
TRIANGULAR MESH GENERATION IN R2

HANG SI

Contents

Introduction 1
1. Constrained triangulations 2
1.1. Planar straight line graphs 2
1.2. Insert an edge 2
2. Constrained Delaunay triangulations 6
2.1. Definitions and properties 6
2.2. Incremental CDT construction 7
2.3. Recover edge by weighted Delaunay flips 8
3. Delaunay refinement 11
3.1. The meshing problem 11
3.2. Quality measures for triangles 12
3.3. Description of the algorithm 12
3.4. Proof of termination 14
3.5. Output mesh size 18
3.6. Failures of Delaunay refinement 18
4. Mesh Adaptation 18
References 18

Introduction

In this chapter, we consider the triangular mesh generation problem. The input is no
longer only a set of vertices, but typically an 2d polygonal (possible non-convex) domain.
Moreover, it may contains holes and subdomains (separated by internal boundaries).

We first consider a constrained triangulation problem in which a set of points plus
a set of line segments are given, and how to construct a triangulation of this point
set which contains the set of line segments. Although there are efficient algorithms for
constructing constrained triangulations, but incremental algorithm is easy to implement
and is thus attractive for practical use. We introduce a practical incremental algorithm
which uses a flip-based edge recovery algorithm to construct it.

We then introduces a special type of constrained triangulation that is closet, in some
sense, to the (unconstrained) Delaunay triangulation. Such triangulation can be con-
structed by the same incremental algorithm combined with the Lawson’s flip algorithm.

For many applications, the mesh quality is of the utmost importance. We will consider
how to generate “good quality” mesh with respect to geometric and numerical criteria.

1

2 HANG SI

For this purpose, the mesh vertices are no longer part of the input but need to be placed
by the algorithm itself. We introduce the classical Delaunay refinement method that
adds vertices at the circumcenters of Delaunay triangles.

1. Constrained triangulations

1.1. Planar straight line graphs. Consider now the input is a finite set of points
S ⊂ R2, together with a finite set of line segments, L, each connecting two points in S.
We require that any two line segment of L are disjoint or meet at most in a common
endpoint. G = (S,L) is a planar straight line graph (PSLG), see Figure 1.1 Left for an
example.

A constrained triangulation (or shortly CT) of a PSLG (S,L) is a triangulation of S
that contains all line segments of L as edges, see Figure 1.1 Right.

Figure 1. A set of vertices and line segments (Left) and a constrained
triangulation (Right).

By this definition, a CT of a (S,L) is nothing else a special triangulation of S which
includes L in its edge set. Hence it covers the cover hull of S. While it is not necessarily
the Delaunay triangulation of S.

Since the flip-graph of a 2d point set is connected, This implies that such a constrained
triangulation of S exists. Moreover, it needs no additional point. This is the crucial
property which ensures the termination of constrained triangulation algorithms.

1.2. Insert an edge. We first discuss how to enforce a given edge into a constrained
triangulation of (S,L) with the assumption that this edge does not intersect with any
line segments of L. We assume that both of the endpoints of the edge already exist in
a triangulation T . Otherwise, we can use the vertex insertion subroutine in Section ??
to insert them. The algorithm of insertion of an edge is given below, it consists of two
subroutines, edge location and edge recovery.

We discuss these two subroutines in the following subsections, respectively.

1.2.1. Edge location. This is similar to point location. Given an edge AB to be inserted,
it first locates one of the endpoints, say A (e.g., use the simple straight line walk ap-
proach), it then searches the other endpoint B from the located triangle whose origin
is A. This is a simple rotary traversal of the adjacent triangles of A. If AB already
appears in T , then it is inserted. Otherwise, it is a missing edge in T . We use an edge
recovery algorithm to insert this edge.

TRIANGULAR MESH GENERATION IN R2 3

Algorithm: InsertEdge(AB, T)
Input: AB is a given edge, T is a CT of (S,L);
Output: T is a CT of (S,L) and AB ∈ T ;
1 if AB is not an edge of T then
2 RecoverEdge(AB, T);
3 endif

Figure 2. Insert an edge AB into a constrained triangulation T of
(S,L). Assume that A,B ∈ S and AB does not intersect with any line
segment in L.

B A

VS

Local Swapping Example
•Recover edge CD at vector Vs

B A

VS
Figure 3. Left: search an edge AB in a constrained triangulation.
Right: the cavity of the missing edge AB. (Figures from S. Owen).

1.2.2. Recover edge by flips. A missing edge must intersect a set of edges and triangles of
T . The union of the set of all intersecting elements forms a cavity inside the triangulation.
It is a simple polygon which is not necessarily convex, see Figure 3. Moreover, the interior
of this polygon may contain vertex (vertices) of S, see an example in Figure 4.

Figure 3. Inserting a segment into a constrained Delaunay triangulation.

Two algorithms are known that construct the CDT of a PSLG
with n vertices in O(n log n) time, which is optimal in the decision-
tree model of computation. One is a divide-and-conquer algorithm
by Chew [7]. Its lineage stretches back to the first Delaunay trian-
gulation algorithm to run in O(n log n) time, the 1975 divide-and-
conquer algorithm of Shamos and Hoey [22], which was subse-
quently simplified and elaborated by Lee and Schachter [18] and
Guibas and Stolfi [13]. The other is a sweepline algorithm by Sei-
del [20], which generalizes a Delaunay triangulation algorithm of
Fortune [12] to CDTs.

Both algorithms are rarely implemented, perhaps because they
are complicated. In practice, the only widely used CDT construc-
tion algorithm begins by constructing an ordinary Delaunay trian-
gulation first, then inserts the segments into the triangulation one
by one. To insert a segment is to delete all the edges and triangles
that intersect its relative interior, create the new segment, and retri-
angulate the two polygonal cavities thus created (one on each side
of the segment) with constrained Delaunay triangles, as illustrated
in Figure 3. The cavities might not be simple polygons, because
they might have edges dangling in their interiors, as shown.

In many implementations, each segment is inserted by a naive
algorithm that takes O(m2) time where m is the number of triangles
whose interiors intersect the segment, yielding a CDT construc-
tion algorithm that takes Θ(kn2) time for some PSLGs with n ver-
tices and k segments. See Anglada [3] for a typical segment inser-
tion algorithm that usually takes Θ(m2) time, though it can achieve
Θ(m log m) best-case time when it has good luck with evenly subdi-
viding the cavities. (Anglada’s algorithm is a variant of well-known
gift-wrapping algorithms; it gift-wraps from the new segment out.)
Chew’s and Seidel’s algorithms can insert a segment in O(m log m)
time, but algorithms like Anglada’s are much easier to implement.

Despite its asymptotic time disadvantage, the incremental seg-
ment insertion algorithm is popular for good reasons: it leverages
the best existing implementations of (unconstrained) Delaunay tri-
angulation algorithms; it is easier to implement than other CDT al-
gorithms; its speed is tolerated in practice because many real-world
inputs have few or no segments that cross many edges; and the
ability to dynamically update a CDT by inserting a new segment is
itself useful—for instance, in applications that support interactive
geometric modeling. Moreover, Agarwal, Arge, and Yi [2] show
that if the k segments are inserted in random order, the expected
number of edges and triangles deleted, summed over all segment
insertions, is in O(n log2 k), compared to a deterministic worst case
of Θ(kn).

This paper presents a randomized algorithm for inserting a seg-
ment into a CDT in expected O(m) time, where m is the num-
ber of triangles whose interiors intersect the segment. The algo-
rithm is simple enough to compete with naive algorithms like gift-
wrapping for ease of programming. We provide pseudocode, which
we turned into working C code in five hours.

