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Abstract. In this note, we will prove Riemann-Roch theorem for compact
Riemann surfaces. We will first take a look at algebraic curves and Riemann-
Roch theorem and briefly introduce the relationship between algebraic curves
and compact Riemann surfaces. Then we will introduce some algebraic tools to
study Riemann surfaces and eventually prove Riemann-Roch theorem and Abel-
Jacobi theorem, and their application in classifying holomorphic line bundles.
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Introduction

The study of algebraic curves dated to long time ago. In classical algebraic geom-
etry, people are interested in global theories, i.e, to study curves as a whole. Audi-
ence must still remember in high school, we use algebraic equations like x2+y2 = 1
to depict a geometric object, and study their global properties, like its perimeter,
the area it encloses, etc. Then people gradually begin to study the function on these
curves, for example, holomorphic or meromorphic functions on C or on Riemann
surfaces. And discovered that some local properties are easier than global ones,
e.g, holomorphic and meromorphic function can be written as power or Laurent
series at an arbitrary point on Riemann surface (given that we admit polynomials
are easier than arbitrary functions). Then a natural question arises: under what
condition a local property can be extended to global case? Tools and methods
are developed to solve this question: we have already seen manifolds, which glues
together local pieces that are easier to study. We will see later in this note that
sheaves and cohomologies are other tools often used to study this topic.

And it is amazing that the above paths is not unique to geometry, people have
found amazing resemblance in number theory. The most basic non-trivial arith-
metic I can think of (although it’s not at all trivial!) is pythagorus problem: find
x, y, z such that x2 + y2 = z2. The issue that makes this question hard is people
require integer or rational solutions. But we know that Z is a ring and Q is a field,
and in ring we can’t do division and Q is a very good field (we can see that Q is
not closed under square root). Thus, we may embed Q into R or to p-adique field
which are complete and have better properties. To make analogous, we may com-
pare numbers with functions as we have seen in above paragraph. Let us compare
Z with the ring of polynomials k[T ] (k a field) so that both of them are principal
ideal domain and unique factorization domain (we can factorize elements in them
and such factorization is unique). In geometry case, consider the field of formal
series C(T), we can add an infinity point and when we approach to it, polynomial
becomes Laurent series which corresponds to the embedding of C(T) into C(( 1

T
)).

Similarly, for any point c ∈ C, we can consider embedding C(T) into C((T − c))
of all formal Laurent series at c. Analogously in Q, if we complete it by adding
all limit points under usual Euclidean metric to get R; under p-adique metric we
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would get Qp for any p a prime number.

We can thus see the idea of going from local to global plays a big role in the
development of modern mathematics. And two seemingly afar fields, analytic
geometry and number theory, are related. We hope through this note, you may
get a feeling of this idea and have a taste of modern algebraic geometry!
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1. Some Complex Analysis

1.1. Holomorphic and Meromorphic Functions. We are majorly interested
in analysis and functions with value in C. Let us recall some useful results from
complex analysis.

Let Ω be a path connected domain in C (we will just call it a domain for short),
then we have the following classical results:

Theorem 1 (Open mapping). If f is a non-constant analytic map on Ω, then f
sends an open set to an open set.

Theorem 2. If f is a non-constant analytic map on Ω, then f doesn’t have max-
imal point in Ω.

Corollary 3. Holomorphic function on a compact Riemann surface is constant.

Theorem 4 (Liouville). If f is bounded analytic function on C, then f is a constant
map.

Suppose f and g are meromorphic functions on Ω having the same principal
parts of their Laurent series, then f − g is holomorphic on Ω. That is to say,
meromorphic functions are determined by the principal part of its Laurent series,
up to a holomorphic function. Moreover, we have the following result

Theorem 5 (Mittag-Leffler). Let {zn} be a series in C and limn→∞ zn =∞. Let

Ln(z) =
an1
z− zn

+ · · ·+
anmn

(z− zn)mn

Then there exists a meromorphic function f(z) having {zn} as its poles and Ln(z)
the principal parts of its Laurent series at {zn}.

Since holomorphic functions on C are constants, on Riemann sphere C̄, mero-
morphic functions are determined by principal parts of Laurent series up to a
constant.

Theorem 6. Meromorphic functions on Riemann sphere are rational functions.

Theorem 7. On compact Riemann surface, a meromorphic function has same
number of zeros and poles (counting multiplicity).

Proof. Let’s consider more generally, that f : X → Y being a non-constant holo-
morphic map between Riemann surfaces, with X compact. Suppose f(x) = y, and
in properly chosen neighborhood of x, y, we may consider f(z) = zk, and we define
the index to be v(x) = k. Since X is compact, the pre-image f−1(y) is finite and
we define the degree on y as d(y) =

∑
f(x)=y v(x). We will prove that d doesn’t

depend on the choice of local charts.
For any y ∈ Y and f−1(y) = {x1, x2, · · · , xm}. Let y ∈ U and xi ∈ Vi be local

charts and f(Vi) ⊂ U. By replace U by
⋂
i f(Vi) and Vi by Vi − f

−1(
⋂
i f(Vi)) ,
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we may assume U = f(Vi) for each i (f is an open map). Furthermore, replace
U by U − f(X −

⋃
i Vi) and intersecting Vi with the pre-image of the new U, we

may assume f−1(U) =
⋃
i Vi (f is also locally closed). Thus, for each y ∈ U, it has

index v(xi) in Vi. Thus d(y) is locally constant. �

1.2. Multi-Value Functions. For any z ∈ C, we have

f(z) =
√
z =
√
reiθ = (

√
rei

θ
2 ,
√
rei

θ+2π
2 ) = (f1, f2).

From this simple example, we see that complex functions may have multi-values.
Actually, both f1 and f2 are single value holomorphic function on C−R+. We see
that

limθ→0+f1(z) = √r, limθ→0+f2(z) = −
√
r

and

limθ→0−f1(z) = −
√
r, limθ→0−f2(z) = √r.

So f1(z) and f2(z) have different limits on both sides of R+. In fact, in order to
get a single valued function of f(z), we need to take two copies of C, call them C1
and C2 and cut both of them along R+. After cutting C open along R+, we get
two boundaries R+

+ and R+
−. We then glue C1 − R+

+ with C2 − R+
− and C1 − R+

−

with C2 − R−
− to get a single surface on which f(z) is univalent and holomorphic.

Theorem 8. Suppose Ω is a simply connected domain on which f(z) is everywhere
non-zero homomorphic function, then ln(f(z)) has univalent holomorphic solution
on Ω. Equivalently, there exists holomorphic function g(z) such that eg(z) = f(z),
moreover, g(z) + i2kπ = ln(f(x)), k ∈ Z are all the univalent homomorphic
solutions.

1.3. Residues. Let D(z0, R) be a disk of radius R with center removed. If f is
analytic in D(z0, R) and z0 is a pole of f, then the residue of f on z0 is defined as

Res(f, z0) =
1

2πi

∫
|z−z0|=ρ

f(z)dz

where 0 < ρ < R. When ∞ is a pole of f, i.e, f is analytic in R < |z| <∞, the the
residue of f at ∞ is defined as:

Res(f,∞) = −
1

2πi

∫
|z|=ρ

f(z)dz

where R < ρ < +∞.
In fact, if z0 ∈ C is a pole of function f, then Res(f, z0) is the coefficient a−1 of

term 1
z−z0

in the Laurent series of f at z0. And when z0 =∞, the Laurent series is∑∞
n=−∞ anzn, and Res(f,∞) = −a−1.
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Residues can be calculated in the following way. Suppose z0 6= ∞ is a pole of
order m of f, then

Res(f, z0) =
1

(m− 1)!
limz→z0 d

m−1

dzm−1
((z− z0)

mf(z)) .

In particular when m = 1, we have

Res(f, z0) = limz→z0(z− z0)f(z).
Theorem 9 (Cauchy Integral). Suppose γ is a simple closed curve and z1, z2, · · · , zn
lie inside of domain D encircled by γ. Suppose f(z) is analytic in D except on
z1, · · · , zn and continuous in D̄ except z1, · · · , zn, then∫

γ

f(z)dz = 2πi

n∑
k=1

Res(f, zk).

Theorem 10. On Riemann sphere (C̄), we have:∑
p

Res(f, p) = 0.

This theorem holds true on any compact Riemann surface, and p might be ∞.
In fact, on compact Riemann surface, let w = fdz and take any simple loop γ.
According to Cauchy integral theorem, we have∫

γ

w =
∑
p∈γ

Res(w, p).

Then the sum of residue on the entire compact Riemann surface can be thought
of Cauchy integral along γ in opposite direction, hence equals 0.

The reason that we are in particular interested in the coefficient a−1 of the
Laurent series can be seen from the following example:

1

2πi

∫
|z−a|=r

dz

(z− a)n
=

{
1; n = 1
0; otherwise

When n 6= 1, the function dz
(z−a)n

is the derivative of a univalent holomorphic

function for 0 < |z − a| < +∞. However, when n = 1, dz
z−a

is the derivative of
log(z − a) which is a multi-valued function. log(z − a) has real part log|z| − a
and imaginary part iArg(z − a) which is a multi-value function, hence the value
of

1

2πi

∫
|z−a|=r

dz

(z− a)n

is the increment of of Im(log(z−a)) when goes around a for one lap, i.e, 2πi
2πi

= 1.
More generally, we have:
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Theorem 11. Let γ and D be as above, f is analytic in D̄ and doesn’t have zeros
on γ. Then

1

2πi

∫
γ

f ′(z)

f(z)
dz = N

where N is the number of zeros in D (counting multiplicity).
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2. Algebraic Curves and Riemann-Roch Theorem

2.1. Intro. Riemann-Roch theorem considers the question of ”how many func-
tions” are there on a compact Riemann surface. More precisely, how many func-
tions with given poles. We first give some necessary definitions and background.

Definition 12. A divisor D on a surface is a formal linear combination of points,
i.e,

D =
∑
p

npp.

And its degree is defined as deg(D) =
∑

p np. If f is a meromorphic function,
then we define (f) to be the divisor formed by formal linear combination of zeros
and poles of f counting multiplicity.

Recall that we have proved that on a compact Riemann surface, a meromorphic
function has same number of zeros and poles, thus deg((f)) = 0. We call a divisor
D =

∑
npp positive (non-negative) if np > 0 (np ≥ 0) for any p.

Definition 13. We call k a canonical divisor if its the linear combination of zeros
and poles of a meromorphic 1-form.

We call two divisors D and D ′ are linearly equivalent if D−D ′ = (f) for some
meromorphic function f. Equivalent divisors have the same degree.

