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Abstract Texture mapping and texture synthesis are two
popular methods for the decoration of surfaces with visual
detail. Here, an existing challenge is to preserve, or at least
balance, two competing metrics: scale and angle. In this pa-
per we present two methods for this, both based on global
conformal parameterization. First, we describe a texture syn-
thesis algorithm for surfaces with arbitrary topology. By us-
ing the conformal parameterization, the 3D surface texture
synthesis problem can be converted to a 2D image synthesis
problem, which is more intuitive, easier, and conceptually
simpler. While the conformality of the parameterization nat-
urally preserves the angles of the texture, in this paper we
provide a multi-scale technique to also maintain a more uni-
form area scaling factor. A second novel contribution is to
employ the global parameterization to simultaneously pre-
serve orthogonality and size in texture mapping. For this,
we show that a conformal factor-driven mass-spring method
offers a convenient way to trade off these two qualitative
metrics. Our algorithms are simple, efficient and automatic,
and they are theoretically sound and universal to general sur-
faces as well.

Keywords Texture synthesis · Texture mapping · Riemann
surfaces · Global conformal parameterization

1 Introduction

Texture mapping is a technique that is used to map 2D im-
ages to both planar and curved surfaces in order to enhance
their visual effect. Texture synthesis has similar goals, but
instead of using the explicit tiling approach of texture map-
ping, it aims to generate the surface decor from a relatively
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Fig. 1 Texture synthesis and texture mapping using global conformal
parameterization. (a) uniform texture synthesized on geometry images
without considering area stretching factor; (b) nonuniform texture by
mapping (a) on the 3D surface; (c) nonuniform texture synthesis con-
sidering area stretching factor; (d) uniform texture by mapping (c) on
the 3D surface; (e) conformal texture mapping based on global parame-
terization; (f) more uniform texture mapping using our quasi-isometric
parameterization.

small texture sample. Both approaches are useful in their
own right. Texture mapping is the technique to use when the
goal is an exact preservation of the detail in the provided tex-
ture sample, but it tends to suffer from repetition and tiling
artifacts, as well as seams, and it also requires overhead for
texture storage. The detail generated in texture synthesis, on
the other hand, is not an exact match, but only similar to the
provided texture sample. It, however, is seamless and non-
repetitive. Texture synthesis replaces the memory overhead
of texture mapping with computational overhead incurred by
the synthesis process. Both methods have similar demands
in terms of avoiding local and global distortion, which, as we
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will show, can be achieved by preserving the texture samples
local angles and global scale during the mapping or the syn-
thesis process, using a conformal parametrization approach.

Global conformal parameterization was introduced in
[13]. It guarantees that the shapes embodied in the textures
are preserved on the surface, and it is global, which means
there are no seams or cracks. Furthermore, the parameteriza-
tion can segment the surface into patches, where each patch
is mapped to a planar rectangle. This is valuable for real ap-
plications. The existence of the global conformal parameter-
ization is equivalent to the fact that all oriented surfaces are
Riemann surfaces [15]. Therefore, global conformal para-
meterization discovers more profound geometric structures
on surfaces. For example, it induces the so-called affine struc-
ture, which is the foundation for generalizing splines with
planar domains to be defined on surfaces [12]. It applies the
concept of a differential form from Riemann surface theory
[15], which can be interpreted as a pair of smooth vector
fields orthogonal to each other.

The intrinsic difficulties for texture synthesis are due to
two main aspects. The first originates from the local geomet-
ric properties of the surface. The texture image is defined on
a flat planar region, and once it is mapped to the curved sur-
face region, there must be distortion, which is challenging to
mediate. The second is caused by topology. Since the surface
and plane are topologically different, there is no global one-
to-one smooth mapping between them. Thus the existence of
seams and singularities is unavoidable, as well as it is chal-
lenging to remove these seams and minimize the number of
singular points. While texture synthesis applied directly on
surfaces (see Section 2) can do a reasonably good job, it re-
quires a surface flow analysis which can be complicated. It is
more intuitive to do texture synthesis on a 2D plane, where
the sample itself is also defined. Conformal parameteriza-
tion offers a convenient way to do this, and this is topic of
the first half of the paper.

For texture mapping, while the angle is already preserved
using the conformal mapping, a related application is to also
seek the preservation of scale for texture mapping. Although
it is mathematically impossible to make the parameterization
preserve both the angle and the area, we can try to describe
a convenient paradigm with which the two can be traded off.
This is the focus of the second half of the paper.