We also show a matchingΩ(n log2 k) lower bound on the number
of structural changes, which resolves the long-standing question

Figure 4. Chew’s algorithm for computing the Delaunay triangulation of
a convex polygon deletes vertices from the polygon in a random order
to precompute the information needed for point location, then inserts the
vertices in the opposite order.

of the expected complexity of uniformly randomized incremental
segment insertion on worst-case PSLGs.

Our third contribution is to analyze a simple algorithm for seg-
ment location—finding the first triangle deleted when a segment is
inserted—and to show that it is fast enough.

With linear-time segment insertion, the randomized incremen-
tal segment insertion algorithm constructs an n-vertex, k-segment
CDT in expected O(n log n + n log2 k) time. Although this running
time falls short of optimality by a factor of log2 k/ log n, experience
with incremental CDT construction software shows that segment
insertion does not dominate the cost of constructing the initial De-
launay triangulation unless segments that intersect many edges are
inserted by quadratic-time algorithms. Incremental segment inser-
tion is likely to remain the most used CDT construction algorithm
long into the future, so we think it is important to provide an un-
derstanding of its performance and how to make it run fast.

2 Chew’s Delaunay Vertex Deletion Algorithm

Our segment insertion algorithm is closely related to an algorithm
of Paul Chew [8] for deleting a vertex from a Delaunay triangula-
tion in expected O(m) time, where m is the degree of the deleted
vertex. The latter algorithm is a good preparation for understand-
ing the former, more complicated algorithm. The former also uses
the latter as a subroutine.

Vertex deletion is an operation that updates a Delaunay trian-
gulation so it has one less vertex and is still Delaunay. Chew’s
algorithm can delete vertices from CDTs as well.

For simplicity, consider the problem of constructing the Delau-
nay triangulation of a convex polygon. Chew’s algorithm is a ran-
dom incremental insertion algorithm that inserts one vertex at a
time into the Delaunay triangulation. The same algorithm, with no
changes, can also retriangulate the cavity evacuated when a vertex
is deleted from a Delaunay triangulation, even though the cavity
might not be convex. We will not justify that claim here, except to
point out that Chew’s algorithm is a disguised algorithm for delet-
ing a vertex from a three-dimensional convex hull [16], which is
related by the lifting map [5, 19, 11] to deleting a vertex from a
two-dimensional Delaunay triangulation.

Let V be a sequence listing the m vertices of a convex polygon in
counterclockwise order. The algorithm begins by generating a ran-
dom permutation of V that dictates the order in which the vertices
will be inserted. It constructs a triangle from the first three vertices
of the permutation, then inserts the remaining vertices one by one.

Just before a vertex u is inserted, it lies outside the growing tri-
angulation, but only one triangulation edge vw separates u from the
triangulation’s interior. Point location is the task of identifying the
edge vw. Next, the algorithm inserts u by first identifying and delet-
ing all the triangles whose circumcircles enclose u, which can be
found quickly by a depth-first search from vw. Then, by extending
new edges from u, it retriangulates the cavity formed by taking the
union of the deleted triangles and △uvw, as illustrated in the right
half of Figure 4. This is essentially the Bowyer–Watson algorithm
[4, 15, 24] for inserting a vertex into a Delaunay triangulation.

x

a

b

q

pc

d

a

b
c

d
a

b
c

d

Figure 3. Inserting a segment into a constrained Delaunay triangulation.

Two algorithms are known that construct the CDT of a PSLG
with n vertices in O(n log n) time, which is optimal in the decision-
tree model of computation. One is a divide-and-conquer algorithm
by Chew [7]. Its lineage stretches back to the first Delaunay trian-
gulation algorithm to run in O(n log n) time, the 1975 divide-and-
conquer algorithm of Shamos and Hoey [22], which was subse-
quently simplified and elaborated by Lee and Schachter [18] and
Guibas and Stolfi [13]. The other is a sweepline algorithm by Sei-
del [20], which generalizes a Delaunay triangulation algorithm of
Fortune [12] to CDTs.

Both algorithms are rarely implemented, perhaps because they
are complicated. In practice, the only widely used CDT construc-
tion algorithm begins by constructing an ordinary Delaunay trian-
gulation first, then inserts the segments into the triangulation one
by one. To insert a segment is to delete all the edges and triangles
that intersect its relative interior, create the new segment, and retri-
angulate the two polygonal cavities thus created (one on each side
of the segment) with constrained Delaunay triangles, as illustrated
in Figure 3. The cavities might not be simple polygons, because
they might have edges dangling in their interiors, as shown.

In many implementations, each segment is inserted by a naive
algorithm that takes O(m2) time where m is the number of triangles
whose interiors intersect the segment, yielding a CDT construc-
tion algorithm that takes Θ(kn2) time for some PSLGs with n ver-
tices and k segments. See Anglada [3] for a typical segment inser-
tion algorithm that usually takes Θ(m2) time, though it can achieve
Θ(m log m) best-case time when it has good luck with evenly subdi-
viding the cavities. (Anglada’s algorithm is a variant of well-known
gift-wrapping algorithms; it gift-wraps from the new segment out.)
Chew’s and Seidel’s algorithms can insert a segment in O(m log m)
time, but algorithms like Anglada’s are much easier to implement.

Despite its asymptotic time disadvantage, the incremental seg-
ment insertion algorithm is popular for good reasons: it leverages
the best existing implementations of (unconstrained) Delaunay tri-
angulation algorithms; it is easier to implement than other CDT al-
gorithms; its speed is tolerated in practice because many real-world
inputs have few or no segments that cross many edges; and the
ability to dynamically update a CDT by inserting a new segment is
itself useful—for instance, in applications that support interactive
geometric modeling. Moreover, Agarwal, Arge, and Yi [2] show
that if the k segments are inserted in random order, the expected
number of edges and triangles deleted, summed over all segment
insertions, is in O(n log2 k), compared to a deterministic worst case
of Θ(kn).

This paper presents a randomized algorithm for inserting a seg-
ment into a CDT in expected O(m) time, where m is the num-
ber of triangles whose interiors intersect the segment. The algo-
rithm is simple enough to compete with naive algorithms like gift-
wrapping for ease of programming. We provide pseudocode, which
we turned into working C code in five hours.

We also show a matchingΩ(n log2 k) lower bound on the number
of structural changes, which resolves the long-standing question

Figure 4. Chew’s algorithm for computing the Delaunay triangulation of
a convex polygon deletes vertices from the polygon in a random order
to precompute the information needed for point location, then inserts the
vertices in the opposite order.

of the expected complexity of uniformly randomized incremental
segment insertion on worst-case PSLGs.

Our third contribution is to analyze a simple algorithm for seg-
ment location—finding the first triangle deleted when a segment is
inserted—and to show that it is fast enough.

With linear-time segment insertion, the randomized incremen-
tal segment insertion algorithm constructs an n-vertex, k-segment
CDT in expected O(n log n + n log2 k) time. Although this running
time falls short of optimality by a factor of log2 k/ log n, experience
with incremental CDT construction software shows that segment
insertion does not dominate the cost of constructing the initial De-
launay triangulation unless segments that intersect many edges are
inserted by quadratic-time algorithms. Incremental segment inser-
tion is likely to remain the most used CDT construction algorithm
long into the future, so we think it is important to provide an un-
derstanding of its performance and how to make it run fast.