Given above definition, we further define

l(D) = dim{meromorphic functions f | (f) +D ≥ 0}.
Some immediate results/observations are

(1) l(0) = 1 since holomorphic functions are constant on compact Riemann
surface.

(2) l(D) = 0 if deg(D) < 0. Since in this case, l(D) consists of functions with
more zeros than poles which is impossible.

After introducing all the notations, we give the Riemann-Roch Theorem. The
proof of this theorem is the main focus of this note, and we will give a not so
rigorous proof at the end of this section, and a detailed proof at later stage of this
note.

Theorem 14 (Riemann-Roch). Let D be any divisor and k a canonical divisor
on a compact Riemann surface X. Suppose g is the genus of X, then

l(D) = deg(D) + 1− g+ l(k−D).

Some immediate consequences of Riemann-Roch Theorem:

(1) Let D = 0. Then Riemann-Roch says 1 = 0 + 1 − g + l(k). thus we get
l(k) = g.

(2) Let D = k. Then Riemann-Roch says g = deg(k) + 1 − g + 1, thus
deg(k) = 2g− 2.
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2.2. Genus 0 Curves - Riemmann Sphere. When g = 0, Riemann-Roch the-
orem has the following form:

l(D) = deg(D) + 1+ l(k−D).

An obvious candidate for meromorphic 1-form on Riemann sphere is dz, which
has no zeros on C. However, via transform z → y = 1

z
, we see that dz = − 1

y2
dy

has an order 2 pole at∞, hence the canonical divisor k = dz = −2×∞ has order
−2. From our previous discussion, l(k) = 0. Hence Riemann-Roch theorem can
further be written as

l(D) = deg(D) + 1+ l(−2 ·∞−D),

thus

l(D) =

{
0; deg(D) < 0

deg(D) + 1; deg(D) ≥ 0
We then have the following simple summary of the relationships between deg(D)
and l(D):

deg(D) -3 -2 -1 0 1 2 3
l(D) 0 0 0 1 2 3 4

l(k−D) 2 1 0 0 0 0 0
l(D) − l(k−D) -2 -1 0 1 2 3 4

In particular, let us take an arbitrary point p so that l(p) = 2. This means
there exists functions f on X such that f has a single pole at p and no other poles
everywhere. Further, we know that f also has a single zero on X. Hence f gives a
function

f : X→ C ∪ {∞} = CP1.
f is clearly injective since f−c has only one zero for any c ∈ C. Hence f is bijective
and hence can be identified as Riemann sphere.

One other properties is that genus 0 is almost equivalent to unique factorization
domain. Suppose y is CP1 − {p1, · · · , pk}, and R be the ring of rational functions
which are regular on y, i.e, those functions whose poles can only be in the set
{p1, · · · , pk}. For example, if we take y = C then R = C[t]. Now, according to
Riemann-Roch, for any point p ∈ y, there exists a function gp ∈ R such that gp is
0 at p and has no other zeros and poles on y. It turns out for any f ∈ R, we can
write f as:

f = u
∏
p

g
np
p , np = order of zeros of gp at p, u ∈ C×

and this factorization is unique.
For curves with genus≥ 1, the assertion is not true. In general, we would have

the following:



10 FEI SUN

genus 0 1 2
deg(k) < 0 = 0 > 0

Gaussian Curvature > 0 = 0 < 0
Automorphisms PGL2(C) C/L few automorphisms

UFD Yes No No

2.3. Genus 1 Curves - Elliptic Curves. In this case, Riemann-Roch theorem
has the form

l(D) = deg(D) + l(k−D).

In particular, deg(k) = 2g − 2 = 0 and l(k) = 1. And if deg(D) > 0, then
l(D) = deg(D). Take any point p, we have l(p) = deg(p) = 1 hence all functions
such that (f) + p ≥ 0 are constants. This means, on g = 1 curve, we can not find
functions having poles of order 1 at p and no other poles.

Let us pick p ∈ X, and consider l(np) with n = 0, 1, 2, 3, . . .

n l(np) functions
0 1 constants
1 1 same as above
2 2 x, pole of order=2
3 3 y, pole of order=3
4 4 x2

5 5 xy

6 6 y2, x3

There are 7 functions in 6 dimensional space, so there must be a linear relationships
between these functions, let’s assume

ay2 + by+ cxy = dx3 + ex2 + fx+ g, a, b, c, d, e, f, g ∈ C.
We can manipulate the above equation such as add or multiply a constant to x
and y, eventually, the equation can take the form

(1) y2 = 4x3 − g2x− g3, g2, g3 ∈ C
which is an affine curve in C2. If we compactify it to CP2, we get

zy2 = 4x3 − g2xz
2 − g3z

3.

This is called an elliptic curve. The affine curve can also be written as

y2 = (x− a)(x− b)(x− c)(x− d), a, b, c, d ∈ C ∪ {∞}.

From complex analysis point of view, the above function is multi-valued for y. In
order to recover a univalent function, we need to cut open two copies of CP1 along
a, b and c, d, then glue the two copies together. We can now see that the resulting
surface is a Riemann surface of genus 1, i.e, a torus.
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Moreover, from equation (1), if we take derivative on both ends, we get

2ydy = ((x− b)(x− c)(x− d) + (x− a)(x− c)(x− d) + (x− a)(x− b)(x− d)

+(x− a)(x− b)(x− c))dx

hence dx
y

is non-zero at y = 0 and a holomorphic 1-form. Suppose we perform
integral on torus

w =

∫ p
p0

dx

y
.

The result is not unique, and the ambiguity is caused by tunnel and handle loops
of the torus, i.e,

w1 =

∫
handle

dx

y
, w2 =

∫
tunnel

dx

y

have ambiguities on

L =< w1, w2 >:= n ·w1 +m ·w2, n,m ∈ Z.

Hence w1 and w2 are well-defined on C/L and gives a map from elliptic curve to
torus.

2.4. Genus 2 Curves. In this case, Riemann-Roch theorem has the form

l(D) = deg(D) − 1+ l(k−D).

As before, we can calculate deg(k) = 2g − 2 = 2 and l(k) = g = 2. Let us also
count deg(D) and l(D):

deg(D) l(D)
< 0 0
= 0 0 or 1 (when D ≡ 0)
> 2 deg(D) − 1
= 2 1 or 2 (when D ≡ k)

= 1
0, 1 (cannot be 2 otherwise we may find a map to CP1
which is generically one-to-one hence not genus= 2!)

Since l(k) = 2, it induces a map

X→ CP1, (a, b) 7→ [a : b]

where < a, b >= l(k), hence we still get a double cover of CP1. To be more
concrete, let us consider a point p such that 2p = k. We have
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n l(np) functions
0 1 constants
1 1 same as above
2 2 x, pole of order=2
3 2 same as above
4 3 x2

5 4 y, pole of order=5
6 5 x3

7 6 xy

8 7 x4

9 8 x2y

10 9 y2, x5

Similar to g = 1 case, we now have enough functions to form a linear relationship,
and after some simplification, we may write our curve as

(2) y2 = (x− α1)(x− α2) · · · (x− α6), αi ∈ C, ∀1 ≤ i ≤ 6.
To obtain a univalent function, we may cut open two copies of CP1 along (α1, α2), (α3, α4)
and (α5, α6) then glue the two copies together. This way we find that out genus 2
curve has indeed two genus in the sense of complex geometry. Notice that in this
form, one of the αi might be ∞. In this case, we consider the affine curve

y2 = (x− α1)(x− α2) · · · (x− α5).
If we embed it to CP2, we get y2z3 = (x − α1z)(x − α2z) · · · (x − α5z). Hence if
we let y = 1, we can see that the curve z3 = (x − α1z)(x − α2z) · · · (x − α5z) is
singular at [0 : 1 : 0].

Moreover, from the equation (2), we can also deduce holomorphic 1-forms of X.
First, dx

y
is holomorphic, which can be seen by taking differentials on both side of

(2). Then z = 1
x

and w = y
x3

, equation (2) becomes

w3 = (1− α1z)(1− α2z) · · · (1− α6z).

Hence xn dx
y

= −z1−n dz
w

, and it’s immediate that xdx
y

is holomorphic. And, xn dx
y

will not be holomorphic for n > 1.

In general, there are multiple ways of representing a genus 2 curve:

(1) Double cover of CP1, an 8 shape Riemann surface.
(2) H/Γ with Γ ⊂ PSL(2,R). Automorphisms are called modular forms.
(3) Plane curve in CP2 with one double point.
(4) There exists an embedding X→ C/(L ' Z4) via

z 7−→ (∫ z
z0

dx

y
,

∫ z
z0

x
dx

y

)
.
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The C/L is called the Jacobian of X, we will talk more about it in later
sections (after the proof of Riemann-Roch theorem).

2.5. Comparison with Complex Geometry. From our discussion in previous
sections, we could deduce a comparison of algebraic theory with analysis.

Algebra Analysis

Objects
Projective algebraic curves

over C Compact Riemann surfaces

Genus
dimension of space of
holomorphic 1-forms

number of handles

Functions rational functions meromorphic functions
Genus 0 projective lines over C Riemann sphere

Genus 1 elliptic curves
C/L with

L = nw1 +mw2, n,m ∈ Z
Higher genus xy3 + yz3 + zx3 = 0 ∈ CP2 H = {τ | Im(τ)>0}

discrete groups in PSL2(R)

We hence obtain a nice correspondence between algebraic curves and complex ge-
ometry. In general, the algebra to analysis direction can be realized by imbedding
curves in big enough projective spaces. The way to do it is to first imbed algebraic
curves to something called Jacobi, which is a compact Riemann surface with corre-
sponding genus. Then by Kodaira imbedding theorem, we could imbed a compact
complex manifold M into a big enough projective space, and the dimension of the
projective space is given by the degree of certain line bundle on M.

2.6. Sloppy Proof of Riemann-Roch Theorem. We will divide the proof into
three parts, like how exactly was it proved.

Riemann:

l(D) = deg(D) + 1− i(0) + i(D)

where i(D) is called the index of speciality or the obstruction of Mittag-
Laffler problem. We will talk more on this later.

Genus: There are different definitions of genus, which we will assume they
are equivalent:
(1) Topological: number of handles.
(2) Geometric (pg): dimension of space of holomorphic 1-forms. This is

l(k).
(3) Arithmetic (pa): defined as i(0).

Roch:

i(D) = l(k−D).

In particular, if D ≡ 0 then i(0) = l(k) which means pg = pa.
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2.6.1. The Space i(D). Let us first study i(D). We are interested in the problem
that given some points {pi} on X and some integers {npi}, can we find meromorphic
functions having {pi} as poles with multiplicity at most {npi}? We define i(D) be
the space of obstruction of solving the problem.