Compared to traditional methods, our texture synthesis
method based on global conformal parameterization has the
following advantages:

– Global structure. Traditional texture synthesis methods
are unable to produce textures with strong global struc-
tures, because they generate the textures locally and ex-
tend to cover the surface without coherent global consid-
eration. In practice, it is highly desirable to generate tex-
tures with global structures. Since our method is based
on global parameterization, it is easy to synthesize glob-
ally structured textures.

– Purely 2D operation. Traditional methods need to march
on the 3D surfaces, and the data structure and the opera-
tions for this are complicated. In our method, all opera-

tions are entirely performed in the 2D parameter domain,
which is much simpler and more efficient.

Further advantages of our conformal parameterization
method, both for texture mapping and synthesis, are:

– Angle preservation. Conformal parameterization preserves
the angles from the surface to the parameter plane. There-
fore, the local mapping from the texture to the surface is
just a scaling without angular distortion. The synthesis
method then needs to only focus on the scaling factor,
without having to pay attention to angle changes.

– Regularity. Global conformal parameterization induces a
canonical way to segment the surface, such that each seg-
ment is conformally parameterized by a rectangle (Fig.
2). The regular pattern of this global parameterization is
helpful to simplify the algorithms.

– Rigor. Global conformal parameterization is based on
solid geometric theories, and based on the parameteriza-
tion, the distortion of textures on surfaces can be quan-
titatively measured. This makes it convenient for quality
control.

2 Related Work

Before presenting our new method, we shall discuss related
work in two areas: texture synthesis and global conformal
parameterization.

Texture synthesis 2D Texture synthesis methods are either
pixel-based [9,30,1], or patch-based [32,8,19,16,2]. Pixel-
based synthesis algorithms are more flexible since textures
are synthesized pixel by pixel by finding a matching neigh-
borhood, while patch-based methods tile matched patches
together and tend to be faster and more stable. Hybrid meth-
ods [20] lay out patches and use pixel-based algorithm to
hide the seams.

Surface texture synthesis extends these 2D texture syn-
thesis methods to synthesize texture directly on the surface,
including pixel-based methods [31,29,33,27] and pattern map-
ping methods [21,23,25,5]. With these methods, the discon-
tinuities and cracks almost disappear, while the distortion
problem is greatly reduced.

Another way to put textures on the surface is a texture
mapping based on parameterization. But texture periodicity
is obvious and often spoils the visual quality of the results.

Traditional surface texture synthesis methods are gener-
ally performed on the 3D surfaces to be decorated. In con-
trast, our paper proposes a novel method which synthesizes
the texture in the 2D parameter space, which is easier, more
intuitive, and conceptually simpler. By using global confor-
mal parameterization, the synthesized textures will not suf-
fer from angular distortion. But we also have to deal with
area stretching problems during the mapping. We will achieve
this by using variable-size textures with local control. While
most texture synthesis methods generate textures with uni-
form size features, textures with variant feature size are gen-
erated in [28,16]. Their methods synthesize textures variant
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Fig. 2 Process of Global Conformal Parameterization. The input surface is represented as a triangle mesh (a). The holomorphic 1-form basis is
computed, (b-1) and (b-2) are the 2 base 1-forms [13]. By linear combining the basis, different holomorphic 1-forms can be constructed as shown
in (c-1) and (c-2), then the optimal 1-form with most uniform 1-form is selected (c-2) [14]. The red and blue curves are the horizontal and vertical
trajectories. Horizontal trajectories intersect at the zero point, the center of (c-2). The mesh is then segmented along the horizontal trajectory
through the zero point as shown in (d), each segment is conformally parameterized to a planar rectangle illustrated in (e). The trajectories are
mapped to the iso-parametric curves.

with respect to certain directions, and local control changes
slightly compared to our technique.

Conformal parameterization Several recent advances in sur-
face parameterization [10] have been based on solving a dis-
crete Laplace system [22,6]. Lévy et al. [18] describe a tech-
nique for finding conformal mappings by least squares mini-
mization of conformal energy, and Desbrun et al. [4] formu-
late a theoretically equivalent method of discrete conformal
parameterization. Sheffer et al. [24] give an angle-based flat-
tening method for conformal parameterization. Gu and Yau
[13] considered construction of a global conformal structure
for a manifold of arbitrary topology by finding a basis for
holomorphic differential forms. Gortler and Gotsman pro-
posed one forms on meshes in [11] and applied for surface
parameterization. Degerner et al. [3] provided user control
to trade off between angle and area preservation.

