Fundamental Group

David Gu1

1Mathematics Science Center
Tsinghua University

Tsinghua University
Algebraic Topology
Philosophy

Associate groups with manifolds, study the topology by analyzing the group structures.

\[\mathcal{C}_1 = \{ \text{Topological Spaces, Homeomorphisms} \} \]
\[\mathcal{C}_2 = \{ \text{Groups, Homomorphisms} \} \]
\[\mathcal{C}_1 \rightarrow \mathcal{C}_2 \]

Functor between categories.
Suppose q is a base point, all the oriented closed curves (loops) through q can be classified by homotopy. All the homotopy classes form the so-called fundamental group of S, or the first homotopy group, denoted as $\pi_1(S,q)$. The group structure of $\pi_1(S,q)$ determines the topology of S.
Let S be a two manifold with a base point $p \in S$,

Definition (Curve)

A curve is a continuous mapping $\gamma : [0, 1] \to S$.

Definition (Loop)

A closed curve through p is a curve, such that $\gamma(0) = \gamma(1) = p$.

Definition (Homotopy)

Let $\gamma_1, \gamma_2 : [0, 1] \to S$ be two curves. A homotopy connecting γ_1 and γ_2 is a continuous mapping $F : [0, 1] \times [0, 1] \to S$, such that

$$f(0, t) = \gamma_1(t), f(1, t) = \gamma_2(t).$$

We say γ_1 is homotopic to γ_2 if there exists a homotopy between them.
Homotopy

Lemma

Homotopy relation is an equivalence relation.

Proof.

\(\gamma \sim \gamma, F(s, t) = \gamma(t) \). If \(\gamma_1 \sim \gamma_2 \), \(F(s, t) \) is the homotopy, then \(F(1 - s, t) \) is the homotopy from \(\gamma_2 \) to \(\gamma_1 \).

Corollary

All the loops through the base point can be classified by homotopy relation. The homotopy class of a loops \(\gamma \) is denoted as \([\gamma]\).
Definition (Loop product)

Suppose γ_1, γ_2 are two loops through the base point p, the product of the two loops is defined as

$$\gamma_1 \cdot \gamma_2(t) = \begin{cases}
\gamma_1(2t) & 0 \leq t \leq \frac{1}{2} \\
\gamma_2(2t - 1) & \frac{1}{2} \leq t \leq t
\end{cases}$$

Definition (Loop inverse)

$$\gamma^{-1}(t) = \gamma(1 - t).$$
Fundamental Group

Figure: Loop inversion

Figure: Loop product
Definition (Fundamental Group)

The homotopy classes of loops through the base point p form a group under the loop product, which is denoted as $\phi_1(S,p)$.
Let \(\mathcal{S} = \{s_1, s_2, \cdots, s_n\} \) be \(n \) symbols, a word generated by \(\mathcal{S} \) is a sequence \(w = w_1 w_2 \cdots w_m \), where \(w_k \in \mathcal{S} \). The empty word \(\emptyset \) is also treated as a word. The product of two words is the concatenation. The relations \(R = \{R_1, R_2, \cdots, R_m\} \) are \(m \) words, such that we can replace \(R_k \) by the empty word.

Definition (word equivalence relation)

Two words are equivalent if we can transform one to the other by finite many steps of the following two operations:

1. Insert a relation word anywhere.
2. If a subword is a relation word, remove it from the word.

Definition (Word Group)

All the equivalence classes of the words generated by \(\mathcal{S} \) form a group under the concatenation, denoted as

\[
\langle s_1, s_2, \cdots, s_n | R_1, R_2, \cdots, R_m \rangle
\]
Fundamental Group Representation

Theorem

Suppose \(\pi_1(S_1, p_1) \) is isomorphic to \(\pi_2(S_2, p_2) \), then \(S_1 \) is homeomorphic to \(S_2 \), and vice versa.

