
2π−∑ fi jk∈F θ jk

i , interior vertex

π−∑ fi jk∈F θ jk
i , boundary vertex

(13)

whereθ jk
i represents the corner angle attached to vertexvi in the facefi jk .

Discrete Gauss-Bonnet TheoremIn the discrete setting, the Gauss-Bonnet theorem
(Eqn. 4) still holds on meshes with the discrete Gaussian curvatures, as follows.

∑
vi∈V

Ki +λ ∑
fi∈F

Ai = 2πχ(M),

whereAi denotes the area of facefi , andλ represents the constant curvature for the
canonical geometry;+1 for sphere,0 for plane, and−1 for hyperbolic space.
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v1

v2
v3

φ31

γ3

γ1

γ2

l31

l12

l23

φ12

φ23

O
h23

h31
h12

Fig. 9. Circle Packing Metric: Circle packing metric for a triangle. The center circle is the dual
circle, which is orthogonal to all the other three circles

Discrete Conformal Deformation
In order to approximate conformal deformation of metrics, the circle packing metric

is introduced [27, 40]. Let us denoteΓ as a function which assigns a radiusγi to each
vertexvi .

Γ : V → R+

Similarly, let aweighton the mesh be a function,

Φ : E→ [0,
π
2

].

on each edgeei j by assigning a positive numberΦ(ei j ). The pair of vertex radius and
edge weight functions on a meshΣ , (Γ ,Φ), is called acircle packing metricof Σ .
Figure 9 illustrates the circle packing metrics. Each vertexvi has a circle whose radius
is r i . On each edgeei j , an intersection angleφi j is defined by two circles ofvi and
v j , which are intersected with or tangent to each other. Two circle packing metrics
(Γ1,Φ1) and(Γ2,Φ2) on a same mesh areconformal equivalent, if Φ1≡Φ2. Therefore,
a conformal deformation of a circle packing metric only modifies the vertex radii.

For a given mesh, its circle packing metric and the edge lengths on the mesh can
be converted to each other by using cosine laws. Here, the choice of the cosine laws is
dependent on the background geometry of the mesh,

l2
i j = γ2

i + γ2
j +2γiγ j cosφi j , E2

coshl i j = coshγi coshγ j +sinhγi sinhγ j cosφi j , H2

cosl i j = cosγi cosγ j −sinγi sinγ j cosφi j . S2
(14)
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5.1 Theories on Discrete Ricci Flow

The connections between the circle packing metric and the discrete Gaussian curvature
can be obtained from Eqn. 14 and 13. Now, we are ready to explain the discrete Ricci
flow.

Let ui to be

ui =





logγi E2

logtanhγi
2 H

2

logtanγi
2 S2

(15)

for each vertex. Then, the discrete Ricci flow is defined as follows.

dui(t)
dt

= (K̄i −Ki) (16)

Recall that, in continuous cases, Riemannian metrics determine the Gaussian curva-
ture, and continuous Ricci flow is the conformal deformation of the Riemannian metric
such that the deformation is proportional to the Gaussian curvature. Similarly, in dis-
crete case, the circle packing metric determines the discrete Gaussian curvature (Eqn.
14, 13, and 12), and the discrete Ricci flow conformally deforms the circle packing
metrics with respect to the Gaussian curvatures (Eqn. 15 and 16).

Discrete Ricci flow can be formulated in the variational setting, namely, it is a neg-
ative gradient flow of some special energy form. LetΣ be a spherical (Euclidean or
hyperbolic ) triangle mesh, then for arbitrary two verticesvi ,v j , the following symmet-
ric relation holds

∂Ki

∂u j
=

∂K j

∂ui
.

Let ω = ∑n
i=1Kidui be a differential one-form [41]. The symmetric relation guarantees

the one-form is closed (curl free)

dω = ∑
i, j

(
∂Ki

∂u j
− ∂K j

∂ui
)dui ∧duj = 0.

Furthermore, the vertex radiiu domain is simply connected, by Stokes theorem, the
following integration is path independent,

f (u) =
∫ u

u0

n

∑
i=1

(K̄i −Ki)dui , (17)

whereu0 is an arbitrary initial metric. Therefore, the above integration is well defined,
and called theRicci energy. The discrete Ricci flow is the negative gradient flow of
the discrete Ricci energy. The discrete metric which inducesk̄ is the minimizer of the
energy.