Lai et al. [17] synthesize geometric textures based on
geometry images. Their synthesized geometric textures will
have more distortions than ours, because we use an improved
global conformal parameterization with segmentation.

3 Global Conformal Parameterization

We assume that the reader is familiar with the basics of com-
plex analysis and differential geometry. A detailed explana-
tion for these concepts can be found in [15].

Suppose M is a surface with handles, either open or closed.
A global conformal parameterization is a map φ : M → R2,
such that each point p on M is mapped to a point on the pla-
nar parameter domain φ(p) = (u(p),v(p)). Furthermore, φ
is angle preserving, this is equivalent to the following fact:
suppose we arbitrarily draw two intersecting curves γ1,γ2
on M, the intersection angle is α , then their images φ(γ1)
and φ(γ2) are planar curves, the intersection angle is also α .
Mathematically, the conformality of the parameterization is
formulated in the following way: the first fundamental form
of M under conformal parameterization (u,v) is represented
as
ds2 = λ 2(u,v)(du2 +dv2), (1)

where λ is called the conformal factor, it indicates the area
ratio between the area on M and that on the plane.

In practice, it is more convenient to compute the gradient
fields of φ , namely (∇u,∇v). If φ is conformal, then they
satisfy the following criteria:

∇v(p) = n(p)×∇u(p),

where n(p) is the normal at the point p, also

∇×∇u = ∇×∇v = 0,

because the gradient fields are curl-free. Formally, a pair
of vector fields satisfying the above conditions is a holo-
morphic 1-form. There is an infinite number of this kind of
vector fields, they form a 2g dimensional real linear space,
where g is the number of handles (genus) of M. The method
of computing holomorphic 1-form basis is introduced in [13].

The concept of holomorphic 1-form and the computa-
tional procedure are demonstrated in Fig. 2. For simplicity,
we only illustrate a naive example: a planar 2-hole square.
In practice, the pipeline works for all 3D surfaces with ar-
bitrary topologies. The red curves are the integration curves
∇u and called horizontal trajectories, the blue curves are the
integration curves of ∇v and are called vertical trajectories.
These trajectories are the preimages of the iso-u and iso-v
curves. Fig. 2(c-1) and (c-2) show different holomorphic 1-
forms, (b-1) and (b-2) are the bases for the linear space of
all holomorphic 1-forms.

From the infinite set of holomorphic 1-forms, we need
to pick the best one for our texture synthesis. We choose
the one with the most uniform conformal factor using the
method introduced in [14], as shown in Fig. 2(c-2).

The global behavior of the trajectories are very compli-
cated. From Fig. 2, it is obvious that the vertical and horizon-
tal trajectories are orthogonal everywhere and two horizontal
trajectories do not intersect each other in general. There are
special points on M, where two horizontal trajectories inter-
sect (two vertical trajectories also intersect). It can be proven
that, at those points, the conformal factors are zero, there-
fore, such kind of points are called zero points of the holo-
morphic 1-form. In general, for a genus g closed surface,
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there are 2g− 2 zero points. In Fig. 2(c-2), the intersection
points of the red curves is the zero point. The trajectories
through zero points are called critical trajectories.

A trajectory can be a finite circle, a finite curve segment
terminating at the boundaries, or an infinite spiral dense on
the surface. If the horizontal critical trajectories are finite,
then the whole family of horizontal trajectories are finite due
to [26]. In practice, for simplicity, we choose a holomorphic
1-form with finite horizontal trajectories.

The critical horizontal trajectories segment the surface
M into several connected components, each component is
either a topological disk or a topological cylinder and can
be parameterized by φ to a planar rectangle. Fig. 2(d) illus-
trates this fact, the critical horizontal trajectory segments the
surface into 2 patches, and each is conformally mapped to a
rectangle. The horizontal trajectories are mapped to the iso-
v curves (red), while the vertical trajectories are mapped to
the iso-u curves (blue).

In practice, it is convenient to synthesize the textures on
these rectangular parameter domains. Therefore, in our al-
gorithm, we locate the zero point first by finding a vertex
with minimal conformal factor, then trace the horizontal tra-
jectory to segment the surface.

Fig. 3 Global conformal parameterization.

