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Discrete Surface Curvature Flow Theorem
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Vertex Scaling

Definition (Vertex Scaling)

Two triangulated PL surface (S ,V , T , d) and (S ,V , T , d ′) are said to
differ by a vertex scaling, if ∃λ : V (T )→ R>0, such that d ′ = λ ∗ d on
E (T ), where

λ ∗ d(u, v) = λ(u)λ(v)d(u, v).
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Figure: vertex scaling.
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Discrete Conformal Equivalence

Definition (Gu-Luo-Sun-Wu)

Two PL metrics d , d ′ on a closed marked surface (S ,V ) are discrete
conformal, if they are related by a sequence of two types of moves: vertex
scaling and edge flip preserving Delaunay property.

T T ′

Figure: Edge flip, both triangulations are Delaunay.
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Discrete Conformal Equivalence

Given a PL metric d on (S ,V ), produce a Delaunay triangulation T of
(S ,V ),

Figure: (S ,V ) with PL metric d , the triangulation is Delaunay.
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Discrete Conformal Equivalence

Each face t ∈ T is associated an ideal hyperbolic triangle:
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If t, s ∈ T glued by isometry f along e, then t∗ and s∗ are glued by the
same f ∗ alonge e∗,
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Discrete Conformal Equivalence

This induces a hyperbolic metric d∗ on S − V .

t s s∗
t∗

Motivated by the important work of Bobenko-Pinkall-Springborn,
equivalent to the previous defintion using vertex scaling and Delaunay
condition.

Definition (Gu-Luo-Sun-Wu, JDG 2018)

Two PL metrics d1 and d2 on (S ,V ) are discrete conformal iff d∗1 and d∗2
are isometric by an isometry homotopic to identity on S − V .
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Existence of the metric

Theorem (Gu-Luo-Sun-Wu)

Given a PL metric d on a closed marked surface (S ,V ), and curvature
K ∗ : V → (−∞, 2π), such that K satisfies the Gauss-Bonnet condition∑

K (v) = 2πχ(S), there there is a d∗ discrete conformal to d , and d∗

realizes the curvature K ∗.
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vertex scaling edge flip(S, T , l) (S, T , λ ∗ l) (S, T ′, λ ∗ l)

Figure: Discrete surface Yamabe flow.
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Discrete Conformal Equivalence

Convex Optimization

Using Newton’s method to minimize the following energy

min
λ

∫ (λ1,λ2,...,λn)∑
v

(K ∗(v)− K (v))d log λ(v),

such that Πvλ(v) = 1. During the optimization, keep the triangulation
always to be Delaunay.
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Proof of the Discrete Surface Curvature Flow
Theorem
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Marked Surface

Definition (Marked Surface)

Let S be a closed topological surface, V = {v1, v2, · · · , vn} ⊂ S is the set
of distinct points, satsifying negative Euler number condition
χ(S − V ) < 0. We call (S ,V ) a marked surface.

We consder the polyhedral metric d on the marked surface (S ,V ), with
cone singularities at vertices.
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Discrete Conformal Equivalence

Definition (Discrete Conformal Equivalence)

Two polyhedral metrics d and d′ on a marked surface (S ,V ) are discrete
conformal equivalent, if there is a series polyhedral metrics on (S ,V ),

d = d1,d2, · · · ,dm = d′

and a series of triangulations T1, T2, · · · , Tm, such that

1 every triangulation Tk is Delaunay on the metric dk ;

2 if Ti = Ti+1, then there is a conformal factor u : V → R, such that
di+1 = u ∗ di , namely the two polyhedral metrics differ by a vertex
scaling operation;

3 if Ti 6= Ti+1, then there is an isometric transformation
h : (S ,V ,di )→ (S ,V ,di+1), this transformation is homotopic to the
identity map of (S ,V ), preserving the vertices.
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Main Theorem

Existence and Uniqueness of the Solution to the Discrete Surface Ricci
Flow:

Theorem (Gu-Luo-Sun)

Suppose (S ,V ,d) is a closed polyhedral surface, the for any
K ∗ : V → (−∞, 2π), satisfying the Gauss-Bonnet condition∑

v∈V K ∗(v) = 2πχ(S), there exists a polyhedral metric d∗

1 d∗ is discrete conformal equivalent to the metric d;

2 d∗ induces the discrete Gaussian curvature K ∗.