For example, let D =
∑
npp be a divisor, we would care about those (z− p)−n

such that n > np. E.g, for 2p, we would be interested in series of the form:

c−3(z− p)−3 + · · ·+ c−m(z− p)−m.

Let Rp denotes the space of all Laurent series at p, we define

R =

{∏
p

fp ∈
∏
p

Rp | almost all fp are holomorphic

}
.

Let

R(D) :=

{∏
p

fp | fp has poles of order ≤ np at p

}
and

K(C) := {meromorphic fucntions on C} .

Then the space of obstructions i(D) can be written as

i(D) =
R

R(D) + K(C)
.

2.6.2. Riemann Theorem. Notice that l(D) = deg(D) + 1− i(0) + i(D) is always
true for D ≡ 0. Also compare the following two equations

(3) l(D) = deg(D) + 1− i(0) + i(D)

and

(4) l(D+ p) = deg(D+ p) + 1− i(0) + i(D+ p)

Since l(D+p) ≤ 1+l(D) with equality holds if and only if there exists meromorphic
function f such that (f) +D+ p ≥ 0 but (f) +D � 0. Moreover, i(D+ p) ≤ i(D)
with equality holds when exactly the same condition is satisfied, hence the theo-
rem is true of D if and only if it’s true for D + p. Thus it’s enough to show that
dim(i(0)) is finite.

Let us take a non-singular, irreducible curve C ⊂ CP2 defined by homogenous
function f(x, y, z) of degree d. For simplicity, we assume that we have moved all
the poles to ∞. Let’s consider functions on this curve:

(1) The space of all possible poles at ∞ of order≤ N has dimension dN.
(2) The space of polynomials in x, y with deg≤ N has dimension

(N+ 1)(N+ 2)

2
.
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(3) The space of polynomials on C given by polynomials of deg≤ N has di-
mension

(N+ 1)(N+ 2)

2
−

(N− d+ 1)(N− d+ 2)

2
= dN+

3

2
d−

d2

2
.

(4) The space of poles of functions on C of polynomials of deg≤ N has dimen-
sion

dN+
3

2
d−

d2

2
− 1.

(5) Compare with dN poles at ∞, we get (via genus-degree formula)

i(0) =
3

2
d−

d2

2
− 1 =

(d− 1)(d− 2)

2
= pa <∞.

2.6.3. Roch Theorem. Consider the following bilinear pairing

{meromorphic 1− forms w | (w) +D ≥ 0}× R

R(D) + K(C)
→ C

sending (w, f) 7→∑p Res(fw, p). This pairing induces a map

p : l(k−D)→ i(D)∗.

We know that the sum of residues
∑
Res(fw, p) = 0 if f is meromorphic func-

tion, but there is no such function in i(D), hence the map p is injective since∑
Res(fw, p) =

∑
Res(fw ′, p) if and only if w = w ′. So we have l(k−D) ≤ i(D)

and it leaves us to show that l(k−D) ≥ i(D).

Till now, we have l(D) = deg(D) + 1− g+ i(D) (Riemann)
l(k−D) ≤ i(D), l(D) ≤ i(k−D)
deg(k) = 2g− 2

Hence
l(D) = deg(D) + 1− g+ i(D) ≥ deg(D) + 1− g+ l(k−D)

= deg(D) + 1− g+ deg(k−D) + 1− g+ i(k−D)

≥ deg(D) + deg(k−D) + 2− 2g+ l(D)

= deg(k) + 2− 2g+ l(D) = l(D).

which forces l(k−D) = i(D).
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3. Sheaves

3.1. Presheaves and Sheaves.

Definition 15. A presheaf F on a topological space X is the following data:

• For each open set U ⊂ X, we have an Abelian group F(U) which is called
the group of section of F over U.
• For each inclusion of open sets V ↪→ U we have a restriction map resU,V :
F(U)→ F(V).

The data satisfies the following two conditions:

(1) The restriction map limited to itself is identity: resU,U = idU for ∀U open
in X.

(2) If U ↪→ V ↪→ W are inclusions of open sets, then we have (cocyle condi-
tion):

resW,U = resV,U ◦ resW,V .

We can see that a presheaf is a collection of data of local functions. For any
point p ∈ X, there might exist multiple neighbourhoods containing it, we define
the germs at p the set

{(f,U) | p ∈ U ⊂ X, f ∈ F(U)}

modulo the relationship that (f,U) ∼ (g, V) if there exists open set W ⊂ U ∩ V
such that f|W = g|W. We call the set of germs the stalk at p, denoted by Fp.

Definition 16. A presheaf F on a topological space X is a sheaf if it satisfies two
more axioms:

Identity: If {Ui}i∈I is an open cover of U and f1, f2 ∈ F(U). If resU,Uif =
resU,Uig for any i ∈ I, then f = g.

Gluability: If {Ui}i∈I is an open cover of U and fi ∈ Ui for all i. If
resUi,Ui∩Ujfi = resUj,Uj∩Uifj for all i, j ∈ I, then there exists some f ∈ F(U)
such that resU,Uif = fi for all i ∈ I.

Espace etalé or sheaf of sections We can construct a sheaf from a presheaf
by the following method (a fancier way of saying it is that we constructed an espace
etalé): Suppose F is a presheaf (sheaf) on a topological space X. As a set, let F
be the union of all stalks of F, i.e, F =

⋃
p Fp. Clearly there is a map π : F → X.

Topology of F is as follows: for each open U, it defines a set {(x, sx)|s ∈ F(U)},
such that for any for each y ∈ F there exist an open neighborhood V ⊂ F and open
neighborhood U ⊂ X so that π|V : V → U is a homeomorphism. Moreover, for any
x ∈ X and any s1, s2 ∈ π−1(x), there exist neighborhoods U1, U2 of s1, s2 and V of
x, such that U1 → V and U2 → V are homeomorphisms and for each y ∈ V , the
multiplication of elements in π−1(y)∩U1 and π−1(y)∩U2 lies in the neighborhood
of s1 · s2.
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The topological space F is called the space of sections, or sheaf of sections. It
worth noticing that lots of people use this as the definition of sheaf (especially anal-
ysis people). It has advantages and disadvantages, advantage being it’s naturally
linked to sheafification (will talk later), and disadvantage being it’s not general
enough (we see that our definition of sheaves doesn’t require F being a topological
space).

We will talk more on morphisms between sheaves later, but here’s an immediate
example: suppose π : X → Y is a continuous map between topological space, and
F is a sheaf on X. Then we define the pushforward sheaf π∗(F)(V) := F(π−1(V))
for an open set V ∈ Y.

Example 17 (Skyscraper Sheaf). Suppose X is a topological space, p ∈ X a point
and ip : p ↪→ X the inclusion map. Suppose A an abelian group, then ip,∗(A)
defined as

ip,∗(U) =

{
A, p ∈ U
{0}, otherwise

is a sheaf. Here, {0} denotes the one element group. We call this sheaf a skyscraper
sheaf, and denote it by Sk(p).

Example 18 (Constant Sheaf). Let F(U) be the maps to A which is locally con-
stant, i.e, for any p ∈ U there is an open neighborhood of p such that the function
is constant. This structure forms a sheaf. We call this sheaf the constant sheaf
associated to A, and denote it as A.

Ringed-spaces, OX-modules Suppose OX is a sheaf of rings on topological
space X, the structure (X,OX) is called a ringed space. The sheaf OX is called
the structural sheaf, and the restriction of OX on an open U ⊂ X is denoted by
OX|U = OU. Since OX is a sheaf of rings, we can have it act on sheaf of Abelian
groups F such that the following diagram commute (OX(U) is a ring and F(U) is
an Abelian group for every open set U ⊂ X):

OX(V)× F(V)
action //

resV,U×resV,U
��

F(V)

resV,U
��

OX(U)× F(U)
action

// F(U)

More concretely, suppose (X,OX) is a differential manifold with OX the sheaf of
differentiable functions, and π : V → X a vector bundle on X. Then the sheaf of
differentiable section σ : X → V is an OX-module. For any section s of π over U,
and a function f ∈ OX(U), we can get a new section fs on U.

3.2. Morphisms of Sheaves.
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Definition 19. A morphism of presheaf φ : F → G is the data of maps φ(U) :
F(U)→ G(U) on open sets U ⊂ X such that the diagram

F(U)
φ(U)

//

resU,V
��

G(U)

resU,V
��

F(V)
φ(V)

// G(V)

Morphisms of sheaves are defined exactly the same: it’s the data of maps
satisfying the same commutative diagram between sheaves. The morphism of
presheaves/sheaves induce morphisms of stalks φp : Fp → Gp, since it’s easy to
see that the sheave/presheaf morphism sends sections to sections and preserves
equivalence relationship that defines stalks.

Abelian Category Since our goal is to do cohomology of sheaves, we would
need the notion of kernels and cokernels. We will not go into the technical details
of Abelian categories, it suffices to know that such a thing admits basic arith-
metic, kernels, cokernels, images and quotients. Firstly, it is easy to define sum
of presheaves such that (F + G)(U) = F(U) + G(U). Secondly, if φ : F → G is
a morphism of presheaves, we define (Kerφ)(U) := Ker(φ(U)). Then the kernel
presheaf is uniquely determined as we may chase the following diagram:

0 // Kerφ(V) //

∃!
��

F(V) //

resV,U
��

G(V)

resV,U
��

0 // Kerφ(U) // F(U) // G(U)

Presheaf Cokernel can be defined similarly by chasing the symmetric diagram

as the above one: F(U)
ψ−→ G(U) → Cokerψ(U) → 0. Similarly, images and

quotients of presheaves can be defined open sets by open sets.

However, we would like to study things locally and can be extended to globally.
Thanks to gluability axiom, sheaf should be the right object to focus on. We then
need to extend kernels, cokernels, image and quotients to sheaves, and since there
are two more axioms to verify, this makes it harder to do so than in presheaf case.
Actually, Kernel is the easiest, and if φ : F → G is a morphism of sheaves, then
the above definition gives a sheaf Kerφ. Cause the kernel presheaf is a sub-sheaf
of F, hence identify and gluability passes from F to kerφ.

Example 20. Let X = C given the ordinary topology. Let OX be the structural sheaf
of holomorphic functions and F be the presheaf of functions admitting complex
logarithm. The following sequence is exact:

0→ Z ↪→ OX
exp2πif−−−−→ F → 0
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where Z is the constant sheaf. Another thing worth noticing is that F is not a
sheaf, since there are holomorphic functions that only has local logarithm but not
globally.

3.3. Properties at Level of Stalks and Sheafification. The most important
property this subsection will show is that the properties of sheaves can be checked
on the level of stalks. This is not true for presheaves and reflects the local nature
of sheaves.