Fig. 3 illustrates a global conformal parameterization of
the Stanford bunny surface. The bunny surface has 3 bound-
aries, two are at the tips of ears, one is at the bottom, there-
fore, it is topologically equivalent to the 2-hole disk in Fig.
2. The double covered surface is of genus 2. A zero point
is between the roots of the two ears. The horizontal trajec-
tories through it are illustrated as yellow curves. The whole
surface is partitioned into 2 topological disks, each segment
is color-encoded. Fig. 5(a) and (b) demonstrates that each
segment can be conformally mapped to a rectangle on the
plane.

Textures can be easily synthesized on those rectangles
directly. For convenience, in the following discussion, we
call each surface component with its conformal parameters
a conformal geometry image.

4 Uniform Texture Synthesis

Global conformal parameterization on a 3D surface (see Fig.
3) induces conformal geometry images (see Fig. 5(a)(b)),
which allow textures to be easily mapped to the surface with-
out angular distortion. Unfortunately, the area stretching of
textures is unavoidable, as is shown in Fig. 4. Ideally, we
want to preserve both the angle and the area of the texture

on the surface, that is, we want to find an isometric parame-
terization. Although in theory this is definitely impossible, in
practice, we are able to improve the texture synthesis method
to make it as isometric as possible.

Fig. 4 Nonuniform texture on a surface. It is generated by global con-
formal parameterization, uniform texture synthesis on 2D geometry
images and texture mapping.

We propose a multi-scale texture synthesis method to
generate uniform textures on the surface. This method syn-
thesizes nonuniform textures on a 2D geometry image by
considering the area stretching factor (the inverse of the con-
formal factor in Eq. 1) in order to obtain the uniform 3D tex-
tures. The estimation of the area stretching factor on the con-
formal geometry images will be introduced first, and then
the details of our multi-scale synthesis algorithm will be de-
scribed.

4.1 Estimation of the conformal factor

The conformal factor indicates the amount of area stretching
from the 3D surface to the 2D parameter domain. Our goal is
to calculate the inverse conformal factor field on the geom-
etry image. The inverse conformal factor is τ , and τ = 1

λ ,
where λ is the conformal factor in Eq. 1. If the area shrinks
from the 3D mesh to the 2D plane, τ is smaller than 1, other-
wise, τ is larger than 1. This field will be used to choose the
appropriate scale level of the sample texture when we syn-
thesize textures on certain regions of the geometry image.

First, we normalize the parameters of each conformal
geometry image. Then we choose the maximal size C for
each dimension of the synthesized textures. The size of the
output texture is simply the product of C and the normalized
parameter for each geometry image. The size of the output
texture affects the speed and the quality of the synthesis, and
also the texture feature size on the surface. For all results
shown in this paper, we set C to be 1024.

By using Eq. 1, the values of τ on the vertices are eas-
ily calculated directly from the geometry image with the
original mesh connectivity. The τ values of the other texels
are then interpolated using a Gaussian radial basis function
(RBF). The calculated inverse conformal factor fields of two
geometry images are illustrated in Fig. 5(c)(d). Here, when-
ever the color changes from deep blue to red, the inverse
conformal factor value increases gradually.
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a b c d
Fig. 5 Conformal geometry images (a) and (b), and corresponding in-
verse conformal factor fields (c) and (d).

4.2 Multi-scale synthesis algorithm

Most texture synthesis methods synthesize textures without
or with quite simple size variations of texture features [28,
16]. In contrast, we use the conformal factor to control the
local scale of the texture. Therefore, the output texture is still
similar to the sample texture, but with different feature sizes
in different regions.

Our multi-scale synthesis algorithm is based on the patch-
based texture synthesis method. Although pixel-based syn-
thesis methods or hybrid methods should also work, better
quality can be obtained using patch-based method accord-
ing to our experiments. We put equal sized texture patches
in the order of image quilting [8], and use the graph cut al-
gorithm [16] to hide the seams of neighboring patches. The
patch size is chosen according to texture features depend-
ing on the input texture, we use 30 to 50 pixels as patch
width for the results in this paper. In the synthesis process,
we choose a patch, not just from a single sample texture, but
from multiple scale levels of the sample texture. First, we
calculate the average value of the inverse conformal factor
in the region covered by a patch; Then we decide an ap-
propriate scale level based on this average value. From the
sample texture of that scale level, we find the best matched
patch to fit the neighboring patches and put it on the output
texture.