All such kind of polyhedral metrics differ by a global scaling. Furthermore,
d∗ can be obtained by discrete surface Ricci flow.
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Uniformization

Figure: Closed surface uniformization.
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Discrete Uniformization Theorem

Corollary (Gu-Luo-Sun)

Suppose (S ,V ,d) is a closed polyhedral surface, then there exists a
polyhedral metric d∗, d∗ and the metric d are discrete conformal
equivalent, d∗ induces constant discrete Gaussian curvature 2πχ(S)/|V |.
Such kind of polyhedral metrics differ by a global scaling.
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Teichmüller Space of Polyhedral Metrics

Definition (Equivalent Polyhedral Metrics)

Two polyhedral metrics d and d′ on a marked surface (S ,V ) are
equivalent, if there is an isometric tranformation h : (S ,V ,d)→ (S ,V ,d′),
and h is homotopic to the identity map of (S ,V ), namely h preserves V .

Definition (Teichmüller Space of Polyhedral Metrics)

All the equivalence classes of polyhedral metrics on a marked surface
(S ,V ) form the Teichmüller Space of polyhedral metrics.

Tpl(S ,V ) = {d|polyhedral metrics on (S ,V )}/{isometries ∼ identity (S ,V )}
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Atlas of the Teichmüller Space of PL Metrics

Theorem (Troyanov)

Suppose (S ,V ) is a closed marked surface, the Teichmüller space of
polyhedral metrics Tpl(S ,V ) is homeomorphic to the Euclidean space
R−3χ(S−V ).

Definition (Local Chart of the Teichmüller Space of PL Metrics)

Suppose T is a triangulation of (S ,V ), its edge length function defines a
polyhedral metric,

ΦT : RE(T )
4 → Tpl(S ,V ) (1)

this gives a local chart of the Teichmüller space. Where the domain

RE(T )
4 =

{
x ∈ RE(T )

>0

∣∣∣for any ei , ej , ek form a triangle , x(ei ) + x(ej) > x(ek)
}

(2)
is a convex set, and is injective. We use PT to represent the image of ΦT .
Then (PT ,Φ−1

T ) is a local chart of Tpl(S ,V ).
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Atlas of the Teichmüller Space of PL Metrics

ei

ej

ek

ekei

ej

el

Figure: topological, not geometric triangulation.

If we edge swap ek to el ot obtain the new triangulation T ′. Then under
the metric d, the topological triangle {ej , el , ej} doesn’t satisfy the triangle
inequality. This shows the topological triangulation T ′ is not geometric.

P(T ) 6= Tpl(S ,V )

One chart can’t cover the whole Teichmüller space Tpl(S ,V ).
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Teichmüller Space of PL Metrics

Definition (Atlas of Teichmüller Space of PL Metrics)

Suppose (S ,V ) is a closed marked surface, the atlas of Tpl(S ,V ) consists
of local coordinate charts (PT ,Φ−1

T ), where T exhausts all possible
triangulation.

A(Tpl(S ,V )) =
⋃
T

(PT ,Φ−1
T ). (3)

Lemma (Real Analytic Manifold)

Suppose (S ,V ) is a closed marked surface, then the Teichmüller space of
polyhedral metrics Tpl(S ,V ) is a real analytic manifold.
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Teichmüller Space of Decorated Hyperbolic Metrics

Definition (Equivalent decorated hyperbolic metrics)

Two decorated hyperbolic metrics (h,w) and (h′,w′) on a closed marked
surface (S ,V ) are equivalent, if there is an isometric transformation

h : (S ,V ,h,w)→ (S ,V ,d′,w′),

which is homotopic to the identity map of (S ,V ), and preserves the
horospheres.

