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Abstract
Ricci flow is a powerful curvature flow method in geo-

metric analysis. This work is the first application of surface
Ricci flow in computer vision. We show that previous meth-
ods based on conformal geometries, such as harmonic maps
and least-square conformal maps, which can only handle
3D shapes with simple topology are subsumed by our Ricci
flow based method which can handle surfaces with arbitrary
topology. Because the Ricci flow method is intrinsic and de-
pends on the surface metric only, it is invariant to rigid mo-
tion, scaling, and isometric and conformal deformations.
The solution to Ricci flow is unique and its computation
is robust to noise. Our Ricci flow based method can con-
vert all 3D problems into 2D domains and offers a general
framework for 3D surface analysis. Large non-rigid defor-
mations can be registered with feature constraints, hence
we introduce a method that constrains Ricci flow compu-
tation using feature points and feature curves. Finally, we
demonstrate the applicability of this intrinsic shape repre-
sentation through standard shape analysis problems, such
as 3D shape matching and registration.

1. Introduction
Ricci flow is a powerful curvature flow method in Rie-

mannian geometry. In particular, 3-manifold Ricci flow has
been successfully applied to prove the Poincaré conjecture
recently [21]. In this work, we introduce Ricci flow as a
novel 3D shape representation for computer vision appli-
cations. We are motivated by the fact that Ricci flow can
handle arbitrary topologies, allowing the mapping of any
3D surface to a 2D domain and its ability to handle large
3D shape deformation.

In recent decades, there has been a lot of research into
surface representations for 3D surface analysis, which is
a fundamental issue for many computer vision applica-
tions, such as 3D shape registration, partial scan align-
ment, 3D object recognition, and classification [4, 31, 22,
14]. In particular, as 3D scanning technologies improve,
large databases of 3D scans require automated methods
for matching and registration. However, matching sur-

faces undergoing non-rigid deformation is still a challeng-
ing problem, especially when data is noisy and with com-
plicated topology. Different approaches include curvature-
based representations [27], regional point representations
[22, 25], spherical harmonic representations [7, 8], shape
distributions [20], harmonic and conformal shape images
[33, 28, 29], physics-based deformable models [26], Free-
Form Deformation (FFD) [13], and Level-Set based meth-
ods [17]. However, many surface representations that use
local shape signatures are not stable and cannot perform
well in the presence of non-rigid deformation. Conformal
geometric maps have been used in several applications of
computer vision and graphics [33, 30, 9, 29, 15, 24, 28].
However, conventional conformal geometric methods can
only handle surfaces with simple topologies or compute
simple maps. As a result, most existing algorithms are lim-
ited to surfaces with simple topology such as genus zero
with/without a single boundary. In contrast, our method can
handle surfaces with arbitrary topologies for shape analy-
sis.

The first contribution of this paper is to introduce a new
3D non-rigid surface analysis framework based on Ricci
flow conformal mapping. Surface Ricci flow offers a novel
means to manipulate shapes by curvatures and Riemannian
metrics. With surface Ricci flow, the curvature evolves like
a heat diffusion process on the surface and converges ex-
ponentially fast to a constant value. During the whole pro-
cess, the angle structure on the surface is preserved, and
the final surface can be embedded in one of the canonical
domains, such as the sphere, the plane, or the hyperbolic
space. By computing conformal maps using the Ricci flow
method, each 3D surface, even with a complicated topol-
ogy (e.g. having multiple holes), can be mapped to a 2D
domain through a global optimization. The resulting map
does not have any singularities and is a diffeomorphism,
i.e., one-to-one and onto. These maps are stable, insensi-
tive to resolution changes, and robust to noise. Hence, the
original 3D surface-matching problem simplifies to a 2D
image-matching problem of the conformal geometric maps,
which is a better understood problem [16, 2, 19].
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Our second contribution is to show that the previous con-
formal map methods are subsumed by Ricci flow. Hence,
our framework is more general, while we can take advan-
tage of the significant body of work for 3D surface analysis
using previous conformal map methods [33, 24, 9, 30, 29,
28].