2 Chew’s Delaunay Vertex Deletion Algorithm

Our segment insertion algorithm is closely related to an algorithm
of Paul Chew [8] for deleting a vertex from a Delaunay triangula-
tion in expected O(m) time, where m is the degree of the deleted
vertex. The latter algorithm is a good preparation for understand-
ing the former, more complicated algorithm. The former also uses
the latter as a subroutine.

Vertex deletion is an operation that updates a Delaunay trian-
gulation so it has one less vertex and is still Delaunay. Chew’s
algorithm can delete vertices from CDTs as well.

For simplicity, consider the problem of constructing the Delau-
nay triangulation of a convex polygon. Chew’s algorithm is a ran-
dom incremental insertion algorithm that inserts one vertex at a
time into the Delaunay triangulation. The same algorithm, with no
changes, can also retriangulate the cavity evacuated when a vertex
is deleted from a Delaunay triangulation, even though the cavity
might not be convex. We will not justify that claim here, except to
point out that Chew’s algorithm is a disguised algorithm for delet-
ing a vertex from a three-dimensional convex hull [16], which is
related by the lifting map [5, 19, 11] to deleting a vertex from a
two-dimensional Delaunay triangulation.

Let V be a sequence listing the m vertices of a convex polygon in
counterclockwise order. The algorithm begins by generating a ran-
dom permutation of V that dictates the order in which the vertices
will be inserted. It constructs a triangle from the first three vertices
of the permutation, then inserts the remaining vertices one by one.

Just before a vertex u is inserted, it lies outside the growing tri-
angulation, but only one triangulation edge vw separates u from the
triangulation’s interior. Point location is the task of identifying the
edge vw. Next, the algorithm inserts u by first identifying and delet-
ing all the triangles whose circumcircles enclose u, which can be
found quickly by a depth-first search from vw. Then, by extending
new edges from u, it retriangulates the cavity formed by taking the
union of the deleted triangles and △uvw, as illustrated in the right
half of Figure 4. This is essentially the Bowyer–Watson algorithm
[4, 15, 24] for inserting a vertex into a Delaunay triangulation.

Figure 4. An example of a cavity which contains an interior vertex
(Figures from J. Shewchuk [9]).

To recover the segment, the triangles in the cavity will be removed and replaced by a
set of new triangles which do not intersect the segment. Moreover, any vertex (if there
exists) inside the cavity needs to be preserved.

Let AB be an edge which does not in a constrained triangulation T . In this section
we describe an algorithm to recover AB in T by a sequence of edge flips. This approach
is simple and easy to implement. There is no need to explicitly create the cavity of AB.
Moreover, those vertices of T which lie inside P are preserved automatically.

Call an edge in T a crossing edge if it intersects AB in its interior. This algorithm
maintains a list Q which contains all crossing edges. Then it tries to flip them. Once
there is no crossing edge, the edge AB is recovered.

4 HANG SI

x

a

b

q

pc

d

a

b
c

d
a

b
c

d

Figure 3. Inserting a segment into a constrained Delaunay triangulation.

Two algorithms are known that construct the CDT of a PSLG
with n vertices in O(n log n) time, which is optimal in the decision-
tree model of computation. One is a divide-and-conquer algorithm
by Chew [7]. Its lineage stretches back to the first Delaunay trian-
gulation algorithm to run in O(n log n) time, the 1975 divide-and-
conquer algorithm of Shamos and Hoey [22], which was subse-
quently simplified and elaborated by Lee and Schachter [18] and
Guibas and Stolfi [13]. The other is a sweepline algorithm by Sei-
del [20], which generalizes a Delaunay triangulation algorithm of
Fortune [12] to CDTs.

Both algorithms are rarely implemented, perhaps because they
are complicated. In practice, the only widely used CDT construc-
tion algorithm begins by constructing an ordinary Delaunay trian-
gulation first, then inserts the segments into the triangulation one
by one. To insert a segment is to delete all the edges and triangles
that intersect its relative interior, create the new segment, and retri-
angulate the two polygonal cavities thus created (one on each side
of the segment) with constrained Delaunay triangles, as illustrated
in Figure 3. The cavities might not be simple polygons, because
they might have edges dangling in their interiors, as shown.

In many implementations, each segment is inserted by a naive
algorithm that takes O(m2) time where m is the number of triangles
whose interiors intersect the segment, yielding a CDT construc-
tion algorithm that takes Θ(kn2) time for some PSLGs with n ver-
tices and k segments. See Anglada [3] for a typical segment inser-
tion algorithm that usually takes Θ(m2) time, though it can achieve
Θ(m log m) best-case time when it has good luck with evenly subdi-
viding the cavities. (Anglada’s algorithm is a variant of well-known
gift-wrapping algorithms; it gift-wraps from the new segment out.)
Chew’s and Seidel’s algorithms can insert a segment in O(m log m)
time, but algorithms like Anglada’s are much easier to implement.

Despite its asymptotic time disadvantage, the incremental seg-
ment insertion algorithm is popular for good reasons: it leverages
the best existing implementations of (unconstrained) Delaunay tri-
angulation algorithms; it is easier to implement than other CDT al-
gorithms; its speed is tolerated in practice because many real-world
inputs have few or no segments that cross many edges; and the
ability to dynamically update a CDT by inserting a new segment is
itself useful—for instance, in applications that support interactive
geometric modeling. Moreover, Agarwal, Arge, and Yi [2] show
that if the k segments are inserted in random order, the expected
number of edges and triangles deleted, summed over all segment
insertions, is in O(n log2 k), compared to a deterministic worst case
of Θ(kn).

This paper presents a randomized algorithm for inserting a seg-
ment into a CDT in expected O(m) time, where m is the num-
ber of triangles whose interiors intersect the segment. The algo-
rithm is simple enough to compete with naive algorithms like gift-
wrapping for ease of programming. We provide pseudocode, which
we turned into working C code in five hours.

We also show a matchingΩ(n log2 k) lower bound on the number
of structural changes, which resolves the long-standing question

Figure 4. Chew’s algorithm for computing the Delaunay triangulation of
a convex polygon deletes vertices from the polygon in a random order
to precompute the information needed for point location, then inserts the
vertices in the opposite order.

of the expected complexity of uniformly randomized incremental
segment insertion on worst-case PSLGs.

Our third contribution is to analyze a simple algorithm for seg-
ment location—finding the first triangle deleted when a segment is
inserted—and to show that it is fast enough.

With linear-time segment insertion, the randomized incremen-
tal segment insertion algorithm constructs an n-vertex, k-segment
CDT in expected O(n log n + n log2 k) time. Although this running
time falls short of optimality by a factor of log2 k/ log n, experience
with incremental CDT construction software shows that segment
insertion does not dominate the cost of constructing the initial De-
launay triangulation unless segments that intersect many edges are
inserted by quadratic-time algorithms. Incremental segment inser-
tion is likely to remain the most used CDT construction algorithm
long into the future, so we think it is important to provide an un-
derstanding of its performance and how to make it run fast.

2 Chew’s Delaunay Vertex Deletion Algorithm

Our segment insertion algorithm is closely related to an algorithm
of Paul Chew [8] for deleting a vertex from a Delaunay triangula-
tion in expected O(m) time, where m is the degree of the deleted
vertex. The latter algorithm is a good preparation for understand-
ing the former, more complicated algorithm. The former also uses
the latter as a subroutine.

Vertex deletion is an operation that updates a Delaunay trian-
gulation so it has one less vertex and is still Delaunay. Chew’s
algorithm can delete vertices from CDTs as well.