Definition (Teichmüller Space of Decorated Hyperbolic Metrics)

Given a closed marked surface (S ,V ), χ(S − V ) < 0, then all the
decorated hyperbolic metric on it form the Teichmüller space:

TD(S ,V ) =
{(h,w)|(S ,V )decorated hyperbolic metrics}

{isometries ∼ identity of (S ,V )preserving horospheres} (4)
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Teichmüller Space of Decorated Hyperbolic Metrics

Definition (Local Chart of the Teichmüller Space)

Suppose T is a triangulation of (S ,V ), the hyperbolic edge length
function determines a decorated hyperbolic metric,

ΨT : RE(T ) → TD(S ,V ) (5)

which gives a local coordinate of the Teichmüller space. Let QT be the
image of ΨT , then (QT ,Ψ−1

T ) form a local chart of TD(S ,V ).

Definition (Atlas of the Teichmüller Space)

Every triangulation of the marked closed surface (S ,V ) corresponds to a
local chart (QT ,Ψ−1

T ). By exhausting all the possible triangulations, the
union of all the local charts forms the atlas:

A(TD(S ,V )) =
⋃
T

(
QT ,Ψ−1

T
)
.
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Teichmüller Space of Complete Hyperbolic Metrics

Definition (Equivalent Complete Hyperbolic Metrics)

Two complete hyperbolic metrics h and h′ with finite area on a marked
surface (S − V ) are equivalent, if there is an isometric transformation

h : (S − V ,h)→ (S − V ,h′),

furthermore h is homotopic to the identity automorphism of S − V .

Definition (Teichmüller Space of Complete Hyperbolic Metrics)

All the complete hyperbolic metrics with finite area on a marked surface
S − V , χ(S − V ) < 0, form the Teichmüller space,

TH(S−V ) =
{h|complete hyperbolic metrics with finite area on (S − V )}

{isometries ∼ identity of (S − V )}
(6)
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Teichmüller Space of Complete Hyperbolic Metrics

Lemma (Local Coordinates)

Suppose h is a complete hyperbolic metric on S − V with finite area, the
shear coordinate function is s : E (T )→ R, then for any v ∈ V , we have
the relation ∑

e∼v
s(e) = 0. (7)
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Teichmüller Space of Complete Hyperbolic Metrics

Definition (Local Chart of the Teichmüller Space)

Let T be a triangulation of (S ,V ), its shear coordinates uniquely
determines a complete hyperbolic metric with finite area,

ΘT : ΩT → TH(S − V ) (8)

this gives local coordinates of the Teichmüller space, where

ΩT =

{
x ∈ RE(T )

∣∣∣∑
e∼v

x(e) = 0, ∀v ∈ V (T )

}
.

Then (ΩT ,Θ
−1
T ) form a local chart of TH(S − V ).
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Teichmüller Space of Complete Hyperbolic Metrics

Definition (Atlas of the Teichmüller Space)

Let T be an arbitrary triangulation of (S ,V ), then T corresponds to a
local chart (ΩT ,Θ

−1
T ). By exhausting all possible triangualtions of (S ,V ),

all the local charts form an atlas of the Teichmüller space TH(S − V ),

A(TH(S − V )) =
⋃
T

(
ΩT ,Θ

−1
T
)
.
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Teichmüller Space of Complete Hyperbolic Metrics

Lemma

Given a closed marked surface (S ,V ), χ(S − V ) < 0

TD(S ,V ) = TH(S − V )× R|V |>0 . (9)

Proof.