Our final contribution is to integrate feature constraints
in Ricci flow computation. Taking advantage of mean-
ingful features is essential for any matching or registra-
tion method. In the case of large non-rigid deformations,
matched features allow accurate description of the deforma-
tions. Thus, in order to make Ricci flow applicable to com-
puter vision problems, we develop: i) a representation of
feature points and feature curves suitable to our framework;
ii) a novel feature based metric; iii) an algorithm which,
based on features, decomposes the surface into conformal
patches; and iv) an algorithm to embed these patches onto
the plane. On the target canonical domains, the entire cur-
vature is concentrated on feature points; feature curves are
mapped to straight boundary lines. This association of fea-
ture points with target domain curvature is novel and has
broader implications for geometric modeling and graphics.

Finally, we provide initial experiments that demonstrate
the potential of our method in a broad range of 3D shape
analysis applications such as 3D shape matching and reg-
istration in a variety of data sets including face scans and
biomedical data.

The rest of the paper is organized as follows: The math-
ematical background of the Ricci flow conformal maps is
introduced in Section 2. Discrete Ricci flow is explained
in Section 3. A framework for 3D surface representation
and matching using Ricci flow is proposed in Section 4 and
5. Experimental results are presented in Section 6, and we
conclude with discussion and future work in Section 7.

2. Theoretical Background
This section briefly introduces the theoretic background

of surface Ricci flow. (For details, see [12].)
Let S be a smooth surface embedded in R3, then S has

an induced Euclidean metric g. Suppose u : S → R is a
function on the surface, we can define another metric ḡ =
eug, which is conformal to the original metric g with an
area distortion factor e2u. We call u the conformal factor.

Furthermore, when the metric of S is changed from g
to ḡ along the change of u, every intrinsic property (e.g.,
Gaussian and geodesic curvatures) of S is changed. The
Gaussian curvature k of interior points changes by k̄ =
e−2u(k − ∆u), where ∆ is the Laplace-Beltrami operator
[5] induced by the original metric g. The geodesic curvature
kg on the boundary points changes as k̄g = e−u(kg − ∂u

∂n ),
where n is the normal to the boundary of the surface ∂S.

Although the curvature value at a point is determined
from the Riemannian metric, the sum of the total curvatures

S Surface
g original Riemannian metric
ḡ target Riemannian metric conformal to the original one
u Conformal factor
k, k̄ original and target Gaussian curvatures under g and ḡ, resp.
kg , k̄g original and target geodesic curvatures under g and ḡ, resp.
χ Euler number
dAg the area element under g
M triangular mesh
vi the i-th vertex
eij the edge connecting vi, vj

fijk the face formed by vi, vj and vk

lij edge length of eij

φij the intersection angle between circles centered at vi and vj

γi radius of the circle at vertex vi

ki discrete vertex curvature of vi

∆ Laplace-Beltrami operator
wij edge weight
τ A conformal map from the surface to the plane
φ A map between two surfaces
φ̄ A map between two conformal domains

Table 1. Symbol list

solely depends on the topology of the surface, as described
in the Gauss-Bonnet formulae [5], such that

∫
S

kdA +∫
∂S

kgds =
∫

S
k̄dĀ +

∫
∂S

k̄gds̄ = 2πχ(S), where χ(S)
is the Euler characteristic number of the surface S.

Ricci flow is a powerful tool to compute the desired met-
ric ḡ which satisfies the given target curvature k̄, from the
induced metric g in S. Suppose S is a closed surface with a
Riemannian metric g, the Ricci flow is defined as

dg
dt

= −2kg, (1)

where k is the Gaussian curvature determined by the current
metric.

Surface Ricci flow deforms a Riemannian metric g to
another metric e2u(t)g, which is conformal to the original
one. When the desired target curvature k̄ is given, then the
corresponding conformal metric can be achieved by the fol-
lowing general Ricci flow du(t)

dt = 2(k̄ − k(t)). Eventually,
the limit metric g(∞) becomes ḡ, which is conformal to g
and satisfies the target curvature k̄.

