Conformal Modules via Geometric Complex Analysis

David Gu

Yau Mathematics Science Center Tsinghua University Computer Science Department Stony Brook University

gu@cs.stonybrook.edu

August 2, 2020

Surface Uniformization

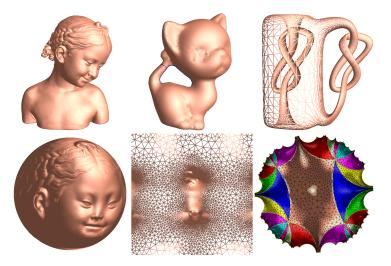


Figure: Closed surface uniformization.

David Gu (Stony Brook University)

Computational Conformal Geometry

Image: A match a ma

Surface Uniformization

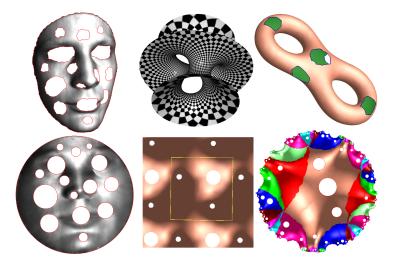


Figure: Open surface uniformization.

Strategy

- Define a family of complex functions, with some constraints;
- Show the family is a normal family;
- Istimate some geometric or analytic bounds, such as distortions;
- Maximize some coefficient of an item in the Laurent series;
- Show the limit exists by normal family property;
- Show the limit is the desired mapping.

Examples include Riemann mapping, slit mapping and so on.

Basic Concepts in Geometric Complex Analysis

Definition (Uniform Convergence)

Assume $\{f_n : \Omega \to \mathbb{C}\}\$ is a sequence of holomorphic functions defined on an open set Ω . We say the functions uniformly converge to a function $f : E \to \mathbb{C}$, if for any $\varepsilon > 0$, there is a n_0 , such that for any $n > n_0$ and any $z \in E$, we have

$$|f_n(z)-f(z)|<\varepsilon.$$

Definition (Normal Family)

Let $\Omega \subset \mathbb{C}$ be an open set on \mathbb{C} , \mathcal{F} is a normal family, if any subsequence $\{f_n\}$ in \mathcal{F} uniformly converge on any compact subset in Ω .

Theorem (Weierstrass)

Let $\{f_n : \Omega \to \mathbb{C}\}\$ be a sequence of holomorphic functions defined on an open set $\Omega \subset \mathbb{C}$, assume $\{f_n\}$ uniformly converges to $f : \Omega \to \mathbb{C}$ on compact subsets in Ω , then f is holomorphic and $\{f'_n : \Omega \to \mathbb{C}\}\$ uniformly converges to $f' : \Omega \to \mathbb{C}$.

Definition (Univalent Map)

Let $U \subset \mathbb{C}$ be open subset on \mathbb{C} , if holomorphic map $f : U \to \mathbb{C}$ is injective, namely $z_1 \neq z_2$ implies $f(z_1) \neq f(z_2)$, then f is called a univalent map or univalent function.

Theorem (Hurwitz)

Let $\{f_n : \Omega \to \mathbb{C}\}\$ be a family of holomorphic functions defined on an open set $\Omega \subset \mathbb{C}$, such that for any n and $z \in \Omega$, $f_n(z) \neq 0$. If $\{f_n\}$ uniformly converges to $f : \Omega \to \mathbb{C}$ on compact sets of Ω , then either $f \equiv 0$ or for any $z \in \Omega$, $f(z) \neq 0$.

Corollary

Let Ω be an open set in \mathbb{C} , let $\{f_n : \Omega \to \mathbb{C}\}$ be a holomorphic function series, and uniformly converges to $f : \Omega \to \mathbb{C}$ on compact sets. If each f_n on Ω is univalent, then either f is constant, or f is univalent on Ω .

Definition (Uniformly Bounded on Compact Sets)

Let \mathcal{F} be a family of holomorphic functions, if for any compact set $E \subset \Omega$, there exists a constant M, such that for any $z \in E$ and any function $f \in \mathcal{F}$, we have $|f(z)| \leq M$, then we say \mathcal{F} is uniformly bounded on compact sets.

Definition (equicontinuous)

Let \mathcal{F} be a family of holomorphic functions defined on open set $\Omega \subset \mathcal{F}$. We say \mathcal{F} is equicontinuous, if for any $\varepsilon > 0$, there exists a $\delta > 0$ such that for any distinct points z and z', $|z - z'| \leq \delta$ implies $|f(z) - f(z')| < \varepsilon$ for any $f \in \mathcal{F}$.