Multi-scale sample textures In order to preserve memory
and improve speed, we store a certain number of discrete
scale levels of sample textures (see Fig. 6). We call the en-
larged sample texture the high-scale sample texture, and the
minified texture the low-scale sample texture. For better qual-
ity, the scale between neighboring levels is not a power of 2.
The parameters in our algorithm include the highest scale,
the lowest scale, and the desired levels, which can be spec-
ified by the user and affect the size and the quality of the
synthesized textures. Different scale level textures are then
generated by cubic interpolation.

For regions with higher inverse conformal factors, higher
level sample textures should be chosen, because the texture

a b c d
Fig. 6 Multi-scale sample textures. From (a) to (d), scales of sample
textures increase gradually.

mapping will shrink the texture. Similarly, for regions with
lower inverse conformal factors, lower level textures should
be selected, because texture mapping will enlarge the tex-
ture.

The lowest level needs to be determined with caution,
because the sampling rate is reduced when the texture is
minified. Depending on the feature size of the texture, im-
portant features may be lost irrecoverably if the sampling
rate is set below a certain level. We place our original sam-
ple texture close to the lowest level to lower the risk associ-
ated with downsampling. In contrast, high scale level texture
does not suffer from this problem, and can be used safely.

Preserving boundary consistency Since the surface is seg-
mented and mapped to more than one geometry image, the
boundary consistency problem needs to be addressed care-
fully. When mapping a segment (see Fig. 2(d)) to its confor-
mal geometry image, boundaries on the segment are mapped
to boundaries on the geometry image, respectively. Fig. 7(a)
shows the mapping of a segment (segment 1) to its geome-
try image (geometry image 1). Fig. 7(b) shows the boundary
correspondences of this geometry image to another geome-
try image (geometry image 2), due to an adjoining segment.
Corresponding boundary parts are neighbors in 3D space,
and therefore must have consistent textures.

Geometry
image 1

q

Geometry
image 1

Geometry
image 2

q

Segment 1

q qq

a b
Fig. 7 Boundary problem. (a) corresponding boundaries on a segment
and its conformal geometry image; (b) corresponding boundaries on
two geometry images. q is the zero point.

Our solution to synthesize textures consistently across
the corresponding boundaries is as follows. First, we add
margins to geometry images which have boundary parts cor-
responding to other boundary parts, as shown in Fig. 8. Here,
P1 to P4 are margins we added. During synthesis, after tex-
tures on P1 of geometry image 1 is synthesized, the textures
are copied to fill P1 of geometry image 2. Then, when syn-
thesizing textures on geometry image 2, for patches over-
lapped with margins, the matched patch will be chosen with
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additional constraints, treating the overlapped parts as al-
ready synthesized pixels.

Geometry image 1Geometry image 2

P1 P1P2

P3 P4

q q qq

Fig. 8 Consistent boundary synthesis, by adding margins and copying
boundary texture patches. q is the zero point.

Therefore, the patch-based synthesis algorithm is slightly
modified to cope with different patch-overlapping situations,
which solves the boundary problem. This way, our patch-
based synthesis algorithm can easily generate periodical tex-
tures, which is quite useful in texture mapping as well.

4.3 Texture synthesis results

Our texture synthesis results are demonstrated in Fig. 1(a)-
(d) and Fig. 9. When we synthesize uniform textures on
geometry images without considering area stretching, the
texture feature sizes on different regions on the surface are
highly non-uniform. In contrast, by using our multi-scale
synthesis method, textures on the surface are quite uniform.

5 Quasi-isometric Texture Mapping

The multi-scale texture synthesis method just presented mod-
ifies the textures directly to improve the uniformity of the
synthesized texture on the surface. In contrast, the method
for texture mapping, introduced in this section, revises the
parameters instead.

In theory, it is impossible to make the parameterization
preserve both the angle and the area. In that case, the para-
meterization would be an isometry, with a surface of zero
Gaussian curvature (that is, a flat surface). But what we can
accomplish is to make the parameterization on the interior of
one component as isometric as possible and in return sacri-
fice some of the angle structure along the boundaries. We ap-
ply a mass-spring method to achieve this quasi-isometric pa-
rameterization, which is close to the desired isometric one.

Fig. 10 illustrates the basic idea. The original conformal
geometry image has a highly non-uniform density, whereas
preserving the angle. After the process, the mesh (b) with
quasi-isometric parameters has more uniform density, but

the boundaries are distorted. Hence, the boundary consis-
tency is sacrificed. On the other hand, the stretch-minimizing
method of Yoshizawa et al. [34] fixes the boundary vertices
and therefore can keep the boundary rectangular, but the
anisotropic texture stretching is considerably higher.