3. Generalization of Conformal Maps
Conventional conformal geometric methods, such as har-

monic maps, least squares conformal maps (LSCMs), and
methods based on holomorphic forms, can be unified by
Ricci flow. In order to clarify this point, we first compare
Ricci flow with conventional methods. Then, we briefly in-
troduce the discrete Ricci flow and show the intrinsic con-
nection between Ricci flow and other conformal geometric
maps such as harmonic maps.

3.1. Comparing with conventional conformal map
methods

In general, conformal mapping algorithms can be clas-
sified to the following categories. The first class computes



maps from the surface to the plane, such as harmonic maps
[30, 33], least squares conformal maps (LSCMs) [28, 15],
spherical conformal maps [1, 9]; The second class aims
at computing the derivatives of maps, such as the method
based on holomorphic forms [10]; The third class computes
the conformal metrics to induce conformal maps. The Ricci
flow method belongs to the third class, which is more gen-
eral than the other two classes.

The pull-back metric of a conformal map is a conformal
metric on the surface, which induces zero curvature in the
entire interior of the target domain. Conversely, the map can
be recovered by its pull-back metric directly. Since the cur-
vature is zero everywhere in the map, the pull-back metric
can be computed using Ricci flow by specifying the target
curvature 0 everywhere. Therefore, any conformal maps
(with zero target curvature) which can be computed using
harmonic maps, LSCMs or holomorphic 1-form methods
can be computed by Ricci flow.

The main difference between Ricci flow and conven-
tional methods is in how complicated are the topologies
they can handle. In particular, the algorithms in the first
class can handle surfaces with genus 0 with/without a sin-
gle boundary, but can not handle high genus cases. The
algorithms in the second class can handle all topologies, but
they can not compute the conformal maps between multi-
holed annuli, as shown in Fig. 5, which are frequently en-
countered in the scanning process. Furthermore, if the tar-
get surface has arbitrary curvature, only Ricci flow can find
the map. Therefore, Ricci flow is much more general, and
all algorithms in the other two categories can only handle a
subset of the problems handled by Ricci flow 1.

Ricci flow can address situations that can not be handled
by other existing algorithms, such as Iterative Closest Point
(ICP) [23] and level set based methods [17]. ICP can find a
good rigid alignment in R3, but for non-rigid surface defor-
mations, such as the bending deformation shown in Fig. 3,
ICP can not find a good registration between two surfaces.
Level set based methods are powerful tools for surface anal-
ysis. However, it is required that the surface deformation
process performed explicitly in R3 at each step, which will
be difficult for surfaces with complex topology since the de-
formed surface may not be able to be embedded in R3.

3.2. Discrete Ricci flow
Conventional Ricci flow is defined on C2 smooth sur-

faces. In this section, we focus on the discrete approxima-
tion of Ricci flows on triangular meshes [6], which is robust
for polygonal meshes with sharp corners. Discrete Ricci
flow is useful for handling noisy data sets in real applica-
tions, as shown in the heart registration example in Sec. 6.

The key observation about the discrete Ricci flow is
that the conformal metric deformation can be treated as a

1A formal proof based on Riemann surface theory is provided in
http://www.cs.sunysb.edu/∼manifold/iccv07/suppl.pdf
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Figure 1. Circle packing metric for a triangle. The dual circle (the
red one) in orthogonal to the other 3 circles.

local scaling transformation, which preserves angles and
transforms an infinitesimal circle to an infinitesimal circle.
Therefore, the general idea of the discrete Ricci flow is to
cover the mesh by many circles centered at the vertices.
Each circle has a cone angle at the vertex, which can be
treated as the discrete curvature. Then, by adjusting the cir-
cle radii, we can deform the Riemannian metric of the mesh
in a discrete conformal way [6]. The change of the circle
radii is the analogy to the change of the conformal factor u.
The relation between the discrete curvature and the discrete
conformal factor is exactly the same as that in the smooth
case.