(I) < (II) <

Normal Family

Theorem (Montel)

Let \mathcal{F} be a family of holomorphic functions defined on an open set $\Omega \subset \mathbb{C}$, if \mathcal{F} is uniformly bounded on compact sets in Ω , then

- **1** \mathcal{F} is equicontinuous on each compact set in Ω ;
- **2** \mathcal{F} is a normal family.
- Fix a point p ∈ Ω, a family of univalent holomorphic functions F is a normal family, if for any f ∈ F, |f(p)| < M and |f'(p)| < N.</p>
- A family of holomorphic functions *F*, if there are three points {*z*₁, *z*₂, *z*₃}, such that for any *f* ∈ *F*, the image of *f* doesn't include them, then *F* is a normal family.
- $\textbf{ 3 If } \mathcal{F} \text{ is a normal family, then }$

$$\mathcal{F}^{-1} = \{f^{-1} | f \in \mathcal{F}\}$$

is also a normal family.

Definition (S Family)

All univalent holomorphic functions defined on the unit disk, with normalization condition form a normal family:

$$\mathcal{S} = \{f : \mathbb{D} \to \mathbb{C} : f \text{ univalent}, f(0) = 0, f'(0) = 1\}$$

any $f \in \mathcal{F}$ has Taylor expansion in a neighborhood of 0,

$$f(z)=z+a_2z^2+a_3z^3+\cdots,$$

Taylor series converge in the unit disk |z| < 1.

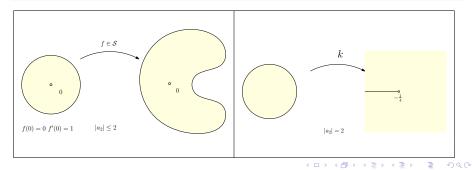
Geometric Distortion Estimate

Definition (Koebe Function)

The holomorphic function $k(z) \in \mathcal{S}$,

$$k(z) = \frac{z}{(1-z)^2} = z + 2z^2 + 3z^3 + 4z^4 + \cdots$$

is called the Koebe fuction, which maps \mathbb{D} to $\mathcal{C} \setminus (-\infty, -1/4]$.



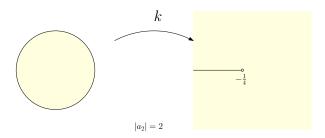
David Gu (Stony Brook University)

Computational Conformal Geometry

August 2, 2020 12 / 72

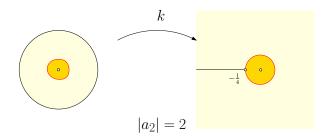
Theorem (Bieberbach a_2 of S)

If $f \in S$, then $|a_2| \le 2$, equality holds if and only if f is a rotation of the Koebe function.



Theorem (Koebe 1/4)

For any $f \in S$, $f(\mathbb{D})$ includes an open disk |w| < 1/4. If there exists a |w| = 1/4 and $w \notin f(\mathbb{D})$, then f is a rotation of Koebe function.



Proof.

Let $f(z) = z + a_2 z^2 + a_3 z^3 \cdots$ be a function of S, $w \notin f(\mathbb{D})$. Construct a holomorphic function

$$h(z) = \frac{wf(z)}{w - f(z)} = z + \left(a_2 + \frac{1}{w}\right)z^2 + \cdots$$

then h(z) is in S, by Bieberbach theorem,

$$\left|a_2 + \frac{1}{w}\right| \le 2 \tag{1}$$

and $|a_2| \le 2$, therefore $|1/w| \le 4$, $|w| \ge 1/4$. Equality holds if and only f is a rotation of Koebe function.

Definition (Σ Family)

All holomorphic functions defined on $\Delta = \{|w| > 1\}$ with normalization condition form a normal family,

$$\Sigma = \{g: \Delta o \mathbb{C}: g \text{ univalent}, \ g(\infty) = \infty, \ g'(\infty) = 1\},$$

for any $g \in \Sigma$, it ias Laurent power series in a neighborhood of ∞ ,

$$g(z) = z + b_0 + \frac{b_1}{z} + \frac{b_2}{z^2} + \cdots$$

the series converges in Δ .

Definition (Full Mapping Family)

The family of holmorphic functions

 $ilde{\Sigma} := \{f : \Delta o \mathbb{C} : f \in \Sigma, \mathbb{C} \setminus f(\Delta) \text{ has zero Lebesgure Measure} \}$

Theorem (Gronwall Area)

Suppose $g \in \Sigma$, and

$$g(z) = z + b_0 + \frac{b_1}{z} + \frac{b_2}{z^2} + \frac{b_3}{z^3} + \cdots$$

then

$$\sum_{n=1}^{\infty} n|b_n|^2 \leq 1,$$

equality holds if and only if g is a full mapping, $g \in \tilde{\Sigma}$.

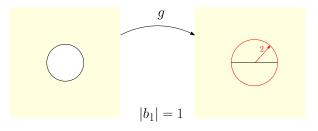
Geometric Distortion Estimate

Corollary (b_1 of Σ)

If $g\in \Sigma,$ then $|b_1|\leq 1,$ equality holds if and only if

$$g(z) = z + b_0 + \frac{b_1}{z}, |b_1| = 1$$
 (2)

g maps Δ to the complement of a length segment with length 4.