The representation of a group is not unique. It is NP hard to verify if two given representations are isomorphic.
Definition (Connected Sum)

Let S_1 and S_2 be two surfaces, $D_1 \subset S_1$ and $D_2 \subset S_2$ are two topological disks. $f : \partial D_1 \to \partial D_2$ is a homeomorphism between the boundaries of the disks. The connected sum is

$$S_1 \oplus S_2 := S_1 \cup S_2 / \{p \sim f(p)\}$$

Theorem (Surface Topological Classification)

All the closed surfaces can be represented as

$$S \cong T^2 \oplus T^2 \oplus \cdots \oplus T^2$$

for oriented surfaces, or

$$S \cong RP^2 \oplus RP^2 \oplus \cdots \oplus RP^2.$$

RP^2 is gluing a Möbius band with a disk along its single boundary.
Figure: canonical fundamental group basis

Figure: canonical fundamental domain
For genus g closed surface, one can find canonical homotopy group generators $\{a_1, b_1, a_2, b_2, \cdots, a_g, b_g\}$, such that $a_i \cdot a_j = 0$, $b_i \cdot b_j = 0$, $a_i \cdot b_j = \delta_{ij}$, where the operator $r_1 \cdot r_2$ represents the algebraic intersection number between the two loops γ_1 and γ_2, and δ_{ij} is the Kronecker symbol.
Theorem (Fundamental Group, [?] page 136 Proposition 6.12 and page 137 Example 6.13)

For genus g closed surface with a set of canonical basis, the fundamental group is given by

\[
< a_1, b_1, a_2, b_2, \ldots, a_g, b_a | a_1 b_1 a_1^{-1} b_1^{-1} a_2 b_2 a_2^{-1} b_2^{-1} \ldots a_g b_g a_g^{-1} b_g^{-1} = e >
\]
Definition (Covering Space)

Suppose a continuous surjective map $p : \tilde{S} \to S$, such that for each point $q \in S$ has a neighborhood U, its preimage $p^{-1}(U) = \bigcup_i \tilde{U}_i$ is a disjoint union of open sets \tilde{U}_i, and the restriction of p on each \tilde{U}_i is a local homeomorphism. Then (\tilde{S}, p) is a covering space of S, p is called a projection map.

Definition (Deck Transformation)

The automorphisms of \tilde{S}, $\tau : \tilde{S} \to \tilde{S}$, are called deck transformations, if they satisfy $p \circ \tau = p$. All the deck transformations form a group, covering group, and denoted as $\text{Deck}(\tilde{S})$.
Suppose $\tilde{q} \in \tilde{S}$, $p(\tilde{q}) = q$. The projection map $p : \tilde{S} \to S$ induces a homomorphism between their fundamental groups, $p_* : \pi_1(\tilde{S}, \tilde{q}) \to \pi_1(S, q)$, if $p_* \pi_1(\tilde{S}, \tilde{q})$ is a normal subgroup of $\pi_1(S, q)$ then

Theorem (Covering Group Structure Theorem, [?] Page 250 Theorem 11.30 and Corollary 11.31)

The quotient group of $\frac{\pi_1(S)}{p_* \pi_1(\tilde{S}, \tilde{q})}$ is isomorphic to the deck transformation group of \tilde{S}.

$$\frac{\pi_1(S, q)}{p_* \pi_1(\tilde{S}, \tilde{q})} \cong Deck(\tilde{S}).$$
If a covering space \tilde{S} is simply connected (i.e. $\pi_1(\tilde{S}) = \{e\}$), then \tilde{S} is called a *universal covering space* of S. For universal covering space

$$\pi_1(\pi) \cong Deck(\tilde{S}).$$

The existence of the universal covering space is given by the following theorem,

Theorem (Existence of the Universal Covering Space, [?] Page 262 Theorem 12.8)

Every connected and locally simply connected topological space (in particular, every connected manifold) has a universal covering space.
Figure: Universal Covering Space
Lifting to Universal Covering Space

Figure: Universal Covering Space
Lifting to Universal Covering Space

Figure: Universal Covering Space
Lifting to Universal Covering Space

Let $(\tilde{\mathcal{S}}, p)$ be the universal covering space of \mathcal{S}, q be the base point. The orbit of base is $p^{-1}(q) = \{\tilde{q}_k\}$. Given a loop through p, there exists a unique lift of $\gamma \tilde{\gamma} \subset \tilde{\mathcal{S}}$, starting from \tilde{q}_0.