Suppose M is a mesh with boundary ∂M . A circle pack-
ing metric (M,Γ,Φ) for M is shown in Fig.1, where Γ and
Φ represent the radius function of circles on each vertex
and the intersection angle between two circles at each edge,
respectively. Each edge length is determined by using the
cosine law with the radii of two circles and the intersection
angle on the edge. The vertex curvature k(v) measures the
flatness of its neighborhood, which is defined as 2π−

∑
i αi

for an interior vertex and π −
∑

i αi for a boundary vertex,
where αi’s are the corner angles surrounding a vertex v. As
in the smooth case, the discrete version of the Gauss-Bonnet
formulae holds,

∑
v k(v) = 2πχ(M). Two circle packing

metrics (M,Γ1,Φ1) and (M,Γ2,Φ2) are conformal, if and
only if Φ1 ≡ Φ2.

Therefore, the discrete Ricci flow can be defined in the
similar way to Eq. 1 as dγi(t)

dt = −2kiγi(t), which con-
verges to constant curvature under the constraint that the
total area of the mesh is fixed. If we define the discrete
conformal factor as u = {ln γ1, ln γ2, · · · , ln γn} and the
prescribed target curvature as k̄ = {k̄1, k̄2, · · · , k̄n}, then
the general discrete Ricci flow is dui(t)

dt = k̄i−ki(t), which
will lead to the desired conformal metric satisfying the de-
sired target curvature.

In fact, Ricci flow is the gradient flow of a specific en-
ergy form, Ricci energy, E(u) =

∑
i(k̄i − ki)dui. Ricci

energy is convex [6], and therefore it has a unique global
optima ū, which induces the target curvature k̄. In practice,
optimizing Ricci energy is more efficient than computing
Ricci flow. The convex Ricci energy can be stably opti-



mized using Newton’s method. The Hessian matrix of the
energy E(u) can be computed explicitly as follows.

Suppose fijk ∈ F is a face on the mesh, there exists a
unique circle orthogonal to all three circles at the vertices,
shown as the red circle in Fig. 1. We denote the center of
that circle as oijk. The distance from oijk to the edge eij is
denoted as hk

ij . If an interior edge eij 6∈ ∂M is shared by
two faces fijk and fjkl, its weight is wij = hk

ij +hl
ji. If the

edge is on the boundary, and only adjacent to face fijk, its
weight is wij = hk

ij .
The Hessian matrix of E(u) has the following formulae:

∂2E(u)
∂ui∂uj

=

 −wij i 6= j, eij ∈ E∑
k wik i = j, eik ∈ E

0 otherwise
,

which is positive definite on the hyperplane
∑

ui = const.
Now, we will describe how to obtain the conformal map

of a given surface from the conformal metric obtained from
Ricci flow. Alg. 1 shows the procedures of computing the
desired conformal metric by prescribed curvature by mini-
mizing the Ricci energy. For surfaces with boundaries, we
introduce a novel metric computed by Alg. 2, such that all
interior points have zero curvature, and the vertices on the
same boundary component share the same curvature. Intu-
itively, this metric will flatten the surface and map all the
boundaries to circles, as shown in Fig. 3.

Algorithm 1 Compute Conformal Metric by Prescribed
Curvature Using Ricci Flow

while |k̄− k| > ε do
Compute dual circles
Compute edge weight wij

Form the Hessian matrix ∆(u)
Solve ∆(u)du = (k̄− k) constrained at

∑
i dui = 0

Update u = u + du
Update k

end while

Algorithm 2 Compute Uniform Flat Metric
Compute the boundary components, ∂M = C1∪C2∪· · ·∪Ck.
∀v 6∈ ∂M , set k̄ ⇐ 0.
∀v ∈ Cj , k̄(v) ⇐ sj

2π
|Cj |

, where s1 = 1, sj = −1 for j 6= 1.

