Existence of the Solution to Discrete Surface Ricci Flow

David Gu

Yau Mathematics Science Center
Tsinghua University
Computer Science Department
Stony Brook University

gu@cs.stonybrook.edu

September 11, 2020

David Gu (Stony Brook University) Computational Conformal Geometry September 11, 2020



Discrete Surface Curvature Flow Theorem J

David Gu (Stony Brook University) Computational Conformal Geometry September 11, 2020 2/37



Vertex Scaling

Definition (Vertex Scaling)

Two triangulated PL surface (S, V,T,d) and (S, V,T,d") are said to
differ by a vertex scaling, if 3\ : V(7)) — Rso, such that d = A x d on
E(T), where

Axd(u,v) = AMu)A(v)d(u, v).
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Figure: vertex scaling.
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Discrete Conformal Equivalence

Definition (Gu-Luo-Sun-Wu)

Two PL metrics d, d’ on a closed marked surface (S, V) are discrete
conformal, if they are related by a sequence of two types of moves: vertex
scaling and edge flip preserving Delaunay property.

O

Figure: Edge flip, both triangulations are Delaunay.
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Discrete Conformal Equivalence

Given a PL metric d on (S, V), produce a Delaunay triangulation 7 of
(5, V),

Figure: (S, V) with PL metric d, the triangulation is Delaunay.
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Discrete Conformal Equivalence

Each face t € T is associated an ideal hyperbolic triangle:

t*

/\ THB
\
=/ /&
If t,s € T glued by isometry f along e, then t* and s* are glued by the
same f* alonge e*,
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Discrete Conformal Equivalence

This induces a hyperbolic metric d* on S — V.

OA

Motivated by the important work of Bobenko-Pinkall-Springborn,
equivalent to the previous defintion using vertex scaling and Delaunay
condition.

Definition (Gu-Luo-Sun-Wu, JDG 2018)

Two PL metrics di and d on (S, V) are discrete conformal iff df and d
are isometric by an isometry homotopic to identity on S — V.
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Existence of the metric

Theorem (Gu-Luo-Sun-Wu)

Given a PL metric d on a closed marked surface (S, V), and curvature
K* : V — (—o0,2m), such that K satisfies the Gauss-Bonnet condition

> K(v) =2mx(S), there there is a d* discrete conformal to d, and d*
realizes the curvature K*.

B

(S,T.1) vertex scaling (S, T, A1) edge flip (S, T, A1)

Figure: Discrete surface Yamabe flow.
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Discrete Conformal Equivalence

Convex Optimization

Using Newton's method to minimize the following energy

(A1,A2,005A
m)in/ Z(K* (v))dlog A(v),

such that M, A(v) = 1. During the optimization, keep the triangulation
always to be Delaunay.

David Gu (Stony Brook University) Computational Conformal Geometry September 11, 2020 9/37



Proof of the Discrete Surface Curvature Flow
Theorem J
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Marked Surface

Definition (Marked Surface)

Let S be a closed topological surface, V = {vi, v, -+ ,v,} C S is the set
of distinct points, satsifying negative Euler number condition

X(S — V) < 0. We call (§,V) a marked surface.

We consder the polyhedral metric d on the marked surface (S, V), with
cone singularities at vertices.
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Discrete Conformal Equivalence

Definition (Discrete Conformal Equivalence)

Two polyhedral metrics d and d’ on a marked surface (S, V) are discrete
conformal equivalent, if there is a series polyhedral metrics on (S, V),

d:d17d2a"' 7dm:d,

and a series of triangulations 71,72, -+ , Tm, such that

© every triangulation 7y is Delaunay on the metric dg;

@ if 7; = Tit1, then there is a conformal factor u: V — R, such that
di11 = uxd;, namely the two polyhedral metrics differ by a vertex
scaling operation;

@ if 7; # Ti11, then there is an isometric transformation

h:(S,V.,d;) — (S, V,dji1), this transformation is homotopic to the
identity map of (S, V), preserving the vertices.
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Main Theorem

Existence and Uniqueness of the Solution to the Discrete Surface Ricci
Flow:

Theorem (Gu-Luo-Sun)

Suppose (S, V,d) is a closed polyhedral surface, the for any
K* : V — (—o0,2m), satisfying the Gauss-Bonnet condition
Y ey K*(v) = 2mx(S), there exists a polyhedral metric d*

@ d* is discrete conformal equivalent to the metric d;

@ d* induces the discrete Gaussian curvature K*.