Lemma 21. The section of sheaves of sets is determined by it’s germs, i.e, the
map

F(U)→∏
p∈U

Fp

is injective.

Proof. Use identity axiom of sheaves, if s, s ′ are two sections in F(U) who images
under the above map is the same, then for any p ∈ U there exists an open neigh-
borhood Ui such that s, s ′ restrict on Ui coincide. These {Ui} cover the entire U
and hence s = s ′. �

Notice that we only used identity axiom and not gluability. Also the use of iden-
tity axiom is the key, so the above assertion is not true in general for presheaves.

Definition 22. We say that an element
∏

p sp of
∏

p Fp consists of compatible
germs if for all p ∈ U there is a representative

(Up open in U, s̃p ∈ Up)

for sp such that the germs of s̃p at all q ∈ Up is sq. Equivalently, there exists an
open covering {Ui} and sections fi ∈ Ui such that for any p ∈ Ui we have sp is the
germ of fi at p.

Morphisms are determined by stalks If φ1, φ2 : F → G are morphisms from
a presheaf F to a sheaf G, then we have the diagram

F(U) //

��

G(U)
_�

��∏
p Fp

//
∏

p Gp

So if φ1 and φ2 agree on each stalk, then φ1 = φ2. We can further show that two
morphisms of sheaves are isomorphism if and only if they are isomorphic on each
stalk.
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Sheafification Suppose F is a presheaf. We define Fsh by defining Fsh(U) as
the set of compatible germs of the presheaf F over U. Explicitly:

Fsh(U) = {(fp ∈ Fp)p∈U, ∃V ⊂ U containing p and s ∈ F(V),

such that sq = fq, ∀q ∈ V}

The morphism F → Fsh will send s ∈ F(U) to its compatible germ in Fsh(U). We
can show that espace etalé is actually the sheafification of F.

Definition 23. Let φ : F → G be a morphism of sheaves on a topological space X.
We say that φ is a monomorphism or injective if one of the following equivalent
conditions holds

(1) φp : Fp → Gp is injective of stalks for all p ∈ X.
(2) φ(U) : F(U)→ G(U) is injective on all open set U ⊂ X.

and in this case we call F a subsheaf of G. And we say that φ is an epimorphism
or surjective if φp : Fp → Gp is surjective of stalks for all p ∈ X, and in this case
we call G a quotient sheaf of F.

Notice that we actually need to show that (1) and (2) are equivalent, but since
we know that morphisms are determined by stalks, it’s easy to check. Also,
for surjectivity, we cannot check it on open sets. A (counter)-example is as follows:
Consider X being the complex plane and OX its structural sheaf of holomorphic
functions. Let O∗X be the sheaf of invertible (nowhere zero) holomorphic functions,
then the sequence

0→ Z 2πi−→ OX
exp−−→ O∗X → 1

is exact. For the map exp : OX → O∗X, there exists open set V such that exp(V) is
not surjective.

4. Some Homological Algebra and Cohomology of Sheaves

4.1. Čech Cohomology.

Definition 24. Suppose F is a sheaf of Abelian group on a topological space X.
Let U be an open cover of X. We define a p-cochain with respect to this cover as
linear combinations of sections of the form

h0,1,...,p ∈ Γ(U0,1,...,p,F)
where

U0,1,...,p := U0 ∩U1 ∩ · · · ∩Up 6= ∅, Ui ∈ U .
We denote the (additive) Abelian group of p-cochains as Čp(U ,F). Define the
coboundary map δ : Čp(U ,F)→ Čp+1(U , F) as

δ(h)0,1,...,p+1 = (−1)i
p+1∑
i=0

h0,1,...,̂i,...,p+1 ∈ Γ(U0,...,p+1,F), ∀h0,...,p ∈ Γ(U0,...,p,F).
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As a standard procedure, it’s easy to check that δ2 ≡ 0. Then, we define

Žp(U ,F) = ker{Čp(U ,F) δ−→ Čp+1(U ,F)}
as the group of closed p-cochains and

B̌p(U ,F) = Im{Čp−1(U ,F) δ−→ Čp(U ,F)}
as the group of exact p-cochains. So

Ȟp(U ,F) := Žp(U ,F)/B̌p(U ,F)
as the p-Čech cohomology group. For simplicity, we will denote UI a non-empty
intersection of finitely many opens indexed by I, and Čech complex can be written
as

0→∏
|I|=1

F(UI)
δ−→ · · · δ−→∏

|I|=i

F(UI)
δ−→ ∏

|I|=i+1

F(UI)
δ−→ · · ·

and denote ȞU(X,F) the homology associated to this chain complex.

Lemma 25. For any cover U , we have

Ȟ0U(X,F) = Γ(X,F).

Proof. According to definition, 0-cohomology group is the kernel of δ. By axioms
of sheaves, a global section can be decomposed to {fi ∈ Ui}i∈I such that fi|Ui∩Uj =
fj|Ui∩Uj , and {fi} under δ is 0. �

Notice that the definition of Čech complex and cohomology can be defined in
the same way for presheaves, however, the above lemma doesn’t hold anymore for
presheaf cohomology.

4.2. Some Homological Algebra. Suppose now we have two coverings U =
{Ui}i∈I and V = {Vj}j∈J such that there exists a map r : J → I and for each j ∈ J
we have Vj ⊂ Ur(j), then we call V a refinement of U , or the cover V is finer than
U , denoted by V ≤ U .

Suppose U is an open cover of X and for any p ∈ X there exists an open neigh-
borhood of X which intersects with only finite many elements in U , then we call U
a locally finite open cover. Moreover, if for any cover U there exists a refinement
V of U such that V is locally finite, then we call X a paracompact space. From
now on, we will suppose that we are working on paracompact spaces.

In previous section, we have defined kernels, cokernels, images and quotients of
sheaves, which can be checked on level of stalks. Now, let F,G,H are sheaves on
some topological space X, we say the sequence

0→ F → G→ H→ 0

is a short exact sequence if for any p ∈ X
(1) Fp → Gp is injective.
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(2) Gp → Hp is surjective.
(3) Ker(Gp → Hp) = Im(Fp → Gp).

More generally, for a sequence of morphisms of sheaves

· · ·F i−→ G
r−→ H→ · · ·

we say it’s exact if Ker(Gp → Hp) = Im(Fp → Gp) for any p ∈ X.

In this section, we would like to prove the following theorem which is widely
used in homological algebra:

Theorem 26. Suppose X is a paracompact space, and

0→ F
i−→ G

r−→ H→ 0

is a short exact sequence. Then there exists group homomorphism

δp : Hp(X,H)→ Hp+1(X,F)

such that the long sequence

0→ Ȟ0(X,F)
i∗−→ Ȟ0(X,G)

r∗−→ Ȟ0(X,H)
δ0−→ Ȟ1(X,F)

i∗−→
Ȟ1(X,G)

r∗−→ Ȟ1(X,H)
δ1−→ Ȟ2(X,F)

i∗−→ · · · r∗−→ Ȟp(X,H)
δp−→ Ȟp+1(X,F)

i∗−→ · · ·
is exact.

We start by proving the following lemma:

Lemma 27. Let X be a paracompact space and 0 → F
i−→ G

r−→ H → 0 is a short
exact sequence such that for any open set in a covering U of X, the sequence

0→ F(U)
i−→ G(U)

r−→ H(U)→ 0

is exact, then there is a long exact sequence

0→ Ȟ0U(X,F)
i∗−→ Ȟ0U(X,G)

r∗−→ Ȟ0U(X,H)
δ0−→ Ȟ1U(X,F)

i∗−→
Ȟ1U(X,G)

r∗−→ Ȟ1U(X,H)
δ1−→ Ȟ2U(X,F)

i∗−→ · · · r∗−→ ȞpU(X,H)
δp−→ Ȟp+1U (X,F)

i∗−→ · · ·
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Proof. We will use a technique called chase the graph or diagramming chasing.
Consider the following diagram:

0

��

0

��

0

��

· · · // Čp−1(U ,F) δ //

i∗

��

Čp(U ,F) δ //

i∗

��

Čp+1(U ,F) δ //

i∗

��

· · ·

· · · // Čp−1(U ,G) δ //

r∗

��

Čp(U ,G) δ //

r∗

��

Čp+1(U ,G) δ //

r∗

��

· · ·

· · · // Čp−1(U ,H)
δ //

��

Čp(U ,H)
δ //

��

Čp+1(U ,H)
δ //

��

· · ·

0 0 0

such that each vertical line is a short exact sequence. Let’s choose an arbitrary
h ∈ Žp(U ,H), from the exactness of the p-column there exists g ∈ Čp(U ,G) such
that r∗(g) = h. By commutativity of the diagram, we have

r∗δ(g) = δr∗(g) = δ(h) = 0.

By exactness of the (p + 1)-column, we can find an f ∈ Čp+1(U ,F) such that
i∗(f) = δ(g) and

i∗δ(f) = δi∗(f) = δδ(g) = 0.

By column exactness, i∗ must be injective and hence δ(f) = 0, meaning f ∈
Žp+1(U ,F). Similar reasoning will shows that if h ∈ B̌p(U ,H) then f ∈ B̌p+1(U ,F).
Thus we get a morphism

δp : Ȟp(U ,H)→ Ȟp+1(U ,F)

and furthermore a long sequence

0→ Ȟ0U(X,F)
i∗−→ Ȟ0U(X,G)

r∗−→ Ȟ0U(X,H)
δ0−→ Ȟ1U(X,F)

i∗−→
Ȟ1U(X,G)

r∗−→ Ȟ1U(X,H)
δ1−→ Ȟ2U(X,F)

i∗−→ · · · r∗−→ ȞpU(X,H)
δp−→ Ȟp+1U (X,F)

i∗−→ · · ·
We need to show that this sequence is exact. Consider the piece

Ȟp(U ,H)
δp−→ Ȟp+1(U ,F) i∗−→ Ȟp+1(U ,G)

From the above construction, we get i∗(f) = δ(g) and pass it to homology groups
shows i∗(f) = 0 ∈ Ȟp+1(U ,G), so

Im(Ȟp(U ,H)
δp−→ Ȟp+1(U ,F)) ⊂ Ker(Ȟp+1(U ,F) i∗−→ Ȟp+1(U ,G)).
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On the other hand, suppose f ∈ Ker(i∗), then we have

δp(c) = δp(r∗(g)) = r∗δp(g) = r∗(i∗(f)) = 0

thus c ∈ Žp(U ,H) and hence in Im(δp). �

We’d have to stop here first and prove an important theorem in Čech cohomology
in the next subsection. We will continue our proof of Theorem 26 after that.