while |k̄− k| > ε do
Compute ū by k̄ using the Ricci energy algorithm.
∀v ∈ Cj , k̄(v) ⇐ sjπ(l̄(e−)+l̄(e+))∑

e∈Cj
l̄(e)

,

where l̄(e) is the edge length under ū, and
e− and e+ represent two boundary edges incident to v.

end while

Once the metric is obtained, the mesh can be isomet-
rically embedded onto the plane. The isometric embed-
ding is denoted as τ : V → C. This embedding in
fact is harmonic, namely, it minimizes the harmonic energy

E(τ) =
∑

eij∈E wij |τ(vi)− τ(vj)|2, i.e., ∆(u)τ = 0. The
formal proof will be given in an extended version of this
work.

4. Feature Based Canonical Domain Decompo-
sition

In practice, it is often useful to add feature constraints,
such as point and curve correspondences when comparing
3D shapes. Hence we propose the incorporation of such
constraints to the energy minimization and formulate the
main framework of surface matching using Ricci flow in
the following commutative diagram,

S1
φ−−−−→ S2

τ1

y yτ2

D1
φ̄−−−−→ D2

S1, S2 are two given surfaces, φ : S1 → S2 is the desired
matching. We use Ricci flow to compute τi : Si → Di

which maps Si conformally onto the canonical domain Di.
D1 and D2 can also be surfaces other than simple planar do-
mains. The topology and the curvature of D1 and D2 incor-
porate the major feature information of the original surfaces
S1 and S2. If there are certain feature constraints, we can
further incorporate them using the method described below
and compute a map φ̄ : D1 → D2. The final map φ is
induced by φ = τ−1

2 ◦ φ̄ ◦ τ1.
For surfaces with significant point features, we design

the target curvature such that those features are transformed
to the branch points of the Riemann surfaces in the target
domains. Alg. 3 uses features to design such target do-
mains.

After computing the metric incorporating all the major
features using Alg. 4, the surface is decomposed to canoni-
cal patches. As described in Sec. 3.2, each patch is embed-
ded onto the plane by minimizing the harmonic energy with
the feature point position constraints as described in Alg. 5.

An example result on a scanned human face is demon-
strated in Fig. 2. The original surface is a 2-holed annulus.
We select the nose tip as the only feature point, and set the
target curvature to be zero everywhere (including both the
interior points and the boundary points) except for the noise
tip, whose curvature equals to −2π. Then, we use Ricci
flow to compute the target metric of the Riemann surface,
which is a flat surface with a single branch point. Because
the target surface can not be embedded in R3 directly, we
decompose it to canonical patches. The decomposition in-
cludes three steps: First, under the target metric we find
straight lines from the branch point to the boundaries, each
of which is perpendicular to a boundary. Next, we trace
the straight lines which are parallel to the boundaries un-
der the target metric. Finally, all the straight lines partition



the surface to patches and each patch is conformally em-
bedded onto the plane either as a rectangle or a trapezoid
(see Fig. 2). Thanks to the conformal deformation, this
decomposition is solely determined by the geometry of the
original surface and the choice of features. Therefore, sur-
face matching and registration can be carried out by match-
ing the decomposed patches on the planar domain, while
the features are guaranteed to match as they become patch
corners or boundaries.

Algorithm 3 Computing Feature Based Flat Metric
Specify the feature curves
Slice the surface open along the feature curves.
Specify the feature points {v1, v2, · · · , vm}.
Compute the boundary components, ∂M = C1∪C2∪· · ·∪Ck.
for each vertex v ∈ M , set k̄ ⇐ 0.
Allocate curvature on feature points, k̄i = 2miπ, mi ∈ Z ,∑

i mi = χ(M).
Use Ricci energy optimization to compute the metric.