For simplicity, consider the problem of constructing the Delau-
nay triangulation of a convex polygon. Chew’s algorithm is a ran-
dom incremental insertion algorithm that inserts one vertex at a
time into the Delaunay triangulation. The same algorithm, with no
changes, can also retriangulate the cavity evacuated when a vertex
is deleted from a Delaunay triangulation, even though the cavity
might not be convex. We will not justify that claim here, except to
point out that Chew’s algorithm is a disguised algorithm for delet-
ing a vertex from a three-dimensional convex hull [16], which is
related by the lifting map [5, 19, 11] to deleting a vertex from a
two-dimensional Delaunay triangulation.

Let V be a sequence listing the m vertices of a convex polygon in
counterclockwise order. The algorithm begins by generating a ran-
dom permutation of V that dictates the order in which the vertices
will be inserted. It constructs a triangle from the first three vertices
of the permutation, then inserts the remaining vertices one by one.

Just before a vertex u is inserted, it lies outside the growing tri-
angulation, but only one triangulation edge vw separates u from the
triangulation’s interior. Point location is the task of identifying the
edge vw. Next, the algorithm inserts u by first identifying and delet-
ing all the triangles whose circumcircles enclose u, which can be
found quickly by a depth-first search from vw. Then, by extending
new edges from u, it retriangulates the cavity formed by taking the
union of the deleted triangles and △uvw, as illustrated in the right
half of Figure 4. This is essentially the Bowyer–Watson algorithm
[4, 15, 24] for inserting a vertex into a Delaunay triangulation.

a b

c

d

a b

c

d

Figure 5. Left: edge ab is flippable. Right: edge ab is unflippable.

Let ab be one of the crossing edges, let abc, abd ∈ T be the two triangles sharing at
ab. This algorithm does edge flip on ab based on the following two rules:

(1) We say that ab is flippable if the vertices a, b, c, and d are in strictly convex
position. Otherwise, it is unflippable, see Figure 5. We only do flip if ab is
flippable. Otherwise, one of cda and cdb is inverted such that it intersects other
triangles of T in its interior, see Figure 1.2.2 (4). In this case, we put ab back
into Q, to try it later.

(2) Another possible case is that the edge cd was a previously flipped edge. To avoid
an endless loop, we also do not flip the edge ab.

If we have successfully flipped the edge ab. It is possible that the new edge cd also be
a crossing edge, see Figure 1.2.2 (5). If it is the case, cd is put into the Q, and it will be
flipped at a later time. The algorithm is shown below.

Algorithm: Recover Edge by Flips(T , AB)
Input: A triangulation T , and

an edge AB 6∈ T ;
Output: A constrained triangulation T 3 AB;
1 let Q be a queue of all crossing edges;
2 while Q 6= ∅ do
3 pop a crossing edge ab from Q;
4 if ab is flippable and cd was not a flipped edge then
5 flip ab to cd;
6 if cd is a crossing edge then
7 add cd to Q;
8 endif
9 else
10 add ab to Q;
11 endif
12 endwhile

Figure 6. The algorithm to recover an edge by flips.

Figure 1.2.2 illustrates this edge recovery algorithm by different steps of a triangulation
T modified in this way.

TRIANGULAR MESH GENERATION IN R2 5

B A

Local Swapping Example
•Make a list (queue) of all edges Ei, that intersect Vs

B A

(1) (2)

B A B A

an inverted triangle

(3) (4)

B A B A

(5) (6)

Figure 7. An illustration of the algorithm to recover an edge by flips.
(Figures from S. Owen).

1.2.3. Termination and runtime. The termination of this algorithm is guaranteed by the
connectedness of the flip-graph of the point set S. We can show that the following claim
always hold:

Lemma 1.1. At any step within each edge recovery procedure, there always exists an
edge such that (i) it intersects the missing segment, (ii) it is flippable, and (iii) it has
not being flipped before.

Proof. (i) must be true, otherwise this edge must be recovered. (ii) ... (iii) ... �

The above Lemma guarantees that the incremental algorithm must terminate.
In our case, the minimum flip distance (i.e., the number of required flips) between

these two triangulations are determined by the number of crossing edges. It is shown
that in the worst case, each edge insertion may take O(m) time where m is the number
of triangles whose interiors intersect the segment. It is possible that m = O(n).

6 HANG SI

1.2.4. Incremental construction. Although there are many efficient algorithms to con-
struct constrained triangulations. Incremental algorithm is the one that commonly used
in practice due to its simplicity and efficiency.

The algorithm begins by constructing an arbitrary triangulation of the point set S,
then inserts the segments of L into the triangulation one by one. The basic scheme of
the algorithm is given below.

Algorithm: IncrementalCT(S, L)
Input: A PSLG (S,L), k := |L|;
Output: A constrained triangulation T of (S,L);
1 construct an initial CT T0 of S;
2 for i = 1 to k do
3 InsertEdge(si, Ti−1);
4 endfor

Figure 8. The incremental constrained triangulation algorithm. Li is
the subset of L containing the first i segments.

Hence the incremental algorithm has a Θ(kn2) worst-case runtime, where n is the
number of input vertices and k is the number of input segments.

2. Constrained Delaunay triangulations

There are many constrained triangulations for the same point set S and L. We would
like to have one that has similar properties as those of the Delaunay triangulation of S.
This section introduces such triangulations, called constrained Delaunay triangulations.
They were independently developed by Lee and Lin [5] and Chew [2]. After introducing
the basic definitions and properties of them, we show how to adapt the incremental
construction algorithm to construct them.

2.1. Definitions and properties. We use a notion of visibility between points to in-
troduce a special type of constrained triangulation. Points x,y ∈ R2 are visible from
each other if the line segment xy contains no point of S in its interior, and it shares no
interior point with a line segment of L, i.e., int(xy) ∩ S = ∅ and xy ∩ uv = ∅, for all
uv ∈ L.

A triangle τ in a constrained triangulation of (S,L) is constrained Delaunay if it has
a circumcircle that contains no point in S that is visible from the interior of τ .

A constrained Delaunay triangle is a Delaunay triangle if it does not contain any
edge of L. Otherwise, it may not be globally Delaunay, since its circumcircle can be
non-empty. However, it remains Delaunay if we only consider those points in S that are
visible from its interior.

Assume S is in general position, a constrained triangulation T of (S,L) is the con-
strained Delaunay triangulation (or CDT) of (S,L) if all triangles of T are constrained
Delaunay.

Note that if L = ∅, then the constrained Delaunay triangulation is just the Delaunay
triangulation of S. However, it is still unclear whether such a triangulation exists or
not. For example, why is it true the collection of constrained Delaunay triangles forms

TRIANGULAR MESH GENERATION IN R2 7

b

c

a

Figure 9. Constrained Delaunay triangulation for 7 points and one con-
straining line segment. The circumcircle of abc encloses only points that
are invisible from all points of the interior of abc (Figure from [4]).

a triangulation? We generalise the concept of being locally Delaunay for edges, and use
it to prove the above definition make sense.

2.1.1. Constrained Delaunay Lemma. Let K be any constrained triangulation of (S,L).
An edge ab ∈ K is locally Delaunay if either:

(i) ab ∈ L, or
(ii) ab is on the convex hull of S, or
(iii) d lies outside the circumcircle of abc where abc,abd ∈ K.

Theorem 2.1 (Constrained Delaunay Lemma). If every edge of K is locally Delaunay,
then K is the constrained Delaunay triangulation of (S,L).

