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ABSTRACT
We develop a general approach that uses holomorphic 1-
forms to parameterize anatomical surfaces with complex
(possibly branching) topology. Rather than evolve the sur-
face geometry to a plane or sphere, we instead use the fact
that all orientable surfaces are Riemann surfaces and ad-
mit conformal structures, which induce special curvilinear
coordinate systems on the surfaces. We can then automat-
ically partition the surface using a critical graph that con-
nects zero points in the conformal structure on the surface.
The trajectories of iso-parametric curves canonically parti-
tion a surface into patches. Each of these patches is either
a topological disk or a cylinder and can be conformally
mapped to a parallelogram by integrating a holomorphic
1-form defined on the surface. The resulting surface subdi-
vision and the parameterizations of the components are in-
trinsic and stable. To illustrate the technique, we computed
conformal structures for several types of anatomical sur-
faces in MRI scans of the brain, including the cortex, hip-
pocampus, and lateral ventricles. We found that the result-
ing parameterizations were consistent across subjects, even
for branching structures such as the ventricles, which are
otherwise difficult to parameterize. Compared with other
variational approaches based on surface inflation, our tech-
nique works on surfaces with arbitrary complexity while
guaranteeing minimal distortion in the parameterization. It
also generates grids on surfaces for PDE-based signal pro-
cessing.

KEY WORDS
Brain Mapping, Riemann Surface Structure, Conforaml
Net, Critical Graph

1 Introduction

Surface-based modeling is valuable in brain imaging to
help analyze anatomical shape, to statistically combine or
compare 3D anatomical models across subjects, and to map
functional imaging parameters onto anatomical surfaces.
Multiple surfaces can be registered nonlinearly to construct
a mean shape for a group of subjects, and deformation map-
pings can encode shape variations around the mean. This

type of deformable surface registration has been used to de-
tect developmental and disease effects on brain structures
such as the corpus callosum and basal ganglia [1], the hip-
pocampus [2], and the cortex [3]. Nonlinear matching of
brain surfaces can also be used to track the progression
of neurodegenerative disorders such as Alzheimer’s dis-
ease [2], to measure brain growth in development [1], and
to reveal directional biases in gyral pattern variability [4].

Parameterization of anatomical surface models in-
volves computing a smooth (differentiable) one-to-one
mapping of regular 2D coordinate grids onto the 3D sur-
faces, so that numerical quantities can be computed eas-
ily from the resulting models. Even so, it is often diffi-
cult to smoothly deform a complex 3D surface to a sphere
or 2D plane without substantial angular or area distortion.
Here we present a new method to parameterize brain sur-
faces based on their Riemann surface structure. By contrast
with variational approaches based on surface inflation, our
method can parameterize surfaces with arbitrary complex-
ity including branching surfaces not topologically homeo-
morphic to a sphere (higher-genus objects) while formally
guaranteeing minimal distortion.

1.1 Previous Work

Brain surface parameterization has been studied inten-
sively. Schwartz et al. [5], and Timsari and Leahy [6]
computed quasi-isometric flat maps of the cerebral cor-
tex. Hurdal and Stephenson [7] report a discrete map-
ping approach that uses circle packings to produce “flat-
tened” images of cortical surfaces on the sphere, the Eu-
clidean plane, and the hyperbolic plane. The obtained maps
are quasi-conformal approximations of classical conformal
maps. Haker et al. [8] implemented a finite element ap-
proximation for parameterizing brain surfaces via confor-
mal mappings. They selected a point on the cortex to map
to the north pole and conformally mapped the rest of the
cortical surface to the complex plane by stereographic pro-
jection of the Riemann sphere to the complex plane. Gu et
al. [9] proposed a method to find a unique conformal map-
ping between any two genus zero manifolds by minimizing
the harmonic energy of the map. They demonstrated this
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method by conformally mapping the cortical surface to a
sphere.

In computational anatomy, 3D shape analyses are of-
ten performed to analyze the geometry of specific brain
structures, and compute statistical information on anatom-
ical variability and group differences. Joshi et al. [10] an-
alyzed the shape of the hippocampus via a spatially nor-
malizing elastic transformation. Group differences in sur-
face shape were identified by comparing the transforma-
tions required to map individual surfaces to a group aver-
age surface [2]. Kelemen et al. [11] studied 3D hippocam-
pal shapes based on a boundary description using spheri-
cal harmonic basis functions (SPHARM). The SPHARM
shape description creates an implicit boundary correspon-
dence between shapes. Later, Gerig et al. [12] used
SPHARM to study ventricular size and shape in 3D MRI
scans of monozygotic and dizygotic twin pairs. Pizer et
al. [13] proposed a method to apply sampled medial mod-
els (M-reps) to shape analysis. By holding the topology of
the model fixed, an implicit correspondence between sur-
face boundary points and an underlying medial curve is es-
tablished and can be applied to model anatomy in radiation
oncology and for shape analysis.