Computing desired metric with prescribed curvatureK̄ is equivalent to minimizing
the discrete Ricci energy. For Euclidean (or hyperbolic) case, the discrete Ricci en-
ergy is strictly convex (namely, its Hessian is positive definite). The global minimum
uniquely exists, corresponding to the metricū, which induces̄k. The discrete Ricci flow
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(a) (b) (c)

Fig. 10.The David head surface is a two-holed disk, shown in (a). It is parameterized as a planar
multi-holed annulus, shown in (b). It can also be parameterized in the Poincaré disk, such that all
boundaries are mapped to geodesics, shown in (c).

converges to this global minimum [11]. The Euclidean Ricci energy is strictly convex on
the space of normalized metric∑ui = 0. The hyperbolic Ricci energy is strictly convex.
The Spherical Ricci energy is not strictly convex, the desired metricū is still a critical
point of the energy and can be reached by the Ricci flow (gradient descent) method.

6 Applications

Discrete Ricci flow is a powerful tool for computing the desired metrics with the pre-
scribed Gaussian curvatures on general surfaces. Many applications in graphics and
geometric modeling can be formulated as the problem of finding specific metrics for
prescribed curvatures. The followings are some applications directly related with dis-
crete Ricci flow.

6.1 Global Conformal Parameterization

Surface parameterization in conventional computer graphics refers to the process of
mapping a surface to a canonical domain. Ricci flow is an effective approach for fully
automatic, seam-free, and singularity-free parameterization of arbitrarily complicated
surfaces.

For closed surfaces, we compute their uniformization metric and embed their uni-
versal covering spaces onto the three canonical spaces, as described in the uniformiza-
tion theorem. Fig.1 illustrates the global parameterizations of surfaces with different
topologies with their uniformization metrics respectively.

For surfaces with boundaries, there are two general ways. In the first way, we map
the interior of the surface to planar domains, and the boundaries to circles. In the second
way, the surface is embedded onto the canonical spaces with its uniformization metric,
such that all the boundaries are mapped to geodesics. Fig. 10 shows one example, where
a genus zero surface with three boundaries are parameterized in both ways.

In general case, both the positions and curvatures of singularities can be arbitrarily
chosen, as long as the Gauss-Bonnet condition and the connectivity constraints hold, the
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metric can be obtained using Ricci flow method. The flexibility of assigning singular-
ities greatly improves the quality of conformal parameterizations. Fig.11 demonstrates
the parameterizations of scanned surfaces using this method.

(a) (b) (c)

Fig. 11.Parameterizations of scanned surfaces using discrete Ricci flow.

6.2 Surface Matching

Surface matching is a fundamental problem in geometric processing. The main frame-
work of surface matching using Ricci flow can be formulated in the following commu-
tative diagram,

S1
φ−−−−→ S2

τ1

y
yτ2

D1
φ̄−−−−→ D2

(18)

S1,S2 are two given surfaces,φ : S1 → S2 is the desired matching. We use Ricci flow
to computeτi : Si → Di which mapsSi conformally onto the canonical domainDi .
D1 andD2 can also be surfaces other than simple planar domains. The topology and
the curvature ofD1 andD2 incorporate the major feature information of the original
surfacesS1 andS2. The we construct a harmonic map̄φ : D1 → D2. If there are certain
feature constraints, they can be incorporated inφ̄ . The final mapφ is induced byφ =
τ−1

2 ◦ φ̄ ◦ τ1. Fig.12 shows one example of surface matching between two genus one
surfaces with three boundaries. Both of them are mapped onto the plane with circular
boundaries,D1 andD2 chosen to be their fundamental domains. The harmonic map is
calculated between the two fundamental domains. The mapping result is illustrated by
consistent texture mapping.

6.3 Computing General Geometric Structures

SupposeS is a surface,A = {(Uα ,φα)} is an atlas ofS. If all the local coordinates
φα(Uα) is in a special spaceX, and all the chart transition functionsφαβ to a special
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Fig. 12.Two genus one surfaces with 3 bounaries are conformally parameterized onto the plane,
such that their boundaries are mapped to circles. Then a map is constructed between their planar
images, which induces a matching between them. The matching is visualized by the consistent
texture mapping.

group G, which is a subgroup of the automorphism group ofX, thenA is called a
(X,G) structure ofS.