4.3. Important Theorem. It is obvious that the above definition depends on
the choice of covering U . We will then study how the cohomology behave under
different cover. Suppose V is a refinement of covering U . Every time we have such
an refinement, we can define a group homomorphism r∗ : Čp(U ,F)→ Čp(V,F) as
follows:

for any section h0,...,p ∈ Γ(U0,...,p,F), the map r : J → I induces an inclusion
V0,...,p ↪→ Ur(0),...,r(p), and a cochain morphism:

r∗(h)0,...,p = hr(0),...,r(p)|V0,...,p.

We say that two covers V ≤ U induce a chain map Č∗U(X,F)→ Č∗V(X,F) if

0 //
∏

|I|=1 F(UI)
δ //

r∗

��

· · · δ //
∏

|I|=i F(UI)
δ //

r∗

��

∏
|I|=i+1 F(UI)

δ //

r∗

��

· · ·

0 //
∏

|J|=1 F(VJ)
δ // · · · δ //

∏
|J|=i F(VJ)

δ //
∏

|J|=i+1 F(VJ)
δ // · · ·

commutes where the vertical maps are given by r∗. Readers are encouraged to
getting familiar with commutative maps of chain complexes and verify the map r
and δ actually make the diagram commutative.

Theorem 28. ȞpU(X,F) is independent of the cover U . That is, if we have a
refinement V ≤ U , then the induced map ȞpU(X,F)→ ȞpV(X,F) is an isomorphism.
We define Čech cohomology group as Ȟp(X,F) regardless of choice of cover.

Proof. We will show the case that |V | = |U | + 1. Let us fix an open set U0, and
for an open cover U = {Ii}1≤i≤n, the map Ȟ∗{Ui}0≤i≤n(X,F)→ Ȟ∗{Ui}0≤i≤n(X,F) is an

isomorphism.
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Consider the exact sequences of complexes

0

��

0

��

0

��
· · · //

∏
|I|=i−1,0∈I F(UI)

//

��

∏
|I|=i,0∈I F(UI)

//

��

∏
|I|=i+1,0∈I F(UI)

//

��

· · ·

· · · //
∏

|I|=i−1 F(UI)
//

��

∏
|I|=i F(UI)

//

��

∏
|I|=i+1 F(UI)

//

��

· · ·

· · · //
∏

|I|=i−1,0/∈I F(UI)
//

��

∏
|I|=i,0/∈I F(UI)

//

��

∏
|I|=i+1,0/∈I F(UI)

//

��

· · ·

0 0 0

Notice that the cohomology groups associated with the bottom two row chain
complexes are the cohomologies in question, hence it suffices to show that the
top row is exact and induces trivial cohomologies. However, we notice that the
cohomology groups of the top row is actually ȞpU0∩UI(U0,F) except at step p = 0,
and since U0 is a contractible open set of X its higher cohomology groups are
trivial. �

By Theorem 28, we ignore the index of covering when writing Čech cohomology
group unless we need to specify which cover we are using.

After showing Čech cohomology doesn’t depend on specific cover, we shall con-
tinue our proof of Theorem 26. Remember that the lemma 27 requires that

0 → F(U)
i−→ G(U)

r−→ H(U) → 0 is exact for any open U in the open cover
U . This is generally not true for sheaf, but for any sheaf or presheaf, the left
truncated sequence

0→ F(U)
i−→ G(U)

r−→ H(U)

is exact. Hence we could define H̃ := Im(G
r−→ H) as a presheaf, and the short

sequence

0→ F(U)
i−→ G(U)

r−→ H̃(U)→ 0

is exact for any U ∈ U . Lemma 27 shows the long sequence

(5)

0→ H0(X,F)
i∗−→ Ȟ0(X,G)

r∗−→ Ȟ0(X, H̃)

δ0−→ Ȟ1(X,F)
i∗−→ Ȟ1(X,G)

r∗−→ Ȟ1(X, r̃H)

δ1−→ Ȟ2(X,F)
i∗−→ · · · r∗−→ Ȟp(X, H̃)

δp−→ Ȟp+1(X,F)
i∗−→ · · ·

is exact. The following lemma will complete the proof of Theorem 26,
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Lemma 29. The cohomology groups Ȟ∗(X,H) and Ȟ∗(X, H̃) are isomorphic.

Proof. Since H̃ is a sub-presheaf of H, the monomorphism ι : H̃ → H induces a
cochain map sending cocycles (resp. coboundaries) to cocycles (resp. cobound-

aries). Thus it further induces a map ι∗ : Ȟ∗(X, H̃)→ Ȟ∗(X,H).
First, let’s show that ι∗ is surjective. Take h ∈ Žp(X,H) and U is an open cover

of X. We may suppose U is locally finite since X is paracompact. By exactness of
sheaves, for any p ∈ X, the sequence

0→ Fp → Gp → Hp → 0

is exact. For any h ∈ Hp, we take an a compatible germ s on a neighborhood O

of p such that s(p) = h, and s ∈ Im(G(O) → H(O)) = H̃(O). We can take this

O to be sufficiently small, so that h = h0,...,p restrict on O is actually in Γ(O, H̃).
Since this argument works for every p ∈ X, we can then obtain an open cover V
such that every h0,...,p restrict on V belongs to Žp(V, H̃). Thus ι∗ is surjective.

It leaves us to prove the injectivity. Suppose h̃ ∈ Ȟp(X,H) and ι∗(h̃) = 0. Then
there exists an f0,...,p−1 ∈ Čp−1(U ,H) and h0,...,p ∈ Žp(U ,H) such that δ(f) = h.
Similar as above, we can find a refinement V of U such that f ∈ Čp−1(V,H) and

h = δ(f) ∈ Čp−1(V, H̃). Hence ι∗ is also injective. �

In fact, if we examine the above proof, we used the construction of compatible
germs, so if we pass it to presheaves and shifification, we actually proved

Lemma 30. If the two presheaves have isomorphic shifification then their coho-
mology groups are isomorphic.

4.4. More Homological Algebra and Sheaf Cohomology.

Definition 31. We say a sheaf F on X is acyclique if its higher cohomology groups
are zero, i.e, if Ȟi(X,F) = 0 for i > 0. If a sheaf can be written as the kernel of
some exact acyclique sequence then the sequence is called an acyclique resolution
of F.

Suppose

I∗ = I0 → I1 → I2 → · · ·
is a long exact sequence of acyclique sheaves, and 0 → F → I∗ is exact, i.e, I∗ is
an acyclique resolution of F, then for any U ∈ U of X, only the truncated short
sequence

0→ Γ(U,F)→ Γ(U, I0)→ Γ(U, I1)

is exact.

Theorem 32 (De Rham). Let X be a paracompact space and F is an Abelian sheaf
on X. If I∗ is an acyclique resolution of F, then we have group isomorphism

Ȟi(X,F) ' Ker{Γ(X, Ii)→ Γ(X, Ii+1)}/Im{Γ(X, Ii−1)→ Γ(X, Ii)}.
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Proof. For i = 0, since the resolution sequence is exact, Γ(X,F) → Γ(X, I0) is
injective, so

Ȟ0(X,F) = Γ(X,F) = Ker(Γ(X, I0)→ Γ(X, I1))

Now, suppose i > 0. Take Ki := Ker(Ii → Ii+1), we get a short exact sequence:

0→ Ki → Ii → Ki+1 → 0.

Use Theorem 26, we obtain a long exact sequence

0→ Ȟ0(X,Ki)→ Ȟ0(X, Ii)→ Ȟ0(X,Ki+1)→ Ȟ1(X,Ki)→ Ȟ1(X, Ii)→
Ȟ1(X,Ki+1)→ Ȟ2(X,Ki)→ · · ·→ Ȟp(X,Ki+1)→ Ȟp+1(X,Ki)→ · · ·

Since Ii is acyclique, we get Ȟp(X,Ki+1) ' Ȟp+1(X,Ki). Also, from short exact
sequence 0→ F → I0 → K1 → 0 we obtain

Ȟp(X,F) ' Ȟp−1(X,K1) ' Ȟp−2(X,K2) ' · · · ' Ȟ1(X,Kp−1).

Next, from exact sequence

0→ Ȟ0(X,Kp−1)→ Ȟ0(X, Ip−1)→ Ȟ0(X,Kp)→ Ȟ1(X,Kp−1)→ 0,

we have

Ȟ1(X,Kp−1) ' Ȟ0(X,Kp)/Im{Ȟ0(X, Ip−1)→ Ȟ0(X,Kp)}

Moreover, since H0(X,Kp) = Ker(Γ(X, Ip)→ Γ(X, Ip+1)), we obtain

Hp(X,F) ' Ker{Γ(X, Ip)→ Γ(X, Ip+1)}/Im{Γ(X, Ip−1)→ Γ(X, Ip)}.

�

De Rham theorem allows us to define cohomology theory without considering
open covers, it shows that cohomology is a gloabl property. Our next question is:
what sheaves are acyclique?

Definition 33. We call a sheaf F flasque if for any open set inclusion V ⊂ U, the
morphism F(U)→ F(V) is surjective.

In particular, we may take U = X and a flasque sheaf satisfies F(X)→ F(V) is
surjective, which implies that any local section can be extended to a global section
for flasque sheaf F.

Theorem 34. All flasque sheaves are acyclique for Čech cohomology.

Proof. Suppose h = h0,...,p ∈ Žp(X,F) which is defined on U0,1,...,p =
⋂
iUi. For

any small open subset O, we denote O(U) := {O ∩Ui, Ui ∈ U }. Then O(U) is an
open cover of O.

Let p ∈ Ua and let O = Ua. We define a p-cochain f0,...,p−1 on O(U) as

f0,...,p−1 := ha,0,...,p−1 ∈ Ua ∩U0 ∩ · · · ∩Up−1.
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Because h is a cocyle, we have

0 = δ(h)a,0,...,p = h0,...,p −

p∑
i=1

(−1)iha,0,...,̂i,...,p = h0,...,p − δ(f).

Thus, locally we have δ(f) = h|O(U). Suppose for another open subset V with

O ∩ V 6= ∅, there exists g ∈ Čp−1(V(U),F) such that δ(g) = h|V(U). We want to

show that for open cover (O∪V)(U), there exists an s ∈ Čp−1((O∪V)(U),F) such
that δ(s) = h|O∪V(U).

For p = 1, let a be an index such that (O∪V)∩Ua 6= ∅, and fa − ga is defined
on (O ∪ V) ∩ Ua. Since F is flasque, there exists t ∈ F(X) such that fa − ga = t
on (O ∪ V) ∩Ua. Thus if we define

sa(p) =

{
fa(p); p ∈ O ∩Ua

ga(p) + t(p); p ∈ V ∩Ua

then after going over all such a, we could find s ∈ Č0((O ∪ V)U ,F) such that
δ(s) = h|(O∪V)(U).