1.2 Theoretical Background and Definitions

A manifold of dimension � is a connected Hausdorff space�
for which every point has a neighborhood � that is

homeomorphic to an open subset � of ��� . Such a homeo-
morphism �	�
���� is called a coordinate chart. An atlas
is a family of charts ������������� for which ��� constitute an
open covering of

�
.
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Figure 1. The Structure of a Manifold. An atlas is a family
of charts that jointly form an open covering of the manifold.

Suppose ������������� and �����#���!�#� are two charts on a
manifold

�
, � �%$ � �'&(*) , then the chart transition is de-

fined as � �"� �+� � �,� �-$ � �  .�/� � �,� �0$ � �  . An atlas�"� � �1� � � on a manifold is called differentiable if all chart
transitions are differentiable of class 2�3 . A chart is called
compatible with a differentiable atlas if adding this chart
to the atlas still yields a differentiable atlas. The set of all
charts compatible with a given differentiable atlas yields

a differentiable structure. A differentiable manifold of di-
mension � is a manifold of dimension � together with a
differentiable structure.

For a manifold
�

with an atlas 4 ( �"�5���1�6��� , if all
chart transition functions

�6��� ( �!�.78��9#:� �;���<�,��� $ �=�> ���!���,��� $ ���! 
are holomorphic, then 4 is a conformal atlas for

�
. A

chart �"���#�����#� is compatible with an atlas 4 , if the union4@?A�"����������� is still a conformal atlas.
Two conformal atlases are compatible if their union is

still a conformal atlas. Each conformal compatible equiv-
alence class is a conformal structure. A 2-manifold with
a conformal structure is called a Riemann surface. It has
been proven that all metric orientable surfaces are Riemann
surfaces.

Holomorphic and meromorphic functions and differ-
ential forms can be generalized to Riemann surfaces by
using the notion of conformal structure. For example, a
holomorphic one-form B is a complex differential form,
such that in each local frame CD� ( �FE����HGD�6 , the para-
metric representation is B (JI �KC��! ML
C"� , where I �FC��! is
a holomorphic function. On a different chart �"�����1�!�#� ,B (NI �FC"���FCO�! H DP1Q�RP1QMS L
CO� . For a genus T closed surface, all
holomorphic one-forms form a real UVT dimensional linear
space.

At a zero point WYX � of a holomorphic one-form B ,
any local parametric representation B (ZI �FCD�! HL;C"��� I+[ \-(]_^

According to the Riemann-Roch theorem, in general
there are UVTa`@U zero points for a holomorphic one-form
defined on a surface of genus T .

A holomorphic one-form induces a special system of
curves on a surface, the so-called conformal net. A curveb'c �

is called a horizontal trajectory of B , if Bd�D�KL b  fe]
; similarly, b is a vertical trajectory if B5�;�FL b  hg ]

. The
horizontal and vertical trajectories form a web on the sur-
face. The trajectories that connect zero points, or a zero
point with the boundary are called critical trajectories. The
critical horizontal trajectories form a graph, which is called
the critical graph. In general, the behavior of a trajectory
may be very complicated, it may have infinite length and
may be dense on the surface. If the critical graph is finite,
then all the horizontal trajectories are finite. The critical
graph partitions the surface into a set of non-overlapping
patches that jointly cover the surface, and each patch is ei-
ther a topological disk or a topological cylinder. Each patchi c � can be mapped to the complex plane using the fol-
lowing formulae. Suppose we pick a base point W�jkX i ,
and any path b that connects W6j to W . Then if we define���lW� (NmOn B , the map � is conformal, and ��� i  is a par-
allelogram. We say � is the conformal parameterization
of
�

induced by B . � maps the vertical and the horizon-
tal trajectories to iso-u and iso-v curves respectively on the
parameter plane. The structure of the critical graph and the
parameterizations of the patches are determined by the con-
formal structure of the surface. If two surfaces share similar
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topologies and geometries, they can support consistent crit-
ical graphs and segmentations (i.e. surface partitions), and
the parameterizations are consistent as well. Therefore, by
matching their parameter domains, the entire surfaces can
be directly matched in 3D. This generalizes prior work in
medical imaging that has matched surfaces by computing
a smooth bijection to a single canonical surface, such as a
sphere or disk.