Algorithm 4 Computing Feature Based Domain Decompo-
sition

Compute the feature based target metric, such that all bound-
aries become straight lines under the target metric.
Compute the straight lines starting from the feature points which
are perpendicular to the boundaries under the new metric.
Compute the straight lines parallel to boundaries under the new
metric.
Slice the surface open along the straight lines to decompose the
surface to patches, each of which is conformally mapped to a
rectangle or a trapezoid.

Algorithm 5 Computing the Isometric Embedding
On each face, compute the dual circle which is orthogonal to all
three vertex circles.
Compute the distance from the center of the dual circle to three
edges.
Embed a seed triangle f on the mesh.
Minimize the harmonic energy with the constraints of the em-
bedded triangle f .

The main reason for the decomposition is to improve
the efficiency and accuracy of the method. We convert sur-
face matching to the simpler processes of matching between
rectangles and trapezoids. Because we incorporate feature
constraints to the mapping by minimizing harmonic energy,
which requires the domain to be convex, the decomposition
is also necessary to ensure the convexity and to guarantee
the globally optimal solution.

5. Ricci Flow Based Shape Representation
In this section, we present a new shape representation

for 3D surface analysis, such as shape matching and regis-
tration based on Ricci flow, which can handle surfaces with

a

b

c

d

a

b
c d

(a) A face surface with (b) Planar domain for
segmenting curves each patch

Figure 2. Canonical surface decomposition using Ricci flow. The
nose tip is selected as a feature point. A flat metric is computed us-
ing Ricci flow, such that all interior points and all boundary points
are with zero curvatures, except for the feature point where the
Gaussian curvature equals to −2π. Straight lines under the new
metric, which are either parallel or perpendicular to the bound-
aries, result in the blue curves on the original surface that pass
through the feature point in (a). Then the surface is decomposed
to patches, each patch is conformally equivalent to a rectangle or
a trapezoid on the plane, shown in (b).

varying boundaries and arbitrary topologies. Moreover, it
also allows multiple types of feature constraints, such as
feature point constraints, feature curve constraints, and tar-
get curvature constraints. Therefore, it provides a unified
framework for non-rigid 3D surface analysis.

Ricci Flow Shape and Texture Images The main ad-
vantage of the Ricci flow method is that it can convert all
3D problems into 2D domains. By computing conformal
maps using the Ricci flow method, each 3D surface, even
with a complicated topology (e.g. having multiple holes)
can be mapped to a 2D domain through a global optimiza-
tion. Therefore, we can generate the Ricci flow shape im-
ages by associating a shape attribute with each vertex in the
Ricci flow conformal maps. Among the shape attributes, we
use mean curvatures to obtain Ricci flow conformal images
since mean curvature depends only on surface geometry. In
our method, the mean curvature is computed in the same
way as in [9]. Moreover, it is also possible to generate other
Ricci flow conformal images by associating other attributes
such as textures.

Surface Matching with Ricci Flow Representation
Given two general surfaces S1 and S2, we first compute
the Ricci flow shape or texture images. Because the result-
ing maps do not have any singularities and are a diffeomor-
phism, i.e., one-to-one and onto, we can register these two
3D surfaces by simply matching and registering with the
aligned Ricci flow shape or texture images. We evaluate the
accuracy of surface matching by using the error distance
between the two resulting maps, as follows.

normalized errorS1,S2 =
∑N

i=1 ‖p
S1
i − pS2

i ‖∑N
i=1 ‖p

S1
i ‖

(2)

where N is the number of overlapping points in the Ricci
flow conformal shape or texture images of 3D surface S1



Figure 3. Surface matching under isometric deformation using a
toy mask. The first row shows two views of the original surface
and its conformal image; the second row shows two views of the
deformed surface and its conformal image. Pixel intensities in the
conformal images are copied from the corresponding points in the
3D scans. Under isometric deformation, the conformal images are
identical. The normalized registration error is 0.0177 computed
using Eq. 2.

and S2, and pSk
i is the value of point i in the 2D image of

surface Sk(k = 1, 2). This is the matching method used in
our experiments.