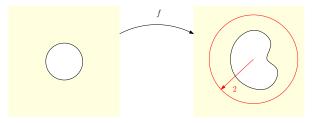
Geometric Distortion Estimate

Corollary

For any
$$f \in \Sigma$$
, $f : \{|z| > 1\} \to \mathbb{C}$, $f(\infty) = \infty$, $f'(\infty) = 1$,
 $f(z) = z + b_0 + \frac{b_1}{z} + \frac{b_2}{z^2} + \cdots$,

we have

$$\partial f(|z| > 1) = f(|z| = 1) \subset \{|w - b_0| \le 2\}.$$



(3)

Proof.

If
$$f(z) \in \Sigma$$
, then $f(z^{-1})^{-1} \in S$,

$$f(z) = z + b_0 + \frac{b_1}{z} + \frac{b_2}{z^2} + \cdots$$

therefore

$$f(z^{-1}) = \frac{1}{z} + b_0 + b_1 z + b_2 z^2 + \cdots$$

$$f(z^{-1})^{-1} = z(1 + b_0 z + b_1 z^2 + \cdots)^{-1}$$

$$= z(1 - (b_0 z + b_1 z^2 + \cdots) + \cdots)$$

$$= z - b_0 z^2 - b_1 z^3 + \cdots$$

let $g(z) = f(z^{-1})^{-1}$, then g(0) = 0, g'(0) = 1, hence $g \in \mathcal{S}$.

э

A D N A B N A B N A B N

Continued.

Given any point $\zeta \in \partial \mathbb{D}$, $|\zeta| = 1$, then $w = g(\zeta) \notin g(\mathbb{D})$, by Bieberbach inequality (1),

$$-b_0+rac{1}{w}\Big|\leq 2,$$

by $w = g(\zeta) = 1/f(\zeta^{-1})$, we obtain 1/w = f(1/zeta). Set $\zeta' = 1/\zeta \in \partial \mathbb{D}$, we obtain

$$-b_0+f(\zeta')|\leq 2.$$

э

Theorem (Riemann)

Givne a non-empty, simply connected, open subset $\Omega \subset \mathbb{C}$, Ω is not the entire complex plane \mathbb{C} , for any point $z_0 \in \Omega$, there exits a unique biholomorphic mapping from Ω to the unit disk \mathbb{D} , $f : \Omega \to \mathbb{D}$, such that $f(z_0) = 0$ and $f'(z_0) > 0$.

Uniqueness

If we don't require $f(z_0) = 0$ and $f'(z_0) > 0$, then conformal mapping is not unique. All such kind of mappings differ by a Möbius transformation, $\varphi : \mathbb{D} \to \mathbb{D}$,

$$arphi(z)=e^{i heta}rac{z-z_0}{1-ar{z}_0 z},\quad z_0\in\mathbb{D}, heta\in[0,2\pi)$$

Extendibility

If Ω is a Jordan domain, the boundary $\partial\Omega$ is a piecewise anylatical curves, then the conformal mapping φ can be extended to the boundary $\varphi: \partial\Omega \to \partial\mathbb{D}$.

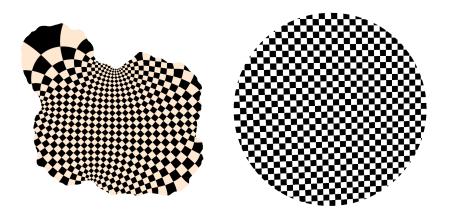


Figure: Riemann Mapping

David Gu (Stony Brook University)

Computational Conformal Geometry

August 2, 2020 25 / 72

2

・ロト ・四ト ・ヨト ・ヨト

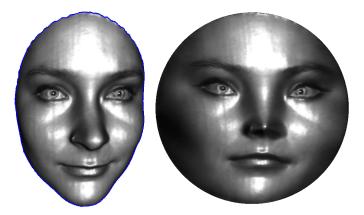


Figure: Riemann Mapping

David Gu (Stony Brook University)

Computational Conformal Geometry

August 2, 2020 26 / 72

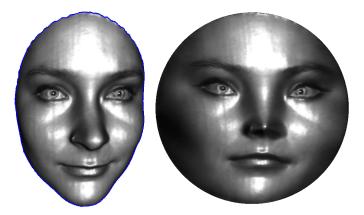


Figure: Riemann Mapping

David Gu (Stony Brook University)

Computational Conformal Geometry

August 2, 2020 27

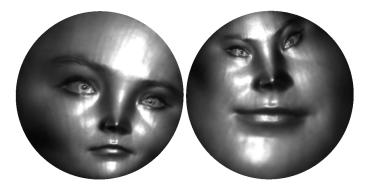


Figure: Mobius Transformation.

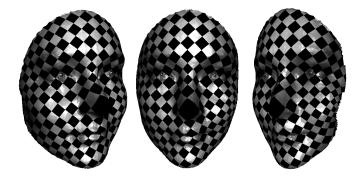


Figure: Texture mapping.