A Riemannian metric is a differential quadratic form
on a differential manifold. On each chart �"�d��������� , it can
be represented as

Lpo � (rq �FE<�sGp HLDE �5t U�u0�vE��HGw ML;E�LDG t'x �vE��HGw ML;G � ^
A special conformal structure can be chosen, such that
the local parametric representation of Riemannian metric
is Lpo � (zy �vE��HGw {�FL;E � t LDG �  ^ In this case, the local coordi-
nates of each chart are also called isothermal coordinates,
and y �vE��HGw is called the conformal factor.

This paper takes the advantage of conformal struc-
tures of surfaces, consistently segments them and param-
eterizes the patches using a holomorphic 1-form.

We call the process of finding critical graph and seg-
mentation as the holomorphic flow segmentation, which is
completely determined by the geometry of the surface and
the choice of the holomorphic 1-form. (Note that this dif-
fers from the typical meaning of segmentation in medical
imaging, and is concerned with the segmentation, or parti-
tioning, of a general surface). Computing holomorphic 1-
forms is equivalent to solving elliptic differential equations
on the surfaces, and in general, elliptic differential opera-
tors are stable. Therefore the resulting surface segmenta-
tions and parameterizations are intrinsic and stable, and are
applicable for matching noisy surfaces derived from medi-
cal images.

2 Holomorphic Flow Segmentation

To compute the holomorphic flow segmentation of a sur-
face, first we compute the conformal structure of the sur-
face; then we select one holomorphic differential form, and
locate the zero points on it. By tracing horizontal trajec-
tories through the zero points, the critical graph can be
constructed and the surface is divided into several patches.
Each patch can then be conformally mapped to a planar
parallelogram by integrating the holomorphic differential
form.

In our work, surfaces are represented as triangular
meshes, namely piecewise polygonal surfaces.The compu-
tations with differential forms are based on solving elliptic
partial differential equations on surfaces using the finite el-
ement method.

2.1 Computing Conformal Structures

A method for computing the conformal structure of a sur-
face was introduced in [14]. Suppose

�
is a closed genus

T}| ]
surface with a conformal atlas 4 . The conformal

structure 4 induces holomorphic 1-forms; all holomorphic
1-forms form a linear space

i � �  of dimension U"T which
is isomorphic to the first cohomology group of the surface~ : � � �M�a . The set of holomorphic one-forms determines
the conformal structure. Therefore, computing conformal
structure of

�
is equivalent to finding a basis for

i � �  .
The holomorphic 1-form basis ��B+�M�H� (*� �1Uw�O��������UVT6�

is computed as follows: compute the homology basis, find
the dual cohomology basis, diffuse the cohomology basis to
a harmonic 1-form basis, and then convert the harmonic 1-
form basis to holomorphic 1-form basis by using the Hodge
star operator. The details of the computation are given in
[14].

For surfaces with boundaries, we apply the conven-
tional double covering technique, which glues two copies
of the same surface along their corresponding boundaries
to form a symmetric closed surface. Then we apply the
above procedure to find the holomorphic 1-form basis.

In terms of data structure, a holomorphic 1-form
is represented as a vector-valued function defined on the
edges of the mesh B � �D� : �� � �H� (�� �1U8���O�{��U"T ,.

2.2 Selecting the Optimal Holomorphic 1-
form

Given a Riemann surface
�

, there are infinitely many
holomorphic 1-forms, but each of them can be expressed
as a linear combination of the basis elements. We de-
fine a canonical conformal parameterization as any linear
combination of the set of holomorphic basis functions B � ,� (�� � ^�^�^ �HT . They satisfy�w��� B�� (}� �� �
where �{�H�s� (�� � ^�^�^ � are homology bases and � �� is the Kro-
necker symbol. Then we compute a canonical conformal
parameterization

B ( �� ��� : B��
^

We select a specific parameterization one that max-
imizes the uniformity of the induced grid over the entire
domain using the algorithms introduced in [15], for the
purpose of locating zero points in the next step.

2.3 Locating Zero Points

For surface with genus T*| � , any holomorphic 1-formB has UVT�`�U zero points. The horizontal trajectories
through the zero points will partition the surface into sev-
eral patches. Each patch is either a topological disk or a
cylinder, and can be conformally parameterized by B using���lW� (}mOn B .
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Estimating the Conformal Factor Suppose we already
have a global conformal parameterization, induced by a
holomorphic 1-form B . Then we can estimate the confor-
mal factor at each vertex, using the following formulae:

y �vGw ( �� �� �;� �����D�d� [ B��s� E��HG;�� [ �[   �FE� =`   �vGw [ � �HE��HG-X¡�0jD� (1)

where � is the valence of vertex G .