All such kind of polyhedral metrics differ by a global scaling. Furthermore,
d* can be obtained by discrete surface Ricci flow.
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Uniformization

Figure: Closed surface uniformization.
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Discrete Uniformization Theorem

Corollary (Gu-Luo-Sun)

Suppose (S, V,d) is a closed polyhedral surface, then there exists a
polyhedral metric d*, d* and the metric d are discrete conformal
equivalent, d* induces constant discrete Gaussian curvature 2mx(S)/|V|.
Such kind of polyhedral metrics differ by a global scaling.
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Teichmiller Space of Polyhedral Metrics

Definition (Equivalent Polyhedral Metrics)

Two polyhedral metrics d and d’ on a marked surface (S, V) are
equivalent, if there is an isometric tranformation h: (S, V.,d) — (S, V,d),
and h is homotopic to the identity map of (S, V), namely h preserves V.

v

Definition (Teichmiiller Space of Polyhedral Metrics)

All the equivalence classes of polyhedral metrics on a marked surface
(S, V) form the Teichmiiller Space of polyhedral metrics.

Toi(S, V) = {d|polyhedral metrics on (S, V)}/{isometries ~ identity (S, V)}

v
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Atlas of the Teichmiiller Space of PL Metrics

Theorem (Troyanov)

Suppose (S, V) is a closed marked surface, the Teichmiiller space of

polyhedral metrics Tp(S, V') is homeomorphic to the Euclidean space
R*3X(S* V)_

Definition (Local Chart of the Teichmiiller Space of PL Metrics)

Suppose T is a triangulation of (S, V), its edge length function defines a
polyhedral metric,
. RE(T)
SR = Tp(S, V) (1)

this gives a local chart of the Teichmiiller space. Where the domain

]R{Z(T) = {x € ]Rigr)‘for any e, ej, ecform a triangle , x(e;) + x(ej) > x(ex }

(2)
is a convex set, and is injective. We use P to represent the image of ®7.
Then (Pr,®7") is a local chart of T,(S, V).
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Atlas of the Teichmiiller Space of PL Metrics

€k

Figure: topological, not geometric triangulation.

If we edge swap ex to e ot obtain the new triangulation 7’. Then under
the metric d, the topological triangle {e;j, e/, ¢j} doesn't satisfy the triangle
inequality. This shows the topological triangulation 7’ is not geometric.

P(T) # Tp(S, V)

One chart can't cover the whole Teichmiiller space Tp(S, V).
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Teichmuller Space of PL Metrics

Definition (Atlas of Teichmiiller Space of PL Metrics)

Suppose (S, V) is a closed marked surface, the atlas of T,(S, V) consists
of local coordinate charts (Pr, d)frl), where T exhausts all possible
triangulation.

A( Tpl(57 V)) = U(PT7 q)';’l) (3)
T

v

Lemma (Real Analytic Manifold)

Suppose (S, V) is a closed marked surface, then the Teichmiiller space of
polyhedral metrics Ty(S, V) is a real analytic manifold.
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Teichmuller Space of Decorated Hyperbolic Metrics

Definition (Equivalent decorated hyperbolic metrics)

Two decorated hyperbolic metrics (h,w) and (h’,w’) on a closed marked
surface (S, V) are equivalent, if there is an isometric transformation

h:(S,V,hw) = (S,V,d,w),

which is homotopic to the identity map of (S, V), and preserves the
horospheres.