All genus zero closed surfaces can be conformally mapped onto the sphere, namely,
they admit spherical structures, ( see Fig.1)

SupposeX is the two dimensional affine spaceA2, andG is the affine transformation
group, then the atlas is called anAffine Structureof S. Affine structure plays fundamen-
tal role in manifold splines. For closed surfaces, only genus one surfaces have affine
structures. All surfaces with boundaries admit affine structures.

If X is the hyperbolic spaceH2, and G is the hyperbolic rigid motion (M̈obius
transformation), the the atlas is called ahyperbolic space. Surfaces with negative Euler
number admit hyperbolic structures. Fig. 13 demonstrates the hyperbolic structures of
genus two surfaces.

All surfaces have real projective structures, where the coordinates are in the real
projective spaceRP2, and the chart transition functions are real projective transforma-
tions. For high genus surfaces, the real projective structure can be constructed by using
hyperbolic Ricci flow to compute the hyperbolic uniformization metric, then isometri-
cally embedding the universal covering space onto the Klein hyperbolic space model.

6.4 Manifold Splines

Conventional splines are defined on planar domains. However, it is natural to define
splines directly on surfaces with general topologies. The concept of manifold splines
was first introduced in [9], where the splines are defined on manifold domains and the
evaluations of the splines are independent of the choice of the local charts.

The significant advantage of the manifold spline is that it is globally defined, but lo-
cally on each chart, a common planar spline. As it has been proved that defining splines
over arbitrary manifolds is equivalent to the existence of an affine atlas of the underly-
ing manifold. The affine atlas can be constructed by holomorphic 1-form method [19],
as described in [9]. The positions of zero points can not be specified, which are solely
determined by the conformal structure and the holomorphic 1-form. The affine struc-
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Fig. 13.Hyperbolic structure and real projective structure of genus two surfaces.

ture can also be constructed using Ricci flow, while the singularities can be arbitrarily
chosen.

Fig.14 shows this problem with genus three sculpture model, which has to carry
four zero points when constructing manifold spline. Even for genus-1 surfaces with
boundaries, since differential forms method does not work directly on open surfaces,
the construction of manifold splines is still not able to avoid singular points after double
covering which converts open surfaces to closed ones.

With Euclidean Ricci flow, all the curvatures of a given domain manifold can be put
on one vertex or boundaries, such that the special metric of the domain manifold is flat
everywhere except at one singular point. Then, the metric induces an affine atlas cov-
ering the whole manifold except the singular point, and manifold spline is constructed
over this affine atlas. Fig.15 shows the an example of a genus-3 model with only one
singular point when constructing manifold spline using Euclidean Ricci flow.

7 Conclusion and Future Works

This work introduces a powerful tool: discrete surface Ricci flow, borrowed from con-
tinuous Ricci flow from modern geometry for computing Riemannian metrics with pre-
scribed Gaussian curvatures on discrete surfaces. For practical use, the concepts of Rie-
mannian metric and Gaussian curvature are translated to discrete setting; the discrete
analogy of Ricci flow is designed; the existence and uniqueness of the solution of the
discrete Ricci flow is verified; and efficient numerical algorithms to compute Rieman-
nian metrics with prescribed Gaussian curvatures using discrete Ricci flow for generally
topological surfaces are presented in details.
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Fig. 14.Manifold Spline of Sculpture Model Constructed Using Differential Forms With4 Sin-
gular Points (see more details in [9]): (a) Holomorphic 1-form which induces the affine atlasA;
(b) Parametric domain manifoldM with singular points marked; (c) Polynomial splineF defined
on the manifoldM in (a); (d) The red curves on splineF correspond to the edges in the domain
manifoldM; (e) SplineF covered by control net C.

Several applications in graphics and geometric modeling, such as surface parame-
terization, surface matching, manifold splines, and construction of geometric structures
on general surfaces are demonstrated.

The discrete theory and computational methodologies for Teichmüller space theory
are widely open. The rigorous theoretic results about the convergence to the smooth
conformal structure and the approximation accuracy of discrete Ricci flow have not
been established. In the future, we will continue our exploration along these directions.
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Fig. 15. Manifold Spline of Genus-3 Model Constructed Using discrete Euclidean Ricci Flow
With Only One Singular Point (see more details in [36]): (a) Domain manifold (b) Central chart
(c) Manifold triangular B-spline (d) Manifold triangular B-spline (e) Control points.
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