For p > 1, we have δ(f) − δ(g) = 0 on (O ∩ V)(U). Thus there exists t on
Čp−2((O∩V)(U),F) such that δ(t) = f− g on (O∩V)(U). Since F is flasque, we
can extend t to Čp−2(V(U),F) and let

s0,...,p−1(p) =

{
f0,...,p−1(p); p ∈ O ∩U0,...,p−1

g0,...,p−1(p) + δ(t)0,...,p−1(p); p ∈ V ∩U0,...,p−1

Then we have s = s0,...,p−1 ∈ Čp−1((O ∪ V)(U),F) such that δ(s) = h|(O∪V)(U).
To finish the proof, we apply Zorn’s lemma so that s can be extended to U ,

hence every cocycle is also co-exact and F is acyclique. �

We next show a result that only true for smooth manifold but not complex
manifold. We suppose our smooth manifold admits compact support for smooth
functions, which in turn gives us a partition of unity. For complex manifold how-
ever, holomorphic functions with compact support are identically 0 (consider any
point outside of the support, on which holomorphic functions must have all deriva-
tives zero hence itself is zero).

Theorem 35. Any OX-module over a smooth manifold is acyclique.

Proof. Since we always assume our space is paracompact, we can only consider
locally finite covers. Let U = {Ui}i∈I be such a cover and {fi ∈ Ui} be a partition
of unity on this cover. Take h = h0,...,p ∈ Žp(X,F) be a p-cocyle. For any
U0,...,p−1 6= ∅, define

g0,...,p−1 :=
∑
a∈I

faha,0,...,p−1.
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Since F is an OX-module, we have g ∈ Čp−1(U ,F). Moreover,

0 = δ(h)a,0,...,p = h0,...,p −

p∑
i=0

(−1)iha,...,̂i,...,p,

hence

δ(g)0,...,p =

p∑
i=0

(−1)ig0,...,̂i,...,p =

p∑
i=0

(−1)i
∑
a∈I

faha,0,...,̂i,...,p

=
∑
a∈I

fa

p∑
i=0

(−1)iha,0,...,̂i,...,p =
∑
a∈I

h0,...,p = h0,...,p.

So h is also co-exact. �

This theorem shows that if we have a sheaf F which is an OX-module of a smooth
manifold X then it’s acyclique. And if we have a resolution of such OX-module,
by De Rham Theorem 32, we can calculate cohomology groups from it. We will
use this theorem to show some classical cohomology theories can be obtained from
Čech cohomology.

4.5. Some Classical Cohomology Theories. Recall that for any point p on a
complex manifold X, we have

∧rT ∗p(X) =
⊕
p+q=r

{
(
∧pT ∗(1,0),p(X)

)
∧
(
∧qT ∗(0,1),p(X)

)
}

Here, the sub-index (0, 1) and (1, 0) emphasizes the holomorphic and anti-holomorphic
part of the exterior products. In terms of local coordinates, suppose (z1, . . . , zn)
is a local coordinate of p ∈ X, then (dz1, . . . , dzn) and (dz̄1, . . . , dz̄n) are local
coordinates of T ∗(1,0),p(X) and T ∗(0,1),p(X). Then on p, a (p, q)-form can be written as

ω =
∑

1≤i1≤···≤ip≤n

∑
1≤j̄1≤···≤j̄q≤n

ai1...ip j̄1...̄jqdz
i1 ∧ · · ·∧ dzip ∧ dz̄j̄1 ∧ · · ·∧ dz̄j̄q

with ai1...ip j̄1...̄jq ∈ C.

We denote by Ar(X) the sheaf of r-differential form on X, A(p,q)(X) the sheaf
of smooth (p, q)-forms on X, and Θ(X) the sheaf of holomorphic functions on X.
Since a constant function can be thought of those functions which vanishes under
differential, we have a long sequence

0→ C ↪→ A0(X)
d−→ A1(X)

d−→ A2(X)
d−→ · · ·

Moreover, holomorphic functions can be thought of those functions which vanishes
under ∂̄ operator, where

∂̄(f) =
∑
i

∂f

∂̄zi
dz̄i
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we have another long sequence

0→ Θ(X) ↪→ A(0,0)(X)
∂̄−→ A(0,1)(X)

∂̄−→ · · · ∂̄−→ A(0,q)(X)
∂̄−→ A(0,q+1)(X)

∂̄−→ · · ·
More generally, let E→ X be a holomorphic vector bundle, and Θ(E) is the sheaf
of holomorphic sections, similarly we have a long sequence

0→ Θ(E) ↪→ A(0,0)(E)
∂̄−→ A(0,1)(E)

∂̄−→ · · · ∂̄−→ A(0,q)(E)
∂̄−→ A(0,q+1)(E)

∂̄−→ · · ·
In particular, E ⊗ ∧pT ∗(1,0)(X) is a holomorphic vector bundle on X, if we denote

Ωp(X) the sheaf of sections of E ⊗ ∧pT ∗(1,0)(X), i.e, sheaf of E-valued (p, 0)-forms,
then we’ve got another long sequence

0→ Ωp(E) ↪→ A(p,0)(E)
∂̄−→ A(p,1)(E)

∂̄−→ · · · ∂̄−→ A(p,q)(E)
∂̄−→ A(p,q+1)(E)

∂̄−→ · · ·
Notice that in the above construction, we only consider smooth forms (in particu-
lar, holomorphic functions would be 0 under ∂̄, so if we are interested in anything
holomorphic here, we would get almost everything 0 ). Hence the Ar(X),A(p,q)(X)
and A(p,q)(M) are modules of sheaf of smooth functions over X. By Theorem 35, if
we can show that the above sequences are exact, we would have obtained acyclique
resolutions of Θ(X), Θ(E) and Ωp(E). And furthermore by De Rham Theorem 32,
we can calculate cohomologies of Θ(X), Θ(E) and Ωp(E) by Čech cohomology.

Thus, but Theorem 32, we have the following theorems connecting Čech coho-
mology and some classical cohomologies.

Theorem 36. Suppose X is a differentiable manifold, then

Ȟr(X,C) ' Ker(A
r(X)

d−→ Ar+1(X))

Im(Ar−1(X)
d−→ Ar(X))

= Hrdr(X,C).

Theorem 37. Let X be a complex manifold, E→ X is a holomorphic vector bundle,
then we have the following isomorphisms between Čech cohomology and Dolbeault
cohomology:

Ȟr(X,Θ(X)) ' Ker(A
(0,q)(X)

d−→ A(0,q+1)(X))

Im(A(0,q−1)(X)
d−→ A(0,q)(X))

= H(0,q)(X),

Ȟr(X,Θ(E)) ' Ker(A
(0,q)(E)

d−→ A(0,q+1)(E))

Im(A(0,q−1)(E)
d−→ A(0,q)(E))

= H(0,q)(E),

and

Ȟr(X,Ωp(E)) ' Ker(A
(p,q)(E)

d−→ A(p,q+1)(E))

Im(A(p,q−1)(E)
d−→ A(p,q)(E))

= H(p,q)(E).

From Hodge theory, we have the following duality result
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Corollary 38 (Kodaira-Serre Duality). Suppose X is an n-dimensional compact
complex manifold, E→ X is a holomorphic vector bundle, then

H(p,q)(X, E) = H(n−p,n−q)(X, E∗), ∀0 ≤ p, q ≤ n.

In particular,

dim
(
H(p,q)(X, E)

)
= dim

(
H(n−p,n−q)(X, E∗)

)
, ∀0 ≤ p, q ≤ n.

5. Riemann-Roch Theorem

5.1. Divisors and Line Bundles. We will constrain our conversation within
the scope of compact Riemannian surface, a.k.a, one dimensional complex closed
manifold. Suppose R is such a surface, C is a constant sheaf on R. From our
discussion in the previous section, we know

Ȟr(R,C) ' Ker(A
r(R)

d−→ Ar+1(R))

Im(Ar−1(R)
d−→ Ar(R))

= Hrdr(R,C).

The real dimension of R is 2, and for any r > 2 we have Ȟr(R,C) = 0. When r = 0

Γ(R,C) = H0(R,C) = {f | df = 0, f smooth} = C,

hence dim(H0(R,C)) = 1. Then according to Poincaré duality theorem, dimH0(R,C) =
dimH2(R,C) = 1. On the other hand, we have Hodge decomposition:

H1(R,C) '
⊕
p+q=1

H(p,q)(R),

and H(p,q)(R) = H(q,p)(R). Thus according to Kodaira-Serre duality theorem (The-
orem 38), we have

H1(R,C) ' H(1,0)(R)⊕H(0,1)(R) = H(1,0)(R)⊕H(1,0)(R) = 2g,

where g is the genus of the surface.

Definition 39. Let M and E be complex manifolds, and π :M→ E is holomorphic
map. If there exists an open cover U of E such that for any Uα ∈ U , there is a
diffeomorphism

gα : π−1(Uα)→ Uα × Cr

and for Uα ∩Uβ, there are diffeomorphisms

gβ ◦ g−1α : (Uα ∩Uβ)× Cr → (Uα ∩Uβ)× Cr

Then we call π :M→ E is called an r-dimensional holomorphic vector bundle.
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For any such a vector bundle, the map gβ ◦ g−1α has the form

gβ ◦ g−1α (e, v) = (e, gUV(v)), e ∈ E, v ∈ Cr

where gUV ∈ GL(r,C). Theses {gUV } are called transition functions of the vector
bundle and satisfy:

(6) gUU = Id, gWU ◦ gVW ◦ gUV = Id, U, V,W ∈ U .
In particular, if r = 1, we call E a holomorphic line bundle. It is easy to see that
a line bundle is equivalent to a collection of c ∈ GL(1,C) ' C× satisfying the
cocycle condition (6).

Now, given a compact Riemannian surface of genus g, and pi ∈ R, ni ∈ Z for
i = 1, . . . , s,

D = n1p1 + · · ·+ nsps
is a divisor on R. We define deg(D) = n1 + · · ·+ ns. For any divisor D, let U be
an open cover of R such that on every Uα ∈ U we can find a meromorphic function
fα having some p ′is as all its zeros (multiplicity ni > 0) and poles (multiplicity
ni < 0) if pi ∈ Uα. When Uα ∩Uβ 6= ∅, let fα and fβ have same multiplicities on
all zeros/poles on Uα ∩Uβ, and define

hαβ =
fα

fβ

then hαβ is an everywhere non-zero holomorphic function on Uα ∩ Uβ. The {hαβ}

satisfy the cocycle condition (6) and define a line bundle, denoted by [D]. We
call s = {fα} a section of [D]. When fα has only zeros on Uα, it is a holomorphic
function, and s is called a holomorphic section, otherwise it’s called a mero-
morphic section. On the other hand, suppose L is a holomorphic line bundle,
U is an open cover, {hαβ} is the transition function of the line bundle with re-
spect to this cover. If there exists a meromorphic section s ′ = {f ′α}, then f ′α is a
meromorphic function on Uα and

f ′α = hαβf
′
β.