August 2, 2020 29 / 72

(日)

Lemma (Schwartz)

Assume f(z) is analytic on $\mathbb{D} = \{|z| < 1\}$, satisfying $|f(z)| \le 1$, and f(0) = 0, then $|f'(0)| \le 1$ and for $\forall z \in \mathbb{D}$,

 $|f(z)|\leq |z|.$

If |f'(0)| = 1, or $\exists 0 \neq z_0 \in \mathbb{D}$, such that $|f(z_0)| = |z_0|$, then f is a rotation,

$$f(z)=e^{i\theta}z.$$

Schwartz Lemma

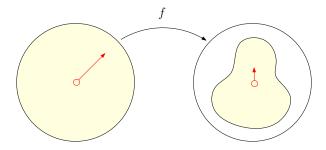


Figure: Schwartz lemma.

Proof.

Since f is holomorphic, it can be represented as power series in a neighborhood of 0,

$$f(z)=a_0+a_1z+a_2z^2+\cdots$$

Because f(0) = 0, $a_0 = 0$, hence

$$f(z) = a_1 z + a_2 z^2 + \cdots = z(a_1 + a_2 z + a_3 z^2 + \cdots),$$

the power series in the parenthesis converge. Construct auxiliary holomorphic function,

$$g(z) = \begin{cases} f(z)/z & z \neq 0\\ f'(0) & z = 0 \end{cases}$$

Schwartz Lemma

Proof.

here the auxiliary function has power series $g(z) = a_1 + a_2 z + a_3 z^3 + \cdots$ converges in \mathbb{D} , where $g(0) = a_1 = f'(0)$. On every circle |z| = r < 1, |f(z)| < 1, the norm of the function

$$|g(z)| = \frac{|f(z)|}{|z|} < 1/r.$$

By maximal value principle, on the entire disk |z| < r, |g(z)| < 1/r, let $r \to 1$, we obtain on the unit disk \mathbb{D} ,

$$|g(z)| \leq 1$$
,

namely $|f(z)| \le |z|$. If at some interior point z_0 , $|g(z_0)| = 1$, by maximal value principle, g(z) must be a constant *a*. By |a| = 1, we get $a = e^{i\theta}$,

$$f(z)=e^{i\theta}z.$$

Lemma

Assume $f : \mathbb{D} \to \mathbb{D}$ is a conformal automorphism of the unit disk, then f(z) must be a Möbius transformation.

Proof.

We construct a Möbius transformation

$$\varphi(z)=\frac{z-f(0)}{1-\overline{f(0)}z},$$

then $g = \varphi \circ f$ is a conformal automorphism of \mathbb{D} , and g(0) = 0. By Schwarz lemma, for all $z \in \mathbb{D}$, $|g(z)| \le |z|$. Similarly, w = g(z), then $|g^{-1}(w)| \le |w|$, therefore, for all $z \in \mathbb{D}$, |g(z)| = |z|. By Schwartz lemma, we get $g(z) = e^{i\theta}z$. Hence $f(z) = \varphi^{-1}(z) \circ g(z)$ is a Möbius transformation.

э

< □ > < □ > < □ > < □ > < □ > < □ >

Consider the functions family \mathcal{F} , consisting all functions $g(z): \Omega \to \mathbb{D}$ satisfying the following 3 conditions:

- g(z) is analytic and univalent on Ω ;
- 2 $\forall z \in \Omega, |g(z)| < 1;$
- **3** $g(z_0) = 0$ and $g'(z_0) > 0$.

The whole proof has three steps:

- **(**) the function family \mathcal{F} is non-empty, $\mathcal{F} \neq \emptyset$;
- **2** there exists a function $f \in \mathcal{F}$, such that $f'(z_0)$ is maximized;
- Ithis function f is the desired conformal mapping.

Existence Proof

Step 1 $\mathcal{F} \neq \emptyset$

There is a point $a \neq \infty$, $a \notin \Omega$. Since Ω is simply connected, we can define a single-valued branch of $\sqrt{z-a}$, denoted as h(z). h(z) won't take the same value twice, or take the opposite value: if $w \in h(\Omega)$, then $-w \notin h(\Omega)$. Choose a small disk $|w - h(z_0)| < \rho$ inside $h(\Omega)$, then $|w + h(z_0)| < \rho$ has no intersection point with $h(\Omega)$. Therefore for any $z \in \Omega$, $|h(z) + h(z_0)| > \rho$,

$$h_0(z) := \frac{\rho}{h(z) + h(z_0)}$$

is univalent on Ω , and $\forall z \in \Omega$, $|h_0(z)| < 1$. Choose $\theta_0 \in [0, 2\pi)$, such that $h'_1(z_0) > 0$, where

$$h_1(z):=e^{i heta_0}rac{h_0(z)-h_0(z_0)}{1-\overline{h_0(z_0)}h_0(z)}, \quad h_1\in \mathcal{F}.$$

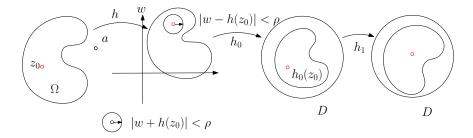


Figure: \mathcal{F} is non-empty.