A\

Definition (Teichmiiller Space of Decorated Hyperbolic Metrics)

Given a closed marked surface (S, V), x(S — V) < 0, then all the
decorated hyperbolic metric on it form the Teichmiiller space:

To(S, V) = {(h,w)|(S, V)decorated hyperbolic metrics}
pA= B {isometries ~ identity of (S, V')preserving horospheres}
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Teichmuller Space of Decorated Hyperbolic Metrics

Definition (Local Chart of the Teichmiiller Space)

Suppose T is a triangulation of (S, V), the hyperbolic edge length
function determines a decorated hyperbolic metric,

v RET) 5 Tp(S, V) (5)

which gives a local coordinate of the Teichmiiller space. Let Q7 be the
image of W, then (Qr, \IJ7_-1) form a local chart of Tp(S, V).

Definition (Atlas of the Teichmiiller Space)

Every triangulation of the marked closed surface (S, V) corresponds to a

local chart (Qr, \U}l). By exhausting all the possible triangulations, the
union of all the local charts forms the atlas:

A(Tp(S, V) = (e7.v7).
T

v
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Teichmuller Space of Complete Hyperbolic Metrics

Definition (Equivalent Complete Hyperbolic Metrics)

Two complete hyperbolic metrics h and h’ with finite area on a marked
surface (S — V) are equivalent, if there is an isometric transformation

h:(S—V,h)—= (S—V,N),

furthermore h is homotopic to the identity automorphism of S — V.

Definition (Teichmiiller Space of Complete Hyperbolic Metrics)

All the complete hyperbolic metrics with finite area on a marked surface
S—V,x(5—V) <0, form the Teichmiiller space,

{h|complete hyperbolic metrics with finite area on (S — V)}
{isometries ~ identity of (S — V)}
(6)

Tu(S—V) =

v
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Teichmuller Space of Complete Hyperbolic Metrics

Lemma (Local Coordinates)

Suppose h is a complete hyperbolic metric on S — V' with finite area, the
shear coordinate function is s : E(T) — R, then for any v € V, we have

the relation

> s(e)=0. (7)

e~ v
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Teichmuller Space of Complete Hyperbolic Metrics

Definition (Local Chart of the Teichmiiller Space)

Let 7 be a triangulation of (S, V), its shear coordinates uniquely
determines a complete hyperbolic metric with finite area,

Or : Qr = Tu(S - V)

this gives local coordinates of the Teichmiiller space, where

Qr = {x € RE(T)‘ Zx(e) =0, Vve V(’T)} :

e~v

Then (Q7, @;—1) form a local chart of Ty(S — V).

24 /37
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Teichmuller Space of Complete Hyperbolic Metrics

Definition (Atlas of the Teichmiiller Space)

Let 7 be an arbitrary triangulation of (S, V), then 7 corresponds to a
local chart (Q7, @}1). By exhausting all possible triangualtions of (S, V),
all the local charts form an atlas of the Teichmiiller space Ty(S — V),

A(Tu(S = V) = (@r,67").
T
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Teichmuller Space of Complete Hyperbolic Metrics

Lemma

Given a closed marked surface (S, V), x(S—V) <0

To(S, V) = Tu(S — V) x RY. (9)

v

Proof.

Any decorated hyperbolic metric on (S, V,T) can be represented as

(h,w), where h is a complete hyperbolic metric on S — V with finite area,
h € Ty(S — V); w is the lengths of intersections between the horospheres
and the surface. )
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Diffeomorphisms Among Teichmiiller Spaces

The Teichmdiller space of all PL metrics has a cell decomposition, each cell
Dpi(T) = {[d] € Tp(S, V)|T is Delaunay under d}

We show D,(7T) is simply connected. We change the edge length x(e) to

Rivin coordinates y(e), y(e) = o + a’. Then the edge lengths of

(S, V,T,d) are determined by the Rivin's coordinates unique to a scaling,
Dpi(T) = {y(e) € (0,m)[e € E(T)} x R>o

is a convex set. Dy is simply connected.