6. Experimental Results
In this section, we demonstrate the performance of our

framework by several experiments on real 3D data, such as
isometrically deformed surfaces, dynamic facial expression
with complex topology, and human heart surfaces undergo-
ing complex non-rigid motion deformations.

Isometrically deformed surfaces First, as a simple ex-
periment, we test our method on isometrically deforming
data. We scanned a flexible (but non-stretchable) toy mask
two times, once for the original and again for its deformed
version. Since there is no stretching, the deformation is iso-
metric and can be easily handled by Ricci flow. The confor-
mal images of the two scans are practically identical with
normalized error 0.0177.

6.1. Experiments on complex topology
As described in Sec. 3, the major advantage of our

method compared to the existing 3D surface-matching
methods based on conformal geometric maps [28, 15, 30,
33] is that our framework can handle surfaces with arbitrary
topology directly. Therefore, for surfaces with multiple
holes our method does not require additional pre-processing
steps such as hole fillings. Fig. 4 shows a comparison be-
tween our method and the LSCM-based method [28] and
the harmonic map based methods [30]. Fig. 4 (a, f) show
the original 3D surfaces of the same subject with different
expressions, and Fig. 4 (b, g) depict the resulting Ricci
flow texture images computed by our method. Since the
LSCM-based method and harmonic maps can only handle
disk topology, the holes in the eye and mouth on the original

3D scan data need to be filled before computing the 2D con-
formal map, as shown in Fig. 4(c, h). As shown in Fig. 4(d,
i) and Fig. 4(e, j), the introduction of fake geometry to fill
the holes leads to large distortion errors around the eye and
mouth areas in both least-squares conformal maps and har-
monic maps. Notice that our texture images obtained from
Ricci flow have no signification distortions as shown in Fig.
4 (b, g), although we leave the holes as they are in the raw
data.

The normalized matching error of Ricci flow is 0.0584,
compared to 0.0723 for LSCM and 0.0814 for harmonic
maps. All errors were computed using Eq. 2, where hole ar-
eas were not included. Our method is robust enough to han-
dle limited amounts of non-isometric deformations (which
violate the Ricci flow definition). However, large deforma-
tions can be handled with the incorporation of feature con-
straints as described in the following experiment.
6.2. Matching dynamic non-rigid 3D data

In order to demonstrate the performance of our method
on dynamic non-rigid surfaces, we captured 3D facial ex-
pression data using a phase-shifting structured light rang-
ing system [34] at 30 frames per second. Since our method
allows feature curve correspondence constraints, we detect
the contours of the lips and the eyes and integrate them into
the computation of the Ricci flow maps (these curves can be
detected by methods such as [32, 18]). Based on the result-
ing 2D maps, we can perform the registration between two
scanned faces with different expressions, as shown in Fig.
5. Since the deformation between two scanned faces is non-
rigid, the surface matching with single maps is problematic
as shown in the 2nd column in Fig. 5. In this case, we apply
the decomposition method described in Sec. 4. The 3rd-5th
columns in Fig. 5 illustrate the pairs of the Ricci flow im-
ages which correspond to the parts of the original surfaces
as shown in the 1st column in Fig. 5 2. Each pair of patches
is registered with the corresponding patch boundaries, and
we measure the errors between the patches by Eq. 2.

The original registration error between two faces in Fig.
5 is 0.0447. In order to demonstrate the robustness of the
feature detection accuracy in our decomposition method,
we randomly perturb the feature point around the nose tips
in Fig. 5. The average error of three different perturbations
within a 3mm (resp. 6mm) radius is 0.045 (resp. 0.048).

Although our method is not limited to face data, it is in-
teresting to compare our method with the face registration
method based on multi-dimensional scaling [3]. Compared
to the method of Bronstein et al. [3], which is not guaran-
teed to obtain global optima in isometric embedding, our
method reaches global optima in handling anisometric data
with arbitrary topologies, as shown int the following heart
experiments.