Locating Zero Points We find the cluster of vertices with
relatively small conformal factors (the lowest ¢Y`¤£p¥ ).
These are candidates for zero points. We cluster all the
candidates using the metric on the surface. For each clus-
ter, we pick the vertex that is closest to the center of gravity
of the cluster, using the surface metric to define geodesic
distances.

Because the triangulation is finite and the computa-
tion is an approximation, the number of zero points may
not equal the Euler number. In this case, we refine the tri-
angulation of the neighborhood of the zero point candidate
and refine the holomorphic 1-form B .

2.4 Holomorphic Flow Segmentation

Tracing Horizontal Trajectories Once the zero points
are located, the horizontal trajectories through them can be
traced.

First we choose a neighborhood � � of a vertex G rep-
resenting a zero point, � � is a set of neighboring faces ofG , then we map it to the parameter plane by integrating B .
Suppose a vertex ¦§Xz� � , and a path composed by a se-
quence of edges on the mesh is b , then the parameter loca-
tion of ¦ is ���v¦f ( m n B .

The map ���F¦¨ is a piecewise linear map. Then the
horizontal trajectory is mapped to the horizontal line © ( ]
in the plane. We slice ����� �  using the line © ( ]

by edge
splitting operations. Suppose the boundary of �<��� �  inter-
sects © ( ]

at a point Gpª , then we choose a neighborhood
of G ª and repeat the process.

Each time we extend the horizontal trajectory and en-
counter edges intersecting the trajectory, we insert new ver-
tices at the intersection points, until the trajectory reaches
another zero point or the boundary of the mesh. We repeat
the tracing process until each zero point connects « hori-
zontal trajectories.

Critical Graph Given a surface
�

and a holomorphic 1-
form B on

�
, we define the graph x � � �MB5 ( �"��� q �suh� ,

as the critical graph of B . Here � is the set of zero points
of B , q is the set of horizontal trajectories connecting zero
points or the boundary segments of

�
, and u is the set of

surface patches segmented by q .

3 Experimental Results

We tested our algorithm on various surfaces, including
anatomic surfaces extracted from 3D MRI scans of the
brain, and synthetic geometric examples to illustrate the
approach. Figure 2 (a)-(d) shows a closed genus 2 sur-
face. We visualized the conformal structure by projecting
a checkerboard image back onto the surface (Figure 2 (a)).
There is a zero point shown in Figure 2 (a). Another zero
point is on the back of the ”figure-eight” shaped surface
and is symmetric to this zero point. The traced horizontal
and vertical trajectories are shown in Figure 2 (c). From
the computed conformal structure, the ”figure-eight” sur-
face can be segmented into two patches (Figure 2 (c)). Each
patch can then be conformally mapped to a rectangle (Fig-
ure 2 (d)).

Figure 2 (e)-(g) shows experimental results for a hip-
pocampal surface, a structure in the medial temporal lobe
of the brain. The original surface is shown in (e). We leave
two holes on the front and back of the hippocampal surface,
representing its anterior junction with the amygdala, and its
posterior limit as it turns into the white matter of the fornix.
It can be logically represented as an open boundary genus
one surface, a cylinder (note that spherical harmonic repre-
sentations would also be possible, if the ends were closed).
The computed conformal structure is shown in (f). A hor-
izontal trajectory curve is shown in (g). Cutting the sur-
face along this curve, we can then conformally map the
hippocampus to a rectangle. Since the surface of rectangle
is similar to the one of hippocampus, the detailed surface
information is well preserved in (h). Compared with other
spherical parameterization methods, which may have high-
valence nodes and dense tiles at the poles of the spherical
coordinate system, our parameterization can represent the
surface with minimal distortion.

Shape analysis of the lateral ventricles is of great
interest in the study of psychiatric illnesses, includ-
ing schizophrenia, and in degenerative diseases such as
Alzheimer’s disease. These structures are often enlarged in
disease and can provide sensitive measures of disease pro-
gression. We can optimize the conformal parameterization
by topology modification. For the lateral ventricle surface
in each brain hemisphere, we introduce five cuts. Since
these cutting positions are at the end of the frontal, occip-
ital, and temporal horns of the ventricles, they can poten-
tially be located automatically. The upper row in Figure 3
shows 5 cuts introduced on two subjects ventricular sur-
faces. After the cutting, the surfaces become open bound-
ary genus 4 surfaces.