æ

Step 2

Define supreme

$$\beta = \sup_{g \in \mathcal{F}} g'(z_0),$$

there is a sequence $\{g_n\} \subset \mathcal{F}$, such that

$$\lim_{n\to\infty}g'_n(z_0)=\beta.$$

Based on Montel theorem, \mathcal{F} is a normal function family, hence there is a subsequence $\{g_{n_k}\} \subset \{g_n\}$, which converges to an analytic function f on Ω , and uniformly converges on any compact subset on Ω . By Weierstrass theorem, $\beta = f'(z_0)$. Because β is finite, and $\beta > 0$, we obtain f is not constant.

Existence Proof

Step 3

Because $\{g_n\}$ on Ω is univalent, by Hurwitz the limit function f is also univalent. f is analytic, therefore conformal. We need to show f is surjective. Because f is bijective, Ω is simply connected, hence $f(\Omega)$ is simply connected. Assume there is an interior point $w_0 \in \mathbb{D}$, such that $w_0 \notin f(\Omega)$. Define a function $f_2 : \Omega \to \mathbb{D}$,

$$f_2(z) := \sqrt{rac{f(z) - w_0}{1 - \overline{w}_0 f(z)}}$$

has an analytic branch, restricted on the image set $f_2 : \Omega \to f_2(\Omega)$ is bijective, $f_2(\Omega) \subset \mathbb{D}$. Let

$$F(z) = \frac{f_2(z) - f_2(z_0)}{1 - \overline{f_2(z_0)}f_2(z)},$$

then $F: \Omega \to \mathbb{D}$ is injective.

David Gu (Stony Brook University)

Step 3

By
$$f(z_0) = 0$$
, we obtain $|f_2(z_0)| = \sqrt{|w_0|}$,

$$|F'(z)| = \left| \frac{1 - \overline{f_2(z_0)} f_2(z_0)}{[1 - \overline{f_2(z_0)} f_2(z)]^2} \right| |f'_2(z)| = \left| \frac{1 - \overline{f_2(z_0)} f_2(z_0)}{[1 - \overline{f_2(z_0)} f_2(z)]^2} \right| \frac{1}{2\sqrt{\frac{f(z) - w_0}{1 - \overline{w_0} f(z)}}} \left| \frac{1 - \overline{w}_0 w_0}{[1 - \overline{w}_0 f(z)]^2} \right| |f'(z)|$$
(4)

Image: A match a ma

э

Existence Proof

Step 3

plug in $z = z_0$

$$|F'(z_0)| = \left| \frac{1 - |f_2(z_0)|^2}{[1 - |f_2(z_0)|^2]^2} \right| \frac{1}{2\sqrt{|\frac{f(z_0) - w_0}{1 - \overline{w_0}f(z_0)}|}} \left| \frac{1 - |w_0|^2}{[1 - \overline{w}_0 f(z_0)]^2} \right| |\beta|$$

$$= \frac{1}{1 - |w_0|} \frac{1}{2\sqrt{|w_0|}} |1 - |w_0|^2| \cdot |\beta|$$

$$= \frac{1 + |w_0|}{2\sqrt{|w_0|}} |\beta| > |\beta|$$
 (5)

Construct the function

$$g(z)=\frac{|F'(z_0)|}{F'(z_0)}F(z),$$

then $g \in \mathcal{F}$ and $g'(z_0) > \beta$. Contradiction. Hence $f : \Omega \to \mathbb{D}$ is surjective.

Topological Annulus

Conformal Mapping for Annulus

(a)Topological annulus

(b) Conformal module

Figure: Canonical conformal mapping for topological annulus.

Theorem

Suppose Ω is a doubly connected domain on \mathbb{C} , then Ω is conformally equivalent to a canonical annulus.

Step 1.

Assume $\partial \Omega = \gamma_1 - \gamma_2$, both γ_1 and γ_2 include more than 1 point, and γ_1 is finite. Suppose the complementary of γ_1 has two connected components, the one containing Ω is dentoed as Ω_1 . By Riemann mapping theorem, we can conformally map Ω_1 onto the unit planar disk |z'| < 1, Ω is mapped to Ω' , γ_2 to γ'_2 inside the unit disk.

Step 2.

The complementary of γ'_2 has two connected components, the one containing Ω' is denoted as Ω'_2 . We conformally map Ω'_2 onto the exterior to the unit disk |z''| > 1, mapping $z' = \infty$ to $z'' = \infty$. $\gamma'_1 \mapsto \gamma''_1$, $\Omega' \mapsto \Omega'', \infty \notin \Omega'', \ \partial \Omega'' = \gamma''_1 - \gamma''_2$.

イロト 不得 トイヨト イヨト 二日

Conformal Module for Topological Annulus

Step 3.