2A video of the decomposition is in supplementary materials. See also
http://www.cs.sunysb.edu/∼manifold/iccv07/video.avi



Figure 4. Comparison of Ricci flow with LSCM and harmonic maps. (a) and (f) are two surfaces to be registered. (b) and (g) are their
Ricci flow maps. (c) and (h) are these two surfaces after hole-filling. (d) and (i) are their LSCMs. (e) and (j) are their harmonic maps. The
registration error of Ricci flow using Eq. 2 is 0.0584, while, the registration errors (without including the area of holes) of LSCMs and
harmonic maps are 0.0723 and 0.0814, respectively.
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Figure 5. Registration of facial expression data using feature based
domain decomposition. The first column shows two face scans
with large deformation. The second column shows the planar do-
mains computed using uniform flat metrics. Because of the large
deformation, there is significant difference between the planar do-
mains. Selecting the nose tip as the feature point, the surfaces are
decomposed to canonical planar domains using the method de-
scribed in Sec. 4. The surfaces are registered by matching the
corresponding planar domains.

In the biomedical domain, we experimented with a de-
forming heart sequence. The original tagged data were ac-
quired using a 3T MRI machine. The data are image se-
quences from end diastole to end systole. The reconstruc-
tion was done based on methods developed by the authors
of [11], who made the data available to us. The output from
the analyzed data result are 3D corresponding points over
time from end disatole to end systole. We experimented us-
ing a sequence of 21 frames of 3D corresponding points.
Experiments were performed on the deforming 3D surface.
The given 3D correspondences were not used in the experi-
ments, but only as ground truth.

In order to test the robustness of our method to initial sur-
face segmentation, we experiment using only the left ven-
tricle data. We first detect and segment along the boundary
between the surface of the left ventricle and the rest of the

heart. After segmenting the heart data for each frame, we
apply the Ricci flow algorithm to map each heart into its
canonical planar domain, and register each adjacent frame
by mapping the corresponding planar domains. In a first ex-
periment, we manually defined a boundary on the first frame
and consistently kept these points as the boundary points
throughout the sequence. Even though there are large in-
terior deformations, the boundary is sufficient in establish-
ing almost perfect surface correspondences, with an average
registration error of 0.006197. In the second experiment,
the boundary was automatically determined based on cur-
vature, using the VTK software package. These boundary
points are not guaranteed to be consistent across frames.
The method is still very robust with an average registration
error of 0.030331.

Fig. 6 illustrates the effectiveness of registration using
Ricci flow. The first frame is texture-mapped with a grid
pattern both in the experimental and ground truth data, in
order to better visualize the deformation. Although the non-
rigid deformation of the heart is significant between differ-
ent frames, our method captures the deformation almost in-
distinguishably from the ground truth.

7. Conclusion and future work
This paper proposed a 3D shape analysis method based

on surface Ricci flow. Since Ricci flow is a powerful tool
to handle geometries with arbitrary topologies our method
can unify conventional methods based on conformal geom-
etry. It also allows different types of feature constraints,
such as feature point and curve constraints, to handle large
deformations and to further improve the accuracy of surface
matching and registration. A series of algorithms was intro-
duced to map the 3D surfaces onto canonical 2D domains,
and a new surface representation is proposed to combine
multiple features for 3D shape analysis. Finally, the gener-



Figure 6. Registration of 3D dynamic heart data. Registration re-
sults using Ricci flow for 4 different frames are shown in the top
row. The original heart data for the same frames are shown in the
bottom row. The data on frame 1 were texture mapped with a grid
pattern, that helps to visualize the subsequent non-rigid deforma-
tions.

ality and flexibility of Ricci flow were demonstrated by var-
ious experiments on human face scans and dynamic heart
surface data. In future work, we will continue to explore
properties of Ricci flow maps (to derive for example the
optimal surface parameterization using Ricci flow) and to
reduce computational complexity, especially when a large
number of feature constraints are given. We also plan to use
our framework for applications such as 3D object classifi-
cation and recognition under non-rigid deformations.
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