The proof of the above theorem is similar to the proof of the Delaunay Lemma. The
key is to show when all three edges of a triangle is locally Delaunay, then this triangle
must be a constrained Delaunay triangle.

2.1.2. Lawson’s flip algorithm. The above theorem suggests we can use Lawson’s edge flip
algorithm (in Section ??) to construct constrained Delaunay triangulations by starting
with an arbitrary constrained triangulation of S,L). The only difference to the original
algorithm is that the edges in L are not flipped. The algorithm terminates with at most(
n
2

)
flips, i.e., its runtime is O(n2).

The analysis of angle changes in each edge flip operation implies that the MaxMin
Lemma also holds in the constrained case.

Theorem 2.2 (The MaxMin Angle Property). Assume S is in general position. Among
all constrained triangulation of S and L, the constrained Delaunay triangulation of max-
imise the minimum angle.

2.2. Incremental CDT construction. Constrained Delaunay triangulations can also
be constructed by the incremental algorithm, i.e., start with an initial Delaunay triangu-
lation of the point set, insert the line segments one by one. The difference to the previous
algorithm is that after the insertion of each line segment, one needs to re-construct a
constrained Delaunay triangulation which includes it.

8 HANG SI

In this section, we will show how to incrementally construct a CDT by using the in-
cremental algorithm introduced in Section ??. We will first use the simple edge recovery
by flips algorithm to recover a missing edge. Then we immediately use the Lawson’s flip
algorithm to recover the CDT.

Algorithm: IncrementalCDT(S, L)
Input: A PSLG (S,L), k := |L|;
Output: the CDT T of (S,L);
1 construct an initial CDT T0 of S;
2 for i = 1 to k do
3 if si is not an edge of Ti−1 then
4 RecoverEdge(si, Ti−1);
5 Let L be the set of new edges in Ti−1;
6 ConstrainedLawsonFlip(L);
7 endif
8 endfor

Figure 10. The incremental constrained Delaunay triangulation algorithm.

Runtime. The runtime of this algorithm is certainly not better than the IncrementalCT
algorithm, since it needs an extra step to perform Lawson’s flip algorithm. An advantage
of this algorithm is simple and easy to implement.

2.3. Recover edge by weighted Delaunay flips. In this section, we introduce a
simple and efficient approach to insert a segment into the constrained Delaunay trian-
gulation by performing a sequence of edge flips. It is developed by of Shewchuk [8].

Figure 11. Left: The lifting map of a point set and its Delaunay trian-
gulation. Right: The constrained Delaunay triangulation with the lifting
map inverted to more clearly show its non-convexity. (Figures from [8]).

2.3.1. Order flips via the lifting map. In the previous flip-based edge recovery algorithm,
when we want to flip a crossing edge, it may be either unflippable, or it was a previously
flipped edge. This is due to randomness of selection of edges. Moreover, the resulting
triangulation may be arbitrary which is far from to be constrained Delaunay. By using

TRIANGULAR MESH GENERATION IN R2 9

the lifting map, it is indeed possible to sort the edges and perform flips following the
sorted edges. This way, one can guarantee every edge to be flipped must be flippable.
Moreover, the result will be the constrained Delaunay triangulation.

Recall that the Delaunay triangulation is the projection of the convex hull of its lifted
point set. The constrained Delaunay triangulation is also related to a such a surface
in R2 which is not necessarily convex. The non-convexity of this surface is due to the
constrained line segments, see Figure 11 Right.

Consider every intersecting edge of the missing segment as an flip event. One can use
the lifting map to arrange them into a uniquely determined flip sequence. Recall the
lifting map p′ of a point p = (px, py) ∈ R2 is:

p′ := (px, py, pz) ∈ R3,

where pz := p2x + p2y, and p′ is point on the paraboloid in R3. We call pz is the height
of the point p. Let a and b be the two endpoints of the missing segment si. The lifted
segment s′i (whose endpoints are a′ and b′) must lie above the lower faces of the convex
hull of the lifted point set S′, otherwise it must appear in the Delaunay triangulation of
S. Kinetic Convex Hull

As the lifted vertices move vertically, use flips
to maintain the lower convex hull.

the flips cannot get stuck.
Insight: Because a convex hull always exists,

Figure 12. An edge flip in the plane corresponds to dynamically chang-
ing the heights of their lifted points in R3 (Figure from [8]).

Now imaging that the heights of a and b are dynamically decreasing, from a2x+a2y → 0

and b2x + b2y → 0. At certain time τ , a lifted companion, c′d′ of a crossing edge cd will

eventually become coplanar with a′b′ in R3. If the heights of a and b decrease further,
the edge c′d′ will not on the convex hull of S′ anymore, that is, the edge cd gets flipped,
and is replaced by another edge ef whose lifted companion e′f ′ lies on the lower face of
the convex hull of S′. Note that e′f ′ may be just a′b′, or may correspond to another
crossing edge ef of ab. This process will eventually make the lifted edge a′b′ lies on
the lower face of the convex hull of S′, which implies, the edge ab is inserted into the
current constrained Delaunay triangulation.

2.3.2. The algorithm. The algorithm is given below. An example is shown in Figure 14.
The subroutine add to queue in above is used to sort the sequence of edge flips to be

performed. Assume the general position of S. Every flip event corresponds to a unique
time t > 0. It can be directly used as the value to modify the heights of a and b, i,e,

az := a2x + a2y − t; bz := b2x + b2y − t.

10 HANG SI

Algorithm: Recover Edge by Flips WDT(TP , AB)
Input: A triangulation TP of a cavity P , and

an edge AB 6∈ TP ;
Output: A constrained Delaunay triangulation TP 3 AB;
1 Initialise an empty priority queue Q;
2 for each crossing edge xy in Di;
3 add to queue(Q, xy, ab);
4 endfor

5 while Q is not empty do

6 remove the top edge xy from Q;
7 if xy is still an edge in Di then
8 flip xy;
9 for each crossing edge uv in Di do
10 add to queue(Q, uv, ab);
11 endfor

12 endif

13 endwhile

Figure 13. The incremental CDT algorithm to recover line segments by
flips ordered by weighted Delaunay.

Figure 14. Recover an edge in a CDT by flips. (Figures from [8]).

Then the four lifted points a′, b′, c′, and d′ are coplanar in R3 when the following
equation is satisfied:

(1) det

ax ay a2x + a2y − t 1
bx by b2x + b2y − t 1
cx cy c2x + c2y 1
dx dy d2x + d2y 1

 = 0

TRIANGULAR MESH GENERATION IN R2 11

2.3.3. Runtime. Shewchuk [8] proved that this incremental edge insertion algorithm has
expected runtime O(n log2 k), where n is the number of vertices in S and k is the number
of segments in L. It thus improves the O(n2) runtime of the generalised Lawson’s flip
algorithm.

3. Delaunay refinement

This section deals with a simple meshing problem in the plane. The input object
is a two-dimensional polygonal domain, the goal is to obtain a discretisation of this
domain with a triangular mesh. Moreover, it is desired that the shape of triangles are
“good”, and the total number of triangles are not large. Such basic problem has many
applications, for example, function interpolations and finite element simulations. In this
section, we discuss a concrete version of two-dimensional mesh generation problem.

3.1. The meshing problem. We start with the definitions of the input and output
objects. The input Ω is a polygonal region in the plane, possibly with holes and with
constraining edges and vertices inside the domain. The boundary ∂Ω is a set of vertices,
edges which separates the interior of Ω from its exterior. ∂Ω is a planar straight line
graph (PSLG), see Figure 3.1 Left for an example.