Any decorated hyperbolic metric on (S ,V , T ) can be represented as
(h,w), where h is a complete hyperbolic metric on S − V with finite area,
h ∈ TH(S − V ); w is the lengths of intersections between the horospheres
and the surface.
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Diffeomorphisms Among Teichmüller Spaces

The Teichmüller space of all PL metrics has a cell decomposition, each cell

Dpl(T ) = {[d] ∈ Tpl(S ,V )|T is Delaunay under d}
We show Dpl(T ) is simply connected. We change the edge length x(e) to
Rivin coordinates y(e), y(e) = α + α′. Then the edge lengths of
(S ,V , T ,d) are determined by the Rivin’s coordinates unique to a scaling,

Dpl(T ) = {y(e) ∈ (0, π)|e ∈ E (T )} × R>0

is a convex set. Dpl is simply connected.

α
α′e

Figure: Rivin coordinates.
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Diffeomorphisms Among Teichmüller Spaces

Cell Decomposition of Tpl(S ,V )

The Teichmüller of the PL metrics has the cell decomposition:

Tpl(S ,V ) =
⋃
T

Dpl(T ).

Cell Decomposition of TD(S ,V )

The Teichmüller space of the decorated hyperbolic metrics has the cell
decomposition:

TD(S ,V ) =
⋃
T

D(T ).

where the cell

D(T ) = {(d,w) ∈ TD(S ,V )|T is Delaunay under (d,w)}.
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Diffeomorphisms Among Teichmüller Spaces

Dpl(T )
ΨT ◦ Φ−1

T- D(T )

RE(T )
∆

ΨT

6
�

ΦT

We use Penner’s λ-length to establish the diffeomorphism between two
cells,

AT = ΨT ◦ Φ−1
T : Dpl(T )→ D(T ), x(e) 7→ 2lnx(e)

Penner’s λ-length maps Euclidean Delaunay triangulation to decorated
hyperbolic Delaunay triangulation. Furthermore Delaunay property implies
triangle inequality, hence AT is a diffeomorphism.
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Diffeomorphisms Among Teichmüller Spaces

Suppose triangulations T and T ′ differ by an edge swap, consider a
polyhedral metric [d ] ∈ Dpl(T ) ∩ Dpl(T ′), then under d , there are four
co-circle vertices in (T ) and (T )′. By Ptolemy equality, we obtain for any
x ∈ Φ−1

T (Dpl(T ) ∩ Dpl(T ′)),

Φ−1
T ◦ ΦT ′(x) = Ψ−1

T ◦ΨT ′(x)

this is equivalent to

AT |Dpl (T )∩Dpl (T ′) = AT ′ |Dpl (T )∩Dpl (T ′)

In this way, we glue the piecewise diffeomorphisms AT to form a global
diffeomorphism:

A : Tpl(S ,V )→ TD(S ,V ), A|Dpl (T ) = AT |Dpl (T )

Further proof shows this mapping is globally C 1 diffeomorphic.
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Existence Proof

First, we construct a map: F : Ωu → ΩK ,

Ωu
exp−−→ {p} × R|V |>0 → TD(S ,V )

A−1

−−→ Tpl(S ,V )
K−→ ΩK (10)

where the domain Ωu is the intersection between the discrete conformal
factor space and the Euclidean hyperplane

Ωu = Rn ∩
{
u
∣∣∣ n∑
i=1

ui = 0

}
(11)

the range ΩK is the discrete curvature space,

ΩK =

{
K ∈ (−∞, 2π)n

∣∣∣ n∑
i=1

Ki = 2πχ(S)

}
(12)

both of them are open sets in the Euclidean space Rn−1. Because
A : Tpl(S ,V )→ TD(S ,V ) is C 1, K : Tpl(S ,V )→ Rn is real analytic,
hence F is C 1.
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Existence Proof

We show that the map F : Ωu → ΩK is injective. Consider the convexity
of the entropy energy

E(u) =

∫ u n∑
i=1

Kidui .

The Hessian Matrix is the discrete Laplace-Beltrami operator, hence the
entropy is strictly convex on the domain Ωu. Furthermore, the domain Ωu

is convex, the gradient of the entropy is the current discrete curvature.
Hence, the map u 7→ OE(u) = K(u) is injective.
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Existence Proof

We then show that the map F : Ωu → ΩK is surjective. This requires
domain inviarance theorem.