Theorem

γ_1 and γ_2 are two loops through the base point, their lifts are $\tilde{\gamma}_1$ and $\tilde{\gamma}_2$. $\gamma_1 \sim \gamma_2$ if and only if the end points of $\tilde{\gamma}_1$ and $\tilde{\gamma}_2$ coincide.
Theorem

Suppose S_1 and S_2 are path connected manifolds, $S_1 \cap S_2$ is also path connected.

\[
\pi_1(S_1, p) = \langle s_1^1, s_2^1, \ldots, s_1^{n_1} | R_1^1, R_2^1, \ldots, R_1^{m_1} \rangle,
\]

\[
\pi_1(S_2, p) = \langle s_2^1, s_2^2, \ldots, s_2^{n_2} | R_1^1, R_2^2, \ldots, R_2^{m_2} \rangle,
\]

\[
\pi_1(S_1 \cap S_2, p) = \langle s_3^1, s_3^2, \ldots, s_3^{n_3} | R_3^1, R_3^2, \ldots, R_3^{m_3} \rangle,
\]

then

\[
\pi_1(S_1 \cup S_2, p) = \langle S_1 \cup S_2 | R_1 \cup R_2 \cup R_3 \rangle,
\]

where R_3 is given by the following, for each generator s_3^k, it has two representations $w_1 \in \pi_1(S_1, p)$, and $w_2 \in \pi_1(S_2, p)$, then

\[
R_3^k = w_1 w_2^{-1}.
\]
Theorem

Show that $\pi_1(S)$ is $\langle a_1, b_1, \cdots, a_g, b_g \rangle$ for a surface $S = \bigoplus_{i=1}^{g} T^2$.

Proof.

By induction. If $g = 1$, obvious. Let $g = 2$,

\[
\begin{align*}
\pi_1(T_1) &= \langle a_1, b_1 | a_1 b_1 a_1^{-1} b_1^{-1} \rangle \\
\pi_1(T_2) &= \langle a_2, b_2 | a_2 b_2 a_2^{-1} b_2^{-1} \rangle \\
\pi_1(T_1 \cap T_2) &= \langle \gamma \rangle
\end{align*}
\]

$[\gamma] = a_1 b_1 a_1^{-1} b_1^{-1}$ in $\pi_1(T_1)$, $[\gamma] = a_2 b_2 a_2^{-1} b_2^{-1}$ in $\pi_1(T_1)$, so

\[
\pi_1(T_1 \cup T_2) = \langle a_1, b_1, a_2, b_2 | [a_1, b_1][a_2, b_2]^{-1} \rangle.
\]

where $[a_k, b_k] = a_k b_k a_k^{-1} b_k^{-1}$.

\square
continued.

Suppose it is true for \(g - 1 \) case. Then for \(g \) case, the intersection is an annulus,

\[
\begin{align*}
\pi_1(S) & = \langle a_1, b_1, \cdots a_{g-1}, b_{g-1} | \pi_{k=1}^{g-1}[a_k, b_k] \rangle \\
\pi_1(T_g) & = \langle a_g, b_g | [a_g, b_g] \rangle \\
\pi_1(S \cap T_g) & = \langle \gamma \rangle
\end{align*}
\]

\([\gamma] = \pi_{k=1}^{g-1}[a_k, b_k] \text{ in } \pi_1(S) \text{ and } [a_g, b_g] \in \pi_1(T_g)\).
Let \(G \) be an unoriented graph, \(T \) is a spanning tree of \(G \), \(G - T = \{ e_1, e_2, \cdots, e_n \} \), where \(e_k \) is an edge not in the tree. Then \(T \cup e_k \) has a unique loop \(\gamma_k \). Choose one orientation of \(\gamma_k \).

Lemma

The fundamental group of \(G \) is \(\pi_1(G) = \langle \gamma_1, \gamma_2 \cdots, \gamma_n \rangle \), which is a free group.
Definition (CW-cell decomposition)

A \(k \) dimensional cell \(D_k \) is a \(k \) dimensional topological disk. Suppose \(M \) is a \(n \)-dimensional manifold.

1. 0-skeleton \(S_0 \) is the union of a set of 0-cells.
2. \(k \)-skeleton \(S_k \)

\[
S_k = S_{k-1} \cup D_k^1 \cup D_k^2 \cdots \cup D_k^n,
\]

such that

\[
\partial D_k^i \subset S_{k-1}.
\]

The \(k \)-skeleton is constructed by gluing \(k \)-cells to the \(k - 1 \) skeleton, all the boundaries of the cells are in the \(k - 1 \) skeleton.

3. \(S_n = M \).