The general objective in mesh generation is to decompose a mesh domain bounded by
a PSLG. The elements are restricted in type and shape, the number of elements should
not be too big. The output of our problem is a triangular mesh with the following
properties:

(a) Conformity: The output collectively forms a simplical complex T whose un-
derlying space equal to the given polygonal domain. This means, for every line
segment s ∈ ∂Ω, s is the union of edges of T . We call T is a mesh of Ω.

(b) Quality: There are few or no “poor-quality” triangles in T . This means, most
of triangles are good with respect to certain quality measures of triangles.

(c) Cardinality: It is necessary for T to include additional points, called Steiner
points, vertices of the mesh that are not vertices of the input PSLG. Because
they are needed to achieve the good shape of elements. We want fewer Steiner
points have been added, i.e., the number of triangles is small.

Figure 3.1 Right shows an example of such an output.
Note that the requirements of having good shaped elements and a small number of

elements are contradicting to each other. A mesh satisfying a certain shape bound is said
to be size-optimal if the number of triangles is within a constant factor of the minimum
possible in any triangulation of the given input that meets the same shape bound.

Various approaches have been developed for this purpose, such as advancing-front
methods, quadtree methods, Delaunay-based methods, and the combinations of them.
Most of them works well in practice, but come with no guarantee on quality and size of
the generated mesh.

We will demonstrates the use constrained Delaunay triangulations in constructing
such meshes. A simple technique – Delaunay refinement – is introduced to solve this
basic problem.

12 HANG SI

Figure 15. Left: an input mesh domain. Right: an output triangular
mesh of the input.

3.2. Quality measures for triangles. Quality mesh generation describes techniques
that offer some guarantees on some measure of shape and size of triangles.

A generally used shape measure for simplices is called aspect ratio, which measures
the roundness of the element. The aspect ratio of a triangle is the length of the longest
edge divided by the length of the shortest altitude.

A fairly general shape measure for triangle is the minimum angle θ, since this gives
a bound of π − 2α on maximum angle and guarantees a lower bound for aspect ratio.
Let the longest edge of a triangle abc be ac, and assume the smallest angle occurs at a.
Then ‖b − x‖ = ‖b − a‖ sin θ, where x is the orthogonal projection of b onto ac. The
edge ab is at least at long as cb, and therefore ‖b− a‖ ≥ ‖c− a‖/2. It follows that

1

sin θ
≤ ‖c− a‖
‖b− x‖

≤ 2

sin θ
.

In word, the aspect ratio (here is ‖c−a‖‖b−x‖) of the triangle abc is bounded between | 1
sin θ |

and | 2
sin θ |.

3.3. Description of the algorithm. This section presents an incremental point in-
sertion approach extended from a classical Delaunay refinement scheme proposed by
Chew [3] and Ruppert [6]. The idea is to add new vertices until the triangulation forms
a satisfying mesh. It makes use of many nice geometric properties of Delaunay triangu-
lations.

Given a two-dimensional polygonal domain Ω, we first construct a CDT of ∂Ω. We
then add vertices one by one to improve the mesh quality.

We call a triangle skinny if it has a minimum angle less than a given limit, which can
be a parameter supplied by the users.

Suppose a triangle abc in current CDT is skinny. We add a new point which is the
circumcenter of abc into this CDT, see Figure 3.3. Since the circumcircle of abc is no
longer empty, triangle abc is guaranteed to be removed by one of the edge flips used to
repair the constrained Delaunay triangulation.

TRIANGULAR MESH GENERATION IN R2 13

v

Figure 16. Split a bad-quality triangle by adding its circumcenter.

It is possible that a circumcenter of a skinny triangle may lie outside the domain.
This can happen since a skinny triangle near the boundary could have an arbitrary big
empty circumcircle. A simple way to fix this problem is based on the following fact.

Recall an edge can have arbitrary many circumscribed circles. The smallest circum-
scribed circle of an edge is the diametrical circumcircle. We say an edge is Gabriel if its
diametrical circumcircle is empty.

Lemma 3.1. If all line segments of ∂Ω satisfy the Gabriel property, then no circumcenter
of triangles of a CDT of ∂Ω lies outside of Ω.

Boundary protection 36

What if a circumcenter is outside the domain?

Then a boundary segment is encroached. Split it.
Split segments if its diametral circumcircle is not emptyFigure 17. Split a boundary segment if its diametrical circumcircle is

not empty.

Algorithm. After the creation of a CDT of the input PSLG ∂Ω. We use two rules
to add new vertices into this CDT until we cannot add any new vertex.

R1 The first rule is to ensure that there is no boundary segment will cause a circum-
center of any skinny triangle lies outside of the domain. Call a vertex encroaches
upon a segment if it lies inside its diametrical circumcircle. If a segment is en-
croached, we split it by adding its midpoint.

R2 The second rule is to improve the mesh quality by removing skinny triangle. If
a triangle is skinny, we add its circumcenter c. However, if c encroaches upon
some boundary segments, do not add c, and split one of the encroached segment
instead.

The algorithm is given in the following:
A possible run of the above Delaunay refinement algorithm on a simple input is shown

in Figure 3.3. In (b)-(e), segments are split due to the encroachment reasons. In (f) a

14 HANG SI

Algorithm: DelaunayRefinement(Ω, θmin)
Input: A 2d polygonal domain Ω;

θmin is a desired minimum angle of output triangles.
Output: A mesh T of Ω;
1 construct an initial CDT T of ∂Ω;
2 while ∃τ ∈ T and MinAngle(τ) > θmin do
3 let c be the circumcenter of τ ;
4 if c encroaches upon any segment of T then
5 split an encroached segment;
6 else
7 insert c into the CDT T ;
8 endif
9 endwhile

Figure 18. The Delaunay refinement algorithm.

circumcenter is added in a (Quality) operation. In (g) a circumcenter is considered, but
it encroaches a segment, as shown in (h); the segment is split instead. In (i) another
segment is split. A circumcenter is considered in (j), but it encroaches on two segments,
both of which are split. In (l) the same circumcenter is considered again, but instead
another segment is split. A circumcenter is committed in (m). In (n) the final vertex
and segment sets are shown, in (o) the Constrained Delaunay Triangulation is shown,
with segments in bold.

3.4. Proof of termination. We provide an analysis the Delaunay refinement algorithm
to show that this algorithm will terminate, and it provides a lower bound on the minimum
angle of the triangles (based on some assumptions on the input), and it proves an upper
bound on the number of triangles of the mesh.

Some preliminary definitions and results are essential to the exposition. We under-
stand the Delaunay refinement algorithm through relating its actions to the local feature
size at a point x ∈ R2, relative to an input PSLG ∂Ω, is defined as a map f : R2 → R,
such that f(x) is the smallest radius r of the closed disc with center x and radius r either

(i) contains two vertices of ∂Ω,
(ii) intersects one edge of ∂Ω and contains one vertex of ∂Ω that is not endpoint of

that edge, or
(iii) intersects two vertex disjoint edges of ∂Ω.

The definition of local feature size is illustrated in Figure 3.4.
The local feature size is a Lipschitz function, i.e., lfs(x) ≤ |x − y| + lfs(y). This

implies that the local feature size function is continuous.
The radius-edge-ratio ρ(τ) of a triangle τ is defined as the ratio between the radius R

of the circumscribed circle of τ and the shortest edge length L of τ , i.e., ρ(τ) = R
L .