Use the map $t = \log z''$, map Ω'' to B_1 , B_1 is included in the right half plane $\{t|\Re t > 0\}$. The mapping is not one-to-one, B_1 is a infinite stripe, B_1 is periodic, for any $t \in B_1$, $t + 2k\pi i$, $k \in \mathbb{Z}$ is also in B_1 .

Step 4.

By Riemann mapping theorem, there is a map $\omega = f(t)$, which maps B_1 to the vertical stripe region

$$B_2 := \{ \omega | \mathbf{0} < \Re \omega < h \},\$$

the mapping $f: B_1 \rightarrow B_2$ maps

$$f: \{-\sqrt{-1}\infty, 0+\sqrt{-1}\infty\} \mapsto \{-\sqrt{-1}\infty, 0+\sqrt{-1}\infty\}.$$

Because both B_1 and B_2 are simply connected, the boundaries are with more than one point, since they are conformal equivalent.

David Gu (Stony Brook University)

Computational Conformal Geometry

Stpe 4. Continued

Assume $f(2\pi i) = \omega_0$, by scaling map, we can assume $f(2\pi i) = 2\pi i$. We prove the mapping has the property:

$$f(t+2\pi i)=f(t)+2\pi i.$$

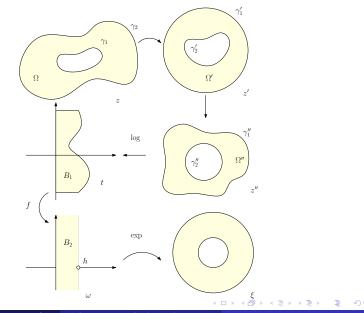
Since both two conformal mappings $f(t + 2\pi i) - 2\pi i$ and f(t) map B_1 to B_2 , and maps $-\infty i, 0, +\infty i$ to $-\infty i, 0, +\infty i$, therefore by the uniqueness of Riemann mapping $f(t + 2\pi i) - 2\pi i = f(t)$.

Stpe 5.

The map $\xi = \exp(\omega)$ maps B_2 to the canonical annulus $1 < |\xi| < e^h$, the composition $\xi = \exp(f(\log z''))$ maps Ω'' to the annulus $1 < |\xi| < e^h$, which is conformal injective. So the composition of all the mappings together is the conformal mapping between Ω to $1 < |\xi| < e^h$.

David Gu (Stony Brook University)

Conformal Module for Topological Annulus



David Gu (Stony Brook University)

Computational Conformal Geometry

August 2, 2020 48 / 72

Slit Map Topological Poly-annulus

Slit Map

Figure: Slit map.

David Gu (Stony Brook University)

Computational Conformal Geometry

August 2, 2020 50 /

Definition (slit domain)

A connected open set (domain) $\Omega \subset \mathbb{C}$ is called a slit domain, if every connected component of its boundary $\partial \Omega$ is either a point or a horizontal closed interval.

Theorem (Hilbert)

Given any domain $\Omega \subset \mathbb{C}$, its boundary has finite number of connected components, then Ω is conformal equivalent to a slit domain.

Hilbert Theorem

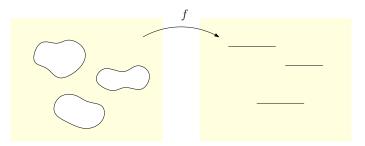


Figure: Hilbert theorem.

Lemma

In a neighborhood of ∞ , given analytic functions

$$\alpha(z) = z + \frac{k_1}{z} + \cdots, \quad \beta(z) = z + \frac{l_1}{z} + \cdots,$$

then

$$\beta \circ \alpha(z) = z + \frac{k_1 + l_1}{z} + \cdots$$
 (6)

Proof.

By direct computation.

- (E

æ

Proof.

Given a planar domain $\Omega \subset \hat{\mathbb{C}}$, by a Möbius transformation, we can assume $\infty \in \Omega$ and $\Omega \subset \{|z| > 1\}$, let univalent holomorphic mapping family be

$$\Sigma = \left\{ f: \Omega
ightarrow \hat{\mathbb{C}} \Big| f(z) = z + b_0 + rac{b_1}{z} + rac{b_2}{z^2} + \cdots, |z| > 1
ight\}$$

if $f \in \Sigma$, then $f(\infty) = \infty$ and $f'(\infty) = 1$. Let f(z) = z, then $f \in \Sigma$, $\Sigma \neq \emptyset$.

Consider the function family $\Sigma^{-1} = \{f^{-1} | f \in \Sigma\}$, by Corollary (3), we have

$$\{|z| < 1\} \subset [f^{-1}(|w - b_0| > 2)]^c,$$

hence $f^{-1}(|w - b_0| > 2)$ excludes three points $\{-1 + \varepsilon, 0, 1 - \varepsilon\}$, therefore Σ^{-1} is a normal function family, hence Σ is a normal functional family. \Box

< □ > < □ > < □ > < □ > < □ > < □ >

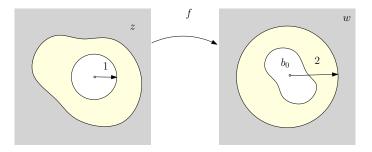


Figure: Estimate of image.