The middle two rows of Figure 3 show parameteriza-
tions of the lateral ventricles of the brain. The second row
shows the results of parameterizing a ventricular surface
for a 65-year-old patient with HIV/AIDS (note the disease-
related enlargement)and the third row shows the results for
the ventricular model of a 21-year-old control subject. The
surfaces are initially generated by using an unsupervised
tissue classifier to isolate a binary map of the cerebrospinal
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Figure 2. The holomorphic flow segmentation results on
a synthetic surface and a hippocampus surface. (a) con-
formal parameterization of a two hole torus surface. (b)
the result of iso-parameter tracing from the detected zero
points. (d) the two rectangles to which two segments in (c)
are conformally mapped. (f) a conformal parameterization
of the hippocampus surface in (e). (g) an iso-parameter
curve used to unfold the surface. (h) the rectangle the sur-
face is conformally mapped to.

fluid in the MR image, and tiling the surface of the largest
connected component inside the brain. There are a total
of 3 zero points on each of the ventricular surfaces. Two
of them are located at the middle part of the two ”arms”
(where the temporal and occipital horns join at the ventric-
ular atrium), as shown by the large black dots in the second
row. The third zero point is located in the middle of the
model, where the frontal horns are closest to each other.
Based on the computed conformal structure, we can parti-
tion the surface into 6 patches. Each patch can be confor-
mally mapped to a rectangle. Although the two brain ven-
tricle shapes are very different, the segmentation results are
consistent in that the surfaces are partitioned into patches
with the same relative arrangement and connectivity.

Finally, the conformal grids induced here are orthog-
onal and therefore especially suitable for numerical dis-
cretization of partial differential equation (PDEs) on brain
surfaces. Surface-based PDEs are useful for elastic regis-
tration of surfaces, for EEG/MEG reconstruction, for sig-
nal denoising and regularization, and for generation of
geodesic paths on surfaces. By using global conformal pa-
rameterization, these problems can be converted into solv-
ing PDEs on planar domains. Using the conformal factor
and the Riemannian metric tensor, we can implement co-
variant differentiation easily. Figure 4 shows illustrative
examples of fluid flow simulation by solving the Navier-
Stokes equation on the hippocampus surface. Although
these are artificial examples, they illustrate the feasibility of
discretizing PDEs on the conformal grids developed here.
Compared with other work [16], our approach is relatively

efficient and avoids some complexity in handling compli-
cated boundary constraints. We are currently extending this
work to implement more general differential operators on
brain surfaces, for using in nonlinear surface registration
and surface-based signal processing.

Figure 3. Illustrates surface parameterization results for the
lateral ventricles. The upper row shows ¢ cuts are intro-
duced and they convert the lateral ventricle surface into a
genus 4 surface. The second row shows models parameter-
ized using holomorphic 1-forms, for a 65-year- old subject
with HIV/AIDS and the third row shows the same maps
computed for a healthy 21-year-old control subject. The
computed conformal structure, holomorphic flow segmen-
tation and their associated parameter domains are shown.

4 Conclusion and Future Work

In this paper, we presented a brain surface parameterization
method that invokes the Riemann surface structure to gen-
erate conformal grids on surfaces of arbitrary complexity
(including branching topologies). For high genus surfaces,
a global conformal parameterization induces a canonical
segmentation, i.e. there is a discrete partition of the sur-
face into conformally parameterized patches. Each parti-
tion is either a topological disk or a cylinder and can be con-
formally mapped to a rectangle in the parameter domain.
We demonstrated the parameterization for both closed and
open boundary surfaces. We tested our algorithm on the
hippocampus and lateral ventricle surfaces. The grid gen-
eration algorithm is intrinsic (i.e. does not depend on any
initial choice of surface coordinates) and is stable, as shown
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Figure 4. Illustrates solving the Navier-Stokes equation for
fluid propagations on brain surfaces. Although these are
artificial examples, they show the feasibility of discretizing
PDEs on the conformal grid structure, which can ensure
numerical accuracy for various applications of PDE-based
signal processing on anatomical surfaces.

by grids induced on ventricles of various shapes and sizes.
Compared with other work conformally mapping brain sur-
faces to sphere, our work may introduce less distortion
and may be especially convenient for other post-processing
work such as surface registration and landmark matching.
Our future work will focus on signal processing on brain
surfaces, as well as brain surface registration and shape and
asymmetry analysis for subcortical structures.
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