Thus f ′α and f ′β have same multiplicities on zeros and poles on Uα ∩ Uβ, and we
could glue the {f ′α} to get a divisor on R.

5.2. Riemann-Roch Theorem. According to our discussion on divisors and line
bundles, we can assign a line bundle [D] to a divisor D. Suppose D ′ is another
divisor, [D] and [D ′] are defined by local meromorphic functions {fα} and {hα}
respectively. We say a map between two vector bundles over M

E1
F //

π1   

E2

π2~~
M
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is isomorphic if for any open set Uα ∈ M there exists a diffeomorphism gα :
π−1
1 (Uα) → π−1

2 (Uα). Hence if F : [D] → [D ′] is an isomorphism of holomorphic
line bundles, then

gα
fα

fβ
=
hα

hβ
gβ

thus on Uα ∩Uβ, we get

gα
fα

hα
= gβ

fβ

hβ
.

Using the above argument, we define a function on R as f|Uα = gα
fα
hα

, then f is

meromorphic on R. And if we write div(f) as the linear sum of the zeros and
poles of f, we have div(f) = D−D ′. En effet, [D] and [D ′] are isomorphic if and
only if there exists a meromorphic function f such that div(f) = D ′ − D. Since
any meromorphic function on a compact Riemannian surface has same number of
zeros and poles, we get deg(D ′) −Deg(D) = deg(div(f)) = 0.

Theorem 40. If L is a holomorphic line bundle over a compact Riemannian
surface R, then there exists a divisor D such that L = [D].

Proof. Take a point p ∈ R and n > 0, and s is a section of the line bundle [np].
We consider the line bundle L ⊗ [np], and consider the short exact sequence

0→ Θ(L) ×s−→ Θ(L ⊗ [np])→ SK(np)→ 0

where SK(np) is the skyscraper sheaf.
For SK(np), if we take an open cover U , such that p is not in the intersection

of any two open sets in U , then by Čech cohomology, we have Ȟ1(U , SK(np)) = 0
hence

H1(R, SK(np)) = 0.

By Theorem 26, we obtain the following long exact sequence from the above
short exact sequence

0→ H0(R,Θ(L))→ H0(R,Θ(L ⊗ [np]))→ H0(R, SK(np))→ H1(R,Θ(L))→ H1(R,Θ(L ⊗ [np]))→ 0.

Since the alternating sum of dimensions is zero for a long exact sequence, we have

dimH0(R,Θ(L)) − dimH0(R,Θ(L ⊗ [np])) + dimH0(R, SK(np))

−dimH1(R,Θ(L)) + dimH1(R,Θ(L ⊗ [np])) = 0.

Since dimH0(R, SK(np)) = n, we get

dimH0(R,Θ(L ⊗ [np])) − dimH1(R,Θ(L))
= dimH0(R,Θ(L)) − dimH0(R,Θ(L)) + n.

So, for big enough n > 0, we can guarantee dimH0(R,Θ(L⊗ [np])) > 0 and hence
the line bundle L⊗ [np] admits non-zero meromorphic section. Take such a section
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S̃ ∈ Γ(R,Θ(L ⊗ [np])), it turns out s̃/s is a non-zero meromorphic section of L,
then there exists [D] defined by zeros and poles of s̃/s. �

For any holomorphic line bundle L, we could choose a divisor D such that
L = [D] and its degree is independent of the choice of D. Thus we can define
deg(L) := deg(D).

Theorem 41 (Riemann-Roch). Suppose R is a compact Riemannian surface with
genus g and L is a holomorphic line bundle over R. Then

dimH0(R,Θ(L)) − dimH1(R,Θ(L)) = deg(L) − g+ 1.

Proof. Suppose L = [D] with D > 0 and s ∈ Γ(R, [D]). Consider the short exact
sequence

0→ Θ(R× C) ×s−→ Θ([D])→ SK(D)→ 0

where SK(D) is defined as

SK(D) =

q⊕
i=1

SK(nipi), D = n1p1 + · · ·+ nqpq.

By Theorem 26, we obtain a long exact sequence

0→ H0(R,Θ(R× C))→ H0(R,Θ([D]))→ H0(R, SK(D))→ H1(R,Θ(R× C))→ H1(R,Θ([D]))→ 0

from which we get

dimH0(R,Θ(R× C)) − dimH0(R,Θ([D])) + dimH0(R, SK(D))

−dimH1(R,Θ(R× C)) + dimH1(R,Θ([D])) = 0.

Since dimH0(R, SK(D)) = n1 + · · ·+ nq = deg(D), we further have

dimH0(R,Θ(L)) − dimH1(R,Θ(L))
= dimH0(R,Θ(R× C)) − dimH1(R,Θ(R× C)) + dimH0(R, SK(D))

= dimH0(R,Θ(R× C)) − dimH1(R,Θ(R× C)) + deg(D).

According to the acyclique resolution of holomorphic sections

0→ Θ(R× C) ↪→ A(0,0)(R)
∂̄−→ A(0,1)(R)→ 0

we have

dimH1(R,Θ(R× C)) = dimH0(R,A(0,1)(R)) =
1

2
dimH1(R,C) = g.

Moreover, dimH0(R,Θ(R× C)) = 1, thus we obtain

dimH0(R,Θ(L)) − dimH1(R,Θ(L)) = deg(D) − g+ 1,

i.e, Riemann-Roch theorem holds for positive divisors.
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To show Riemann-Roch for arbitrary divisor, suppose L = [D] withD = D1−D2
with D1 and D2 two positive divisors. Let s be the canonical section of [D2], the
short exact sequence

0→ Θ([D1 −D2])
×s−→ Θ([D1])→ SK(D2)→ 0

induces a long exact sequence, and the alternating sum of it gives

dimH0(R,Θ([D1 −D2])) − dimH
1(R,Θ([D1 −D2]))

= dimH0(R,Θ([D1])) − dimH
1(R,Θ([D1])) − dimH

0(SK(D2))

= deg(D1) − g+ 1− deg(D2)

= deg(D) − g+ 1.

�

We may further define the following two linear spaces

l(D) := {f | f meromorphic, div(f) ≥ −D}

and
i(D) := {u | u meromorphic differential form, div(u) ≥ D}

It can be show that

l(D) ' H(0,0)(R, [D]), i(D) ' H(0,1)(R, [D])

as linear spaces, hence

Corollary 42. Suppose R is a compact Riemannian surface with genus g and D
is a divisor on R. Then

dim(l(D)) − dim(i(D)) = deg(L) − g+ 1.
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6. Abel Theorem and Classification of Holomorphic Line Bundles

6.1. Abel Theorem. We still consider compact Riemann surface X, with genus=
g. From algebraic topology, the fundamental group of X can be represented as

< a1, b1, · · · , ag, bg | a1b1a−1
1 b

−1
1 · · ·agbga−1

g b
−1
g >

Suppose dw is a holomorphic 1-form, let’s define the periodic vector of dw as

V(dw) =

(∫
a1

dw, · · · ,
∫
ag

dw,

∫
b1

dw, · · · ,
∫
bg

dw

)
.

For any closed path L in X, there exists ni,mi ∈ Z such that∫
L

dw =

g∑
i=1

(
ni

∫
ai

dw+mi

∫
bi

dw

)
,

since we have the homotopy relationship

L ∼

g∑
i=1

(
ni

∫
ai

+mi

∫
bi

)
.

Furthermore, we define

L(dw) :=

{
g∑
i=1

(
ni

∫
ai

dw+mi

∫
bi

dw

)
| ni,mi ∈ Z, 1 ≤ i ≤ g

}
.

Then for any fixed point p0, the integration from p0 to p ∈ X∫p
p0

dw(modL(dw))

doesn’t depend on the choice of paths thus gives a well defined map

w(−) : X

∫−
p0
dw
// C/L(dw)

Since our surface has genus= g, there exists dw1, · · · , dwg which form a basis of
H(1,0)(X). Let us define the periodic matrix with respect to a1, · · · , ag, b1, · · · , bg

(7) Ω =


V(dw1)
V(dw2)

...
V(dwg)


g×2g

From algebraic topology, we may obtain X from an n-gon by gluing its bound-
aries in a proper way. Let’s denote the n-gon as X∗ and its boundary

∂X∗ = {a+
1 , b

+
1 , a

−
1 , b

−
1 , · · · , a+

g , b
+
g , a

−
g , b

−
g }.

Then for any p on ∂X∗, integration on C/L(dw) satisfy:

w(p)|a+i +w(p)|b+i −w(p)|a−i = 0, p ∈ a+
i
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and
w(p)|b+i −w(p)|b−i = −w(p)|a−i = w(p)a+i , p ∈ b+i .

Use these relationships, if dv is another holomorphic form on R we have:∫
∂X∗
wdv =

g∑
i=1

(∫
ai

wdv+

∫
bi

wdv+

∫
a−1i

wdv+

∫
b−1i

wdv

)

=

g∑
i=1

(∫
ai

(
w|ai −w|a−1i

)
dv+

∫
bi

(
w|bi −w|b−1i

)
dv

)

=

g∑
i=1

(
−

∫
ai

dv ·
∫
bi

dw+

∫
bi

dv ·
∫
ai

dw

)
Moreover, since d(wdv) = 0, by Stokes formula, we get∫

∂X∗
wdv =

∫
X∗
d(wdv) = 0,

hence

(8)

g∑
i=1

(
−

∫
ai

dv ·
∫
bi

dw+

∫
bi

dv ·
∫
ai

dw

)
= 0.

Similarly, for dw 6= 0, we have

i

2

∫
∂X∗
wdw =

i

2

∫
X∗
dw∧ dw > 0

and hence

(9)
i

2

g∑
i=1

(
−

∫
ai

dw ·
∫
bi

dw+

∫
bi

dw ·
∫
ai

dw

)
= 0.