Slit Map

Proof.

By the compactness of normal function family, there exists a limit $f \in \Sigma$, such that

$$\Re_f(b_1) = \max_{g \in \Sigma} \Re_g(b_1),$$

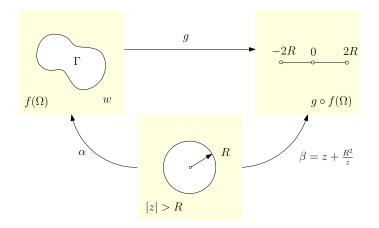
we will show $f(\Omega)$ is a slit domain. Otherwise, there is a connected component Γ of $\partial f(\Omega)$, Γ is neither a point or a horizontal line segment. Construct a map

$$g: \hat{\mathbb{C}} \setminus \Gamma \to \hat{\mathbb{C}} \setminus [-2R, 2R]$$

as follows: first construct the inverse map of a Riemann mapping $\alpha:\{|z|>R\}\to\hat{\mathbb{C}}\setminus\Gamma$,

$$\alpha(z)=z+\frac{\varepsilon}{z}+\cdots$$

and slit map $\beta: \{|z| > R\} \rightarrow \hat{\mathbb{C}} \setminus [-2R, 2R], \ \beta(z) = z + \frac{R^2}{z}$,



э

イロト イヨト イヨト イヨト

Slit Map

continued.

The the composition map $g:\hat{\mathbb{C}}\setminus\Gamma o\hat{\mathbb{C}}\setminus[-2R,2R]$,

$$g(w) = \beta \circ \alpha^{-1}(w) = w + \frac{\lambda}{w} + \cdots,$$

by the corollary of Gronwall theorem (2), comapre α and β , they maps the complement of the disk to planar domains, the real part of b_1 of the slit map reaches the maximum, hence

$$R^2 = \Re_{\beta}(b_1) > \Re_{\alpha}(b_1) = \varepsilon.$$

By Eqn. (6), $\beta(z) = g \circ \alpha(z)$, we obtain

$$R^2 = \Re_eta(b_1) = \Re_{g \circ lpha}(b_1) = \Re_g(b_1) + \Re_lpha(b_1) = \lambda + arepsilon > arepsilon.$$

Therefore $\Re_g(b_1) = \lambda > 0$.

continued.

By Eqn. (6), on $\{|z| > 1\}$, composition map

$$g \circ f(z) = z + rac{\Re_f(b_1) + \lambda}{z} + \cdots,$$

by $\lambda > 0$, we obtain $\Re_{g \circ f}(b_1) > \Re_f(b_1)$, this contradicts to the choice of f. Hence the assumption is incorrect, the claim holds.

Figure: Exact harmonic forms.

David Gu (Stony Brook University)

Computational Conformal Geometry

August 2, 2020 60 / 72

Figure: Closed, non-exact harmonic forms.

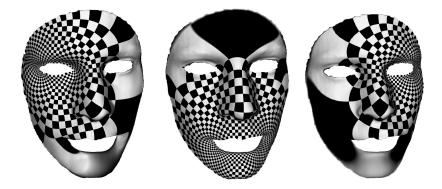


Figure: Holomorphic forms.

David Gu (Stony Brook University)

Computational Conformal Geometry

August 2, 2020 62 / 72

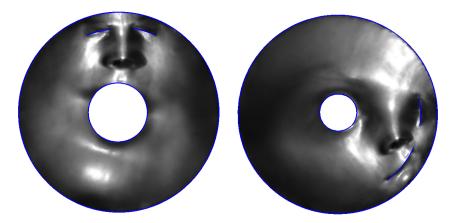


Figure: Slit maps.

David Gu (Stony Brook University)

Computational Conformal Geometry

August 2, 2020 63 / 72

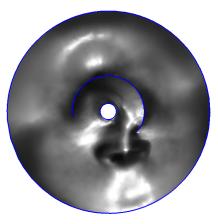


Figure: Slit maps.

David Gu (Stony Brook University)

Computational Conformal Geometry

August 2, 2020 64 / 72

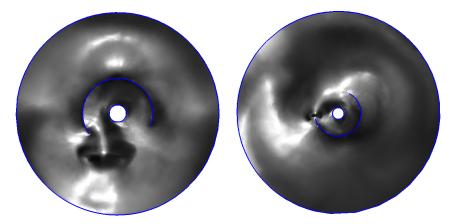


Figure: Slit maps.

Input: A genus zero mesh with n + 1 boundary components M, $\partial M = \gamma_0 - \gamma_1 - \cdots - \gamma_n$;

Output: A slit map : $M \rightarrow D$, D is a circular slit domain.