Theorem (Invariance of Domain)

Suppose U is a domain (connected open set) in Rn, if f : U → Rn is
continuous and injective, then V = f (U) is open, and f is a
homeomorphism between U and V .

Because both Ωu and ΩK are all n − 1 dimensional open sets, F is
continuous and injective, hence F (Ωu) is an open set. And
F : Ωu → F (Ωu) is homeomorphic. We need to show ΩK = F (Ωu).
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Existence Proof

Since F (Ωu) is open, we need to show F (Ωu) is closed in ΩK . We take a
sequence {xk} ⊂ Ωu, such that xk leaves all the compact sets in Ωu. We
need to show F (xk) leaves all the compact sets in ΩK . We need the
Akiyoshi theorem:

Theorem (Akiyoshi(2001))

For any complete hyperbolic metric d on S − V with finite area, there
exists finite number of isotopy classes of triangulations T , such that

[d ]× Rn
>0

⋂
D(T ) 6= ∅.

Furthermore, there is finite number of triangulations {T1, . . . , Tk}, such
that for any decoration w ∈ Rn

>0, the Delaunay triangulation of (d ,w) is
isotopic to one of such Ti .

By Akiyoshi theorem, {p} ×Rn
>0 intersects TD(S ,V ) at a finite number of

cells, hence we can assume the Delaunay triangulation T is fixed.
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Existence Proof

{xk} leaves all the compact sets in Ωu. By taking subsequences, we may

assume that for each vertex vi , limk x
(k)
i = ti exists in [−∞,+∞]. Due to

the normalization that
∑

i x
(k)
i = 0 and x (k) doesn’t converge to any

vector in Ωu, there exists ti =∞ and tj = −∞. We label vertices by black
and white. The vertex vi is black if and only if ti = −∞ and white
otherwise.

Lemma (Coloring)

1 There doesn’t exist a triangle τ ∈ T with exactly two white vertices.

2 If ∆v1v2v3 is a triangle in T with exactly one white vertex at v1, then
the inner angle at v1 converges to 0 as k →∞ in the metric dk .
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Existence Proof

Proof.

To see (1), suppose otherwise, there exists a Euclidean triangle of lengths

aie
u

(n)
j +u

(n)
k , {i , j , k} = {1, 2, 3}, where limn u

(n)
i > −∞ for i = 2, 3 and

limn u
(n)
1 = −∞. By the triangle inequality, we have

a2e
u

(n)
1 +u

(n)
3 + a3e

u
(n)
1 +u

(n)
2 > a

u
(n)
2 +u

(n)
3

1 .

This is the same as

a2e
−u(n)

2 + a3e
−u(n)

3 > a
−u(n)

1
1 .

However, the left-hand-side is bounded, the right-hand-side tends to ∞.
The contradiction shows (1) holds.
To see (2), the triangle is similar to one with edge lengths,

{a1e
−u(n)

1 , a2e
−u(n)

2 , a3e
−u(n)

3 }, converge to {c ,∞,∞}, hence the angle α1

tends to 0.
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Existence Proof

v v1

v2

v3

vk

We now finish the proof of F (Ωu) = Ωk as follows. Since the surface S is
connected, there exists an edge e whose end points v , v1 have different
colors. Assume v is white and v1 is black. Let v1, . . . , vk be the set of all
vertices adjacent to v so that v , vi , vi+1 form vertices of a triangle and let
vk+1 = v1. Now apply above lemma to triangle ∆vv1v2 with v white and
v1 black, we conclude that v2 must be black. Inductively, we conclude
that all vi ’s, for i = 1, 2, . . . , k, are black. By part (2) of the above lemma,
we conclude that the curvature of dn at v tends to 2π. This shows that
F (Ω

(n)
u ) tends to ∞ of Ωk . Therefore F (Ωu) = Ωk . �
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