Figure: Rivin coordinates.
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Diffeomorphisms Among Teichmiiller Spaces

Cell Decomposition of T,/(S, V)

The Teichmiiller of the PL metrics has the cell decomposition:

To(S, V) UD,,,

Cell Decomposition of Tp(S, V)

The Teichmiiller space of the decorated hyperbolic metrics has the cell
decomposition:

p(S,V) = UD(T

where the cell

D(T) = {(d,w) € Tp(S, V)|T is Delaunay under (d,w)}.

28 /37
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Diffeomorphisms Among Teichmiiller Spaces

Vrod,
Dpi(T) L D(T)
%]
>~ v,
RZ(T)

We use Penner’'s A-length to establish the diffeomorphism between two
cells,

Ar =Vrodt: Dy(T) — D(T), x(e)+ 2lnx(e)

Penner's A-length maps Euclidean Delaunay triangulation to decorated
hyperbolic Delaunay triangulation. Furthermore Delaunay property implies
triangle inequality, hence At is a diffeomorphism.
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Diffeomorphisms Among Teichmiiller Spaces

Suppose triangulations 7 and T differ by an edge swap, consider a
polyhedral metric [d] € Dy(T) N Dpi(T'), then under d, there are four
co-circle vertices in (T) and (T)’. By Ptolemy equality, we obtain for any
x € (D (T) N Dpi(T7)),

O o dri(x) = W o Wr(x)
this is equivalent to

AT Dy (1D (77) = AT Dy(T)NDu(T7)

In this way, we glue the piecewise diffeomorphisms A7 to form a global
diffeomorphism:

A: Tpl(sa V) — TD(Sv V)> A|DpI(T) = AT|Dp/(T)

Further proof shows this mapping is globally C! diffeomorphic.
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Existence Proof

First, we construct a map: F : Q, — Q.

Q, 22 (p} x RY = Th(5, V) A5 (5. V) S ok (0)

where the domain €, is the intersection between the discrete conformal
factor space and the Euclidean hyperplane

Q,=R"N { ‘Zu,—O} (11)

the range Qg is the discrete curvature space,

QK:{KE

both of them are open sets in the Euclidean space R"~1. Because
A:Tu(S,V) = Tp(S,V)is C, K : Ty(S, V) — R" is real analytic,
hence F is C!.
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Existence Proof

We show that the map F : Q, — Q is injective. Consider the convexity

of the entropy energy
u n
E(u) = / > Kidu.
i=1

The Hessian Matrix is the discrete Laplace-Beltrami operator, hence the
entropy is strictly convex on the domain ,. Furthermore, the domain €,
is convex, the gradient of the entropy is the current discrete curvature.
Hence, the map u — VE&(u) = K(u) is injective.
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Existence Proof

We then show that the map F : Q, — Qg is surjective. This requires
domain inviarance theorem.

Theorem (Invariance of Domain)

Suppose U is a domain (connected open set) in R", if f : U — R" is
continuous and injective, then V = f(U) is open, and f is a
homeomorphism between U and V.

Because both €2, and Q are all n — 1 dimensional open sets, F is
continuous and injective, hence F(,) is an open set. And
F:Q, — F(,) is homeomorphic. We need to show Qx = F(Q,).
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Existence Proof

Since F(2,) is open, we need to show F(£2,) is closed in Q. We take a
sequence {xx} C Q,, such that xx leaves all the compact sets in Q,. We
need to show F(xk) leaves all the compact sets in Qx. We need the
Akiyoshi theorem:

Theorem (Akiyoshi(2001))

For any complete hyperbolic metric d on S — V with finite area, there
exists finite number of isotopy classes of triangulations T, such that

[d] x R, () D(T) # 0.

Furthermore, there is finite number of triangulations {71, ..., Ty}, such
that for any decoration w € RZ, the Delaunay triangulation of