- **Or Compute exact harmonic 1-forms** $\omega_1, \omega_2, \ldots, \omega_n$;
- 2 Compute closed, non-exact harmonic 1-forms h_1, h_2, \ldots, h_n ;
- Sompute conjugate harmonic 1-forms $*\omega_1, *\omega_2, \ldots, *\omega_n$;
- Find special holomorphic 1-form arphi

$$\Im \int_{\gamma_0} \varphi = 2\pi, \Im \int_{\gamma_1} \varphi = -2\pi, \Im \int_{\gamma_k} \varphi = 0, k = 2, 3, \dots, n.$$

Slit map $f: M \to D$, choose a fixed based point $p \in M$,

$$f(q) := \exp \int_p^q \varphi$$

the integration path can be chosen arbitrarily.

Exact Harmonic Forms

Construct *n* harmonic functions f_1, f_2, \dots, f_n with Dirichlet boundary condition, for each $1 \le k \le n$,

$$\left\{ egin{array}{rl} \Delta f_k(v_i) &=& 0 \quad v_i
ot\in \partial M \ f_k(v_j) &=& -1 \quad v_j \in \gamma_k \ f_k(v_l) &=& 0 \quad v_l \in \partial M \setminus \gamma_k \end{array}
ight.$$

Exact harmonic 1-form group basis are given by

$$\omega_k = df_k, \quad 1 \leq k \leq n.$$

Random Harmonic Forms

Generate a random 1-form ω , according to Hodge decomposition theorem,

$$\omega = df + \delta \eta + h,$$

where f is a 0-form, η a 2-form,

$$\delta\omega = \delta df, \quad d\omega = d\delta\eta,$$

the harmonic form is given by

$$h = \omega - df - \delta \eta.$$

Gram–Schmidt Orthonormalization

1 for k = 1, 2, ..., n,

- Generate a random harmonic form h_k ,
- **2** Decompose h_k with respect to the orthonormal frame $\{h_1, h_2, \ldots, h_{k-1}\}$,

$$h_k \leftarrow h_k - \sum_{i=1}^{k-1} (h_i, h_k) h_i, \quad (h_i, h_j) := \int_M h_i \wedge {}^*h_j,$$

- if $||h_k||^2 = (h_k, h_k) < \varepsilon$, then regenerate h_k and re-decompose h_k , until $||h_k||^2 > \varepsilon$
- on normalize h_k

$$h_k \leftarrow \frac{h_k}{\sqrt{(h_k,h_k)}}.$$

Hodge Star Operator

Given an exact harmonic 1-form ω_k , then

$$^{*}\omega_{k}=\lambda_{k1}h_{1}+\lambda_{k2}h_{2}+\cdots+\lambda_{kn}h_{n},$$

$$\begin{pmatrix} h_1 \wedge^* \omega_k \\ h_2 \wedge^* \omega_k \\ \vdots \\ h_n \wedge^* \omega_k \end{pmatrix} = \begin{pmatrix} h_1 \wedge h_1 & h_1 \wedge h_2 & \cdots & h_1 \wedge h_n \\ h_2 \wedge h_1 & h_2 \wedge h_2 & \cdots & h_2 \wedge h_n \\ \vdots & \vdots & & \vdots \\ h_n \wedge h_1 & h_n \wedge h_2 & \cdots & h_n \wedge h_n \end{pmatrix} \begin{pmatrix} \lambda_{k1} \\ \lambda_{k2} \\ \vdots \\ \lambda_{kn} \end{pmatrix}$$

Taking integration on M for every element, and solve the linear system.

Special Holomorphic 1-form

Suppose

$$\partial M = \gamma_0 - \gamma_1 - \gamma_2 \cdots - \gamma_n,$$

choose a holomorphic 1-form

$$\varphi = \sum_{i=1}^{n} \mu_i \left(\omega_i + \sqrt{-1}^* \omega_i \right),$$

$$\begin{pmatrix} 2\pi \\ -2\pi \\ 0 \\ \vdots \\ 0 \end{pmatrix} = \Im \begin{pmatrix} \int_{\gamma_0}^{*} \omega_1 & \int_{\gamma_0}^{*} \omega_2 & \cdots & \int_{\gamma_0}^{*} \omega_n \\ \int_{\gamma_1}^{*} \omega_1 & \int_{\gamma_1}^{*} \omega_2 & \cdots & \int_{\gamma_1}^{*} \omega_n \\ \vdots & \vdots & \vdots & \vdots \\ \int_{\gamma_n}^{*} \omega_1 & \int_{\gamma_n}^{*} \omega_2 & \cdots & \int_{\gamma_n}^{*} \omega_n \end{pmatrix} \begin{pmatrix} \mu_1 \\ \mu_2 \\ \mu_3 \\ \vdots \\ \mu_n \end{pmatrix}$$

3.5 3

Integration

Choose a vertex $p \in M$, use width first search to access all the vertices on M, and for each vertex $q \in M$, we obtain a path γ_q from p to q, the circular slit mapping is given by

$$f(q) := \exp\left(\int_{\gamma_q} \varphi\right),$$

where

$$\exp(a+\sqrt{-1}b)=e^a(\cos b+\sqrt{-1}\sin b).$$