The radius edge ratio and the minimum angle measure are equivalent. There is a nice
relation between the radius edge ratio and the minimum angle of a triangle, which is

ρ(τ) =
R

L
=

1

2 sin θ
,

TRIANGULAR MESH GENERATION IN R2 15

2.4. Failures of the Delaunay Refinement Algorithm 17

PSfrag replacements

(a)

PSfrag replacements

(a)

(b)

PSfrag replacements

(a)
(b)

(c)

PSfrag replacements

(a)
(b)
(c)

(d)

PSfrag replacements

(a)
(b)
(c)
(d)

(e)

PSfrag replacements

(a)
(b)
(c)
(d)
(e)

(f)PSfrag replacements

(a)
(b)
(c)
(d)
(e)
(f)

(g)
PSfrag replacements

(a)
(b)
(c)
(d)
(e)
(f)
(g)

(h)

PSfrag replacements

(a)
(b)
(c)
(d)
(e)
(f)
(g)
(h)

(i)

PSfrag replacements

(a)
(b)
(c)
(d)
(e)
(f)
(g)
(h)
(i)

(j)

PSfrag replacements

(a)
(b)
(c)
(d)
(e)
(f)
(g)
(h)
(i)
(j)

(k)

PSfrag replacements

(a)
(b)
(c)
(d)
(e)
(f)
(g)
(h)
(i)
(j)
(k)

(l)

PSfrag replacements

(a)
(b)
(c)
(d)
(e)
(f)
(g)
(h)
(i)
(j)
(k)
(l)

(m)

PSfrag replacements

(a)
(b)
(c)
(d)
(e)
(f)
(g)
(h)
(i)
(j)
(k)
(l)

(m)

(n)

PSfrag replacements

(a)
(b)
(c)
(d)
(e)
(f)
(g)
(h)
(i)
(j)
(k)
(l)

(m)
(n)

(o)

Figure 4: A possible run of the Delaunay Refinement Algorithm on the input of (a) is
shown. In (b)-(e), segments are split in (Conformality) operations. In (f) a circumcenter
is added in a (Quality) operation. In (g) a circumcenter is considered, but it encroaches
a segment, as shown in (h); the segment is split instead. In (i) another segment is split.
A circumcenter is considered in (j), but it encroaches on two segments, both of which are
split. In (l) the same circumcenter is considered again, but instead another segment is split.
A circumcenter is committed in (m). In (n) the final vertex and segment sets are shown, in
(o) the Constrained Delaunay Triangulation is shown, with segments in bold.

Figure 19. An example of the Delaunay refinement algorithm (Courtesy
of Steven Pav).

where θ is the smallest angle of τ . This can be proven from a basic fact of elementary
geometry which relates the radius of the circumcircle and its minimum angle, see Fig-
ure 3.4, If triangle abc has ∠bra = θ, and p is the circumcenter of abc, then ∠bpa = 2θ.
By this relation, for a triangle, an upper bound for ρ(τ) gives a lower bound for the
minimum angle of θ.

Let ρ0 be the value of the radius-edge ratio corresponds to the given minimum angle
bound θmin.

The algorithm starts with the vertices of ∂Ω and generates all other vertices in se-
quence. We show that, when a new vertex is added, its distance to already present
vertices is not much smaller than the local feature size.

16 HANG SI

Local Feature Size

lfs: Radius of smallest closed ball intersecting
2 mutually disjoint “features” of input PLC.

• Lipschitz function : lfs (p) ≤ |p − q| + lfs (q) .

• Bounded minimum: lfs (p) ≥ lfsmin > 0.

lleft

uright

CNA talk, 2004.09.14 – p.6/30

Figure 20. For number of points in the plane, the local feature size with
respect to a PSLG is shown. About each of the points is a circle whose
radius is the local feature size of the centre point.42 Jonathan Richard Shewchuk

d

r

r
2

c

i j

k

c

i j

k

r

ß
r

r
ß

ß

+

(a) (b)

Figure 3.1: (a) Diagram for proof that . (b) Diagram for proof that .

3.1 A Quality Measure for Simplices

In the finite element community, there are a wide variety of measures in use for the quality of an element,
the most obvious being the smallest and largest angles of each simplex. Miller, Talmor, Teng, and Walk-
ington [66] have pointed out that the most natural and elegant measure for analyzing Delaunay refinement
algorithms is the circumradius-to-shortest edge ratio of a simplex: the radius of the circumsphere of the
simplex divided by the length of the shortest edge of the simplex. For brevity, I will occasionally refer to
this ratio as the quality of a simplex. One would like this ratio to be as small as possible.

In two dimensions, a triangle’s circumradius-to-shortest edge ratio is a function of its smallest angle. Let
have circumcenter and circumradius , as illustrated in Figure 3.1(a). Suppose the length of edge

is , and the angle opposite this edge is .

It is a well-known geometric fact that . See Figure 3.1(b) for a derivation. Let .
Because and are isosceles, and . Subtracting the
former from the latter, . (This derivation holds even if is negative.)

Returning to Figure 3.1(a), it is apparent that . It follows that if the triangle’s shortest
edge has length , then is its smallest angle. Hence, if is an upper bound on the circumradius-to-
shortest edge ratio of all triangles in a mesh, then there is no angle smaller than (and vice versa).
A triangular mesh generator is wise to make as small as possible.

Unfortunately, a bound on circumradius-to-shortest edge ratio does not imply an angle bound in dimen-
sions higher than two. Nevertheless, the ratio is a useful measure for understanding Delaunay refinement in
higher dimensions.

With these facts in mind, I shall describe two-dimensional Delaunay refinement algorithms due to Paul
Chew and Jim Ruppert that act to bound the maximum circumradius-to-shortest edge ratio, and hence bound
the minimum angle of a triangular mesh.

Figure 21. The relation between angle of a triangle and its rads-edge ratio.

The following lemma shows the relation of the shortest edge length at a new vertex
and an existing length of an edge immediately after it is inserted.

Lemma 3.2 ([7]). Let v be a newly inserted vertex, and let p be the closet vertex to v.
Then one of the following two holds:

(i) ‖v − p‖ ≥ lfs(v), or
(ii) ‖v− p‖ ≥ β‖p− q‖, where q is the nearest vertex to p before v is inserted, p may

be rejected, where
(a) β = ρ0, if v is the circumcenter of a skinny triangle,
(b) β = 1√

2
, if v is the midpoint of an encroached segment (p must be a rejected

vertex),
(c) β = 1

2 cosα if v and p lie on incident segments with an angle α, with p
encroaches upon the subsegment contains v, where 45◦ ≤ α < 90◦, and

(d) β = sinα if if v and p lie on incident segments with an angle α < 45◦.

The four cases of different constant β is shown in the figure 3.4.

TRIANGULAR MESH GENERATION IN R2 17
Ruppert’s Delaunay Refi nement Algorithm 15

rvrp
p

v
rp

rvv

p

2

rp

rv

rv
v

p

a

rv
rp

va

p

(a) (b) (c) (d)

Figure 12: The relationship between the insertion radii of a child and its parent. (a) When a skinny triangle
is split, the child’s insertion radius is at least times larger than that of its parent. (b) When a subsegment
is encroached upon by the circumcenter of a skinny triangle, the child’s insertion radius may be a factor of

smaller than the parent’s, as this worst-case example shows. (c, d) When a subsegment is encroached
upon by a vertex in an incident segment, the relationship depends upon the angle separating the two
segments.

if and lie on incident segments separated by an angle of (with encroaching
upon the subsegment whose midpoint is), where ; and

if and lie on incident segments separated by an angle of .