If we substitute dw by dw, dv in periodic matrix (7) and denote

J =

[
0 Ig
Ig 0

]
We may write (8) and (9) as

ΩJΩT = 0,
i

2
ΩJΩ > 0

where the second term means the matrix is positive definite Hermitian. These
relations are called Riemann Bilinear Relations, which gives a necessary con-
dition for a complex g × 2g matrix to be a periodic matrix of certain compact
Riemann surface. If we further defnote

A =


∫
a+i
dw1 · · ·

∫
a+g
dw1

...
...∫

a+i
dwg · · ·

∫
a+g
dwg

 B =


∫
b+i
dw1 · · ·

∫
b+g
dw1

...
...∫

b+i
dwg · · ·

∫
b+g
dwg
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Then Ω = [A B], and Riemann bilinear relations can be written as

ABT − BAT = 0,
i

2

(
AB

T
− BA

T
)
> 0.

Moreover, if we choose d21, · · · , dwg so that A = Ig, we would have

(10)

∫
ai

dwj = δij,

∫
bi

dwj =

∫
bj

dwi

for 1 ≤ i, j ≤ g.

The following lemma gives another necessary condition that Ω satisfies.

Lemma 43. If we denote

Ω = [V1 V2 · · · V2g]
Then V1, · · · , V2g are real-independent.

Proof. Suppose otherwise, then there exists r1, · · · , r2g ∈ R, such that for any
1 ≤ i ≤ g, we have

g∑
j=1

(
rj

∫
aj

dwi + rg+j

∫
bj

dwi

)
= 0,

and
g∑
j=1

(
rj

∫
aj

dwi + rg+j

∫
bj

dwi

)
= 0.

Thus,

rank
(
V(dw1), · · · , V(dwg), V(dw1), · · · , V(dwg)

)T
< 2g.

So, there exist c1, · · · , c2g ∈ C, such that

(c1, · · · , c2g)
(
V(dw1), · · · , V(dwg), V(dw1), · · · , V(dwg)

)T
= 0.

So if we let

V =

g∑
i=1

(
cidwi + cg+idwi

)
,

we have
∫
aj
V = 0,

∫
bj
V = 0 and dV = 0. If we fix arbitrary p0 and the path

integral f(p) :=
∫p
p0
V is well defined and df = V , i.e, V is exact.

On the other hand, according to Hodge decomposition

H1(X,C) = H(1,0)(X)⊕H(0,1)(X)

hence {dw1, · · · , dwg, dw1, · · · , dwg} is a basis ofH1(X,C). So
∑g

i=1

(
cidwi + cg+idwi

)
is not exact, and we have a contradiction.

�
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Lemma 44. Let dw be a holomorphic 1-form and du a meromorphic 1-form on
X, and suppose for any 1 ≤ i ≤ g the poles of du do not lie on {ai, bi}. Then∫

∂X∗
wdu =

g∑
i=1

(
−

∫
ai

du ·
∫
bi

dw+

∫
bi

du ·
∫
ai

dw

)
= 2πi

∑
p∈X

Res(wdu, p).

Theorem 45. Let

D = p1 + · · · pn − q1 − · · ·− qn

is a divisor on X. Then D is defined by zeros and poles of a meromorphic function
if and only if: there exists a closed curve L ⊂ R such that for any holomorphic
1-form dw, we always have

n∑
i=1

∫ pi
qi

dw =

∫
L

dw.

Here,
∫pi
qi
dw is well defined integral which does not depend on the choice of paths.

Proof. Without loss of generality, we suppose all pi, qi are not on {ai, bi}, and the
set {p1, · · · , pn} ∩ {q1, · · · , qn} = ∅.

We suppose there exists meromorphic function f such that div(f) = D. Let
du = d(ln(f)), then du is meromorphic 1-form on X, and

∫
L
du ∈ Z for any

closed curve L (its residues). We denote

ni :=
1

2πi

∫
ai

du ∈ Z, mi :=
1

2πi

∫
bi

du ∈ Z

Now, let L =
∑g

i=1 (miai − nibi) which is a closed curve in X. If dw is a holomor-
phic 1-form, then

1

2πi

∫
∂X∗
wdu =

g∑
i=1

(
−
1

2πi

∫
ai

du ·
∫
bi

dw+
1

2πi

∫
bi

du ·
∫
ai

dw

)

=

g∑
i=1

(
−ni

∫
bi

dw+mi

∫
ai

dw

)
=

∫
L

dw.

And by residue calculation

1

2πi

∫
∂X∗
wdu =

n∑
j=1

(Res(wd(ln(f)), pj) − Res(wd(ln(f)), qj))

=

g∑
j=1

(w(pj) −w(qj)) =

n∑
j=1

∫ pi
qi

dw.
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Thus the equality in Abel theorem holds.

To prove the other direction, we define divisors Dj := −pj − qj. According to
Riemann-Roch,

dimH0(X, θ([Dj])) − dimH
1(X, θ([Dj])) = −2− g+ 1.

Since deg(Dj) < 0, we have

dimH0(X, θ([Dj])) = 0, dimH1(X, θ([Dj])) = i(Dj) = g+ 1.

On the other hand, the space of all holomorphic 1-form is g dimensional, and
i(D) = g + 1 implies that there exists meromorphic 1-form having exactly two
poles pj and qj (counting multiplicity). We denote such a meromorphic form by
E(pj, qj), and may suppose that Res(E, pj) = 1 and Res(E, qj) = −1.

Now, let du =
∑n

j=1 E(pj, qj) which is a meromorphic 1-form on X. According

to (10), we may add
∫
ai
dwj = δij to du so that

∫
ai
du = 0 and Res(du, pi) and

Res(du, qi) for 1 ≤ i, j ≤ n don’t change.
For an arbitrary holomorphic 1-form dw, we also have

(11)

1

2πi

∫
∂X∗
wdu =

n∑
j=1

(Res(wdu, pj) − Res(wdu, qj))

=

g∑
j=1

(w(pj) −w(qj)) =

n∑
j=1

∫ pi
qi

dw.

Take dw = dws for 1 ≤ s ≤ n, according to (10), the left hand side of (11) is

1

2πi

g∑
i=1

(
−

∫
bi

dws

∫
ai

du+

∫
ai

dws

∫
bi

du

)
=

1

2πi

∫
bs

du.

Also, by the equality of the Abel theorem, if we let L be a closed curve homotopic
to
∑g

i=1(miai − nibi), then∫
L

dws =

g∑
i=1

(
mi

∫
ai

dws − ni

∫
bi

dws

)
.

Hence for s = 1, · · · , g, from the equality in Abel theorem, we obtain

1

2πi

∫
bs

du =

g∑
i=1

(
mi

∫
ai

dws − ni

∫
bi

dws

)
.

Thus, if we define

du1 =
1

2πi
du+

g∑
i=1

nidwi,



RIEMANN-ROCH THEOREM ON COMPACT RIEMANN SURFACES 41

then for s = 1, · · · , g, ∫
ai

du1 = ns.

Again, use (10), we deduce ∫
bs

du1 =
1

2πi

∫
bs

du+

g∑
i=1

ni

∫
bs

dwi

=

g∑
i=1

(
mi

∫
ai

dws − ni

∫
bi

dws

)
+

g∑
s=1

ni

∫
bi

dws = ms.

We thus constructed a meromorphic 1-form, and its integral along any closed curve
is an integer. Hence on X the integral

∫p
p0
du1 doesn’t depend on the choice of path,

and

f(p) = exp

(
2πi

∫ p
p0

du1

)
is a meromorphic function with {p1, · · · , pn} as zeros and {q1, · · · , qn} as poles. �

6.2. Classification of Holomorphic Line Bundles on Compact Riemann
Surfaces. We adopt the notations from above, in particular,

Ω = [V1 V2 · · · V2g] .

We denote

L :=
{
n1V

T
1 + · · ·+ ngVTg + ng+1VTg+1 + · · ·+ n2gVT2g ∈ Cg | ni ∈ Z

}
and call it the lattice generated by {VT1 , · · · , VTg , VTg+1, · · · , VT2g}. We view Cg as an
Abelian group with respect to vector addition, then L ⊂ Cg is a subgroup. We
define

J(X) := Cg/L.

We have shown that vectors {VT1 , · · · , VTg , VTg+1, · · · , VT2g} are real independent, we
may view J(X) as a product of 2g unit circles, and hence a dimension g compact
complex manifold.

The map

X

(∫p
p0
dw1,··· ,

∫p
p0
dwg

)
// J(X)

doesn’t depend on the choice of paths and is well defined. We define D0(X) the
group of all order zero divisors, the above map induces a map F : D0(X) → J(X)
in the following way



42 FEI SUN

For any D = p1 + · · ·+ pn − qn − · · ·− qn ∈ D0(X),

F(D) =

(
n∑
i=1

∫ pi
p0

dw1, · · · ,
n∑
i=1

∫ pi
p0

dwg

)
−

(
n∑
i=1

∫ qi
p0

dw1, · · · ,
n∑
i=1

∫ qi
p0

dwg

)

=

(
n∑
i=1

∫ pi
qi

dw1, · · · ,
n∑
i=1

∫ pi
qi

dwg

)
∈ J(X).

Abel theorem can be then expressed in the form:

Theorem 46. A divisor D ∈ D0(X) is defined by a meromorphic function if and
only if F(D) = 0. That is to say, the group homomorphism F : D0(X) → J(X)
satisfies

Ker(F) = {D ∈ D0(X) | D is defined by a meromorphic function} .

Let us denote Z(X) the subgroup of D0(X) which consists of divisors that are
defined by meromorphic functions. Hence Abel theorem 46 induces a group ho-
momorphism

F : D0(X)/Z(X)→ J(X).

Theorem 47. The group homomorphism

F : D0(X)/Z(X)→ J(X)

is an isomorphism.

We have shown that all holomorphic line bundles are defined by divisors, and
two holomorphic bundles are homeomorphism if and only if the divisors define
them are equivalent, i.e, the difference of the two divisors is given by zeros and
poles of some meromorphic function. Thus, the group D0(X)/Z(X) is isomorphic
to all deg 0 holomorphic line bundles (group structure defined by tensor products
of line bundles).

Moreover, for d ∈ Z, let Jd(X) be the set of all deg d holomorphic line bundles
up to homeomorphisms. Then for arbitrary deg d holomorphic line bundles ld,
the map

J(X)
·ld−→ Jd(X)

is an isomorphism. This gives us the classification result:

Theorem 48 (Classification of Holomorphic Line Bundles on Compact Riemann
Surface). The Abelian group of all holomorphic line bundles on X via tensor product
is isomorphic to J(X)× Z.

Moreover, two holomorphic line bundles l1, l2 are diffeomorphism if and only if
deg(l1) = deg(l2). So actually J(X) describes the set of non-analytical homeo-
morphism holomorphic line bundles, or furthermore, all the complex structures on
holomorphic line bundles of X gives J(X) which is a dimension g complex manifold.
J(R) is called the moduli space of holomorphic line bundles of X.