5.1 Mass-spring model

The mass-spring model is carried out on the conformal geom-
etry images using the original mesh connectivity. The mass-
spring system is modelled as follows: each vertex is treated
like a node and each edge as a spring. The motion of all
nodes is confined to the 2D parameter plane.

We denote the parameterization of the conformal geome-
try image as φ : U → R2, where U is the conformal geometry
image. Then, the mass-spring evolution can be formulated
as δφ(v) = εF(v), where ε is a constant carefully chosen
to ensure no flipping of triangles. In practice, ε is inversely
proportional to the maximum magnitude of the force field.
Here, F is the external force, and calculated as

F(v)=∑
u

η(u)η(v)(φ(v)−φ(u)),η(v)=
1
n
|r(u)− r(v)|
|φ(u)−φ(v)| (2)

where u runs through all neighboring vertices of vertex v,
n is the valence of vertex v, and r(v) is the 3D position of
vertex v.

In Eq. 2, η2(v) is a discrete approximation of the confor-
mal factor at v. Intuitively, the external force is proportional
to the conformal factor, and expands the regions with high
conformal factors. The nodes on the parameter domain with
higher density will be expanded gradually and make the dis-
tribution more uniform, that is, the process will improve the
parameterization to be closer to an isometry.

In our implementation, we use the mass-spring model
code for arbitrary nodes in [7]. Fig. 10 demonstrates the im-
provement of the parameterization using our mass-spring al-
gorithm. The improved parameters are used for texture map-
ping. Fig. 1(e) is the texture mapping result based on global
conformal parameterization, while Fig. 1(f) is the result af-
ter conformal parameterization and mass-spring relaxation,
upon which the squares on the checkerboard become more
isometric.

5.2 Texture mapping results

Fig. 11 compares the results obtained with and without our
quasi-isometric parameterization method, for the task of map-
ping 2D textures onto 3D models. Fig. 11(a) shows the out-
come of an image-to-surface mapping via standard global
conformal parameterization, while Fig. 11(b) shows the re-
sult obtained when applying the mass-spring model to the
conformal map first. We observe that the uniformity of the
parameterization is greatly improved. And video can also be
mapped to or synthesized on the surface with considerably
better quality. One frame of our video (Matrix) on the sur-
face is shown in Fig. 11(c) and (d). We should note that while
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Fig. 9 Multi-scale texture synthesis results. (a),(e) uniform texture synthesized on geometry images without considering area stretching factor;
(b),(f) nonuniform texture by mapping (a) and (e) onto 3D surfaces; (c),(g) nonuniform texture synthesis considering area stretching factor;
(d),(h) uniform texture by mapping (c) and (g) onto 3D surfaces; (i)-(l) more uniform texture synthesis results; (m),(o) nonuniform textures on
3D surfaces, texture features inside the handles are smaller than those outside; (n),(p) uniform textures on 3D surfaces.
High resolution images as well as videos can be obtained at http://www.cs.sunysb.edu/∼lujin/paper/pg05/.
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a b
Fig. 10 Mesh changed on mass-spring model. (a) mesh on one geom-
etry image; (b) modified mesh with mass-spring relaxation.

the mass-spring relaxation process is relatively slow (about
1 hour for the bunny model), it only needs to be done once
for each model, and after that the improved parameterization
results can be reused for various image and video mappings.
The extra cost for storage is minimal.

a b

c d
Fig. 11 Texture mapping results. (a),(b) image on the surface, (c),(d)
video on the surface, in which (a) and (c) are based on conformal
global parameterization, (b) and (d) are based on improved parame-
terization using mass-spring method.

6 Conclusions

In this paper, we have presented novel methods to accom-
plish distortion-minimized texture synthesis and texture map-
ping on 3D surfaces. For this, we have augmented the con-
formal mapping approach, which preserves angular fidelity,
with a process that controls the distortion of scale. For tex-
ture synthesis on 3D surfaces, it allows the synthesis process
to be done intuitively in 2D space and, afforded by the con-
formal mapping, achieves global control over the mapping
result. The synthesis result is locally angle-torsion free, while
globally it is continuous. Further, we also devised a method
based on a mass-spring model which offers a good trade-
off for angular distortion and size preservation in texture
mapping. Both methods are conveniently implemented using
conformal mapping, are simple and efficient, and are univer-
sal for arbitrary surfaces.

While we currently do not provide explicit controls to
balance angular and size distortions, we plan to incorpo-
rate those in future work, using the updated conformal factor
fields.
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