Proof: If is an input vertex, there is another input vertex a distance of from , so , and the
lemma holds.

If is inserted at the circumcenter of a skinny triangle, then its parent is the most recently inserted
endpoint of the shortest edge of the triangle; see Figure 12(a). Hence, the length of the shortest edge of the
triangle is at least . Because the triangle is skinny, its circumradius-to-shortest edge ratio is at least , so
its circumradius is .

If is inserted at the midpoint of an encroached subsegment , there are four cases to consider. The first
two are all that is needed to prove the termination of Ruppert’s algorithm if no angle smaller than is
present in the input. The last two cases consider the effects of acute angles.

If the parent is an input vertex, or was inserted in a segment not incident to the segment containing
, then by definition, .

If is a circumcenter that was considered for insertion but rejected because it encroaches upon ,
then lies on or inside the diametral circle of . Because the mesh is constrained Delaunay, one can
show that the circumcircle centered at contains neither endpoint of . Hence, . See
Figure 12(b) for an example where the relation is equality.

If and lie on incident segments separated by an angle where , the vertex
(for “apex”) where the two segments meet obviously cannot lie inside the diametral circle of ; see
Figure 12(c). Because is encroached upon by , lies on or inside its diametral circle. To find the
worst-case (smallest) value of , imagine that and are fixed; then is minimized
by making the subsegment as short as possible, subject to the constraint that cannot fall outside
its diametral circle. The minimum is achieved when . Basic trigonometry shows that

, and therefore .

Figure 22. The relationship between the shortest edge length and the
length of an existing edge.

The above lemma shows how quickly the shortest edge length between newly inserted
vertices can increase or decrease. Lets consider a sequence of vertices v0, v1, · · · , vi, · · ·
such that vi+1 is inserted strictly after vi. Figure 3.4 shows a flow graph, which shows
the worst-case increase/decrease of the shortest edge length in this sequence.

16 Jonathan Richard Shewchuk

1
2

1
2 cos

×

Vertices
Free

× B

Segment
Vertices

×

Figure 13: Flow diagram illustrating the worst-case relation between a vertex’s insertion radius and the
insertion radii of the children it begets. If no cycles have a product smaller than one, Ruppert’s Delau-
nay refinement algorithm will terminate. Input vertices are omitted from the diagram because they cannot
contribute to cycles.

If and lie on incident segments separated by an angle where , then is minimized
not when lies on the diametral circle, but when is the orthogonal projection of onto , as illus-
trated in Figure 12(d). Hence, .

Lemma 3 limits how quickly the insertion radii can decrease through a sequence of descendants of a
vertex. If vertices with ever-smaller insertion radii cannot be generated, then edges shorter than existing
features cannot be introduced, and Delaunay refinement is guaranteed to terminate.

Figure 13 expresses this notion as a flow graph. Vertices are divided into three classes: input vertices
(which are omitted from the figure because they cannot participate in cycles), free vertices inserted at cir-
cumcenters of triangles, and segment vertices inserted at midpoints of subsegments. Labeled arrows indicate
how a vertex can cause the insertion of a child whose insertion radius is some factor times that of its par-
ent. If the graph contains no cycle whose product is less than one, termination is guaranteed. This goal is
achieved by choosing to be at least , and ensuring that the minimum angle between input segments is
at least . The following theorem formalizes these ideas.

Theorem 4 Let be the shortest distance between two nonincident entities (vertices or segments) of
the input PSLG1.

1Equivalently, , where is chosen from among the input vertices. The proof that both defi nitions are
equivalent is omitted, but it relies on the recognition that if two points lying on nonincident segments are separated by a distance ,
then at least one of the endpoints of one of the two segments is separated from the other segment by a distance of or less. Note
that is not a lower bound for over the entire domain; for instance, a segment may have length , in which case the
local feature size at its midpoint is .

Figure 23. Proof of termination. The flow diagram illustrating the
worst-case relation of the sequence of shortest edge lengths produced by
the Delaunay refinement algorithm.

Hence we have the following theorem which shows under which condition that this
algorithm must terminate.

Theorem 3.1. The DelaunayRefinementAlgorithm terminates if the following
two conditions hold at the same time:

(i) the smallest angle between any two incident segments in ∂Ω is not smaller than
60◦, and

(ii) the minimum angle parameter is not larger than arcsin 1√
2
≈ 20.7◦.

The condition (ii) provides a default minimum angle guarantee on the output mesh.

3.5. Output mesh size. In this section, we show that the output triangulation pro-
duced by this algorithm is size-optimal, meaning that the number of triangles is within
a constant factor of the minimum number possible. In practice, this means that the
output mesh has the following nice properties:

• Small input features will be surrounded by small triangles in order to have good
quality.
• Nearby triangles have similar size.
• The size variation between distant triangles depends on their distance.

These properties ensure that the resulting mesh does not contain an unnecessarily large
number of triangles while have a good quality. The mesh is graded, which means the
edge lengths changing slowly from small to large triangles, see Figure ?? for an example.

The basic idea would be to show that in an optimal mesh, triangle sizes must vary
slowly, proportional to the local feature size of the input. What we need to find is the
relation of every edge length of the mesh to the local feature size of its endpoints. If
this length is always bounded by a constant times the local feature size of its endpoints,
then this mesh must have the above desired property. The following lemma shows this
property.

Lemma 3.3. Let x be a vertex in the output mesh, and p be the closet vertex of x. Let
C1 and C2 be two constants. Then

(A) ‖x− p‖ ≥ lfs(x) if x is a vertex of the input PSLG X,
(B) ‖x− p‖ ≥ lfs(x)/C1 if x is added at the midpoint of a segment of X; or
(C) ‖x− p‖ ≥ lfs(x)/C2, if x is the circumcenter of some skinny triangle.

3.6. Failures of Delaunay refinement.

4. Mesh Adaptation

References

[1] L. P Chew. Building voronoi diagrams for convex polygons in linear expected time. Technical report,
Hanover, NH, USA, 1990.

[2] L. Paul Chew. Constrained Delaunay triangulations. Algorithmica, 4:97–108, 1989.
[3] L. Paul Chew. Guaranteed-quality triangular meshes. Technical Report TR 89-983, Dept. of Comp.

Sci., Cornell University, 1989.
[4] Herbert Edelsbrunner. Geometry and topology for mesh generation. Cambridge University Press,

Cambridge, England, 2001.
[5] D. T. Lee and A. K. Lin. Generalized Delaunay triangulations for planar graphs. Discrete and

Computational Geometry, 1:201–217, 1986.
[6] Jim Ruppert. A Delaunay refinement algorithm for quality 2-dimensional mesh generation. Journal

of Algorithms, 18(3):548–585, 1995.

18

[7] J. R. Shewchuk. Delaunay refinement algorithms for triangular mesh generation. Computational
Geometry Theory and applications, 22:21–74, 2002.

[8] Jonathan R. Shewchuk. Updating and constructing constrained Delaunay and constrained regular
triangulations by flips. In Proc. 19th Ann. Symp. on Comput. Geom., pages 86–95, 2003.

[9] Jonathan Richard Shewchuk and Brielin C. Brown. Fast segment insertion and incremental con-
struction of constrained delaunay triangulations. Computational Geometry, 48(8):554–574, 2015.

[10] Hang Si and Jonathan Richard Shewchuk. Incrementally constructing and updating constrained de-
launay tetrahedralizations with finite-precision coordinates. Engineering with Computers, 30(2):253–
269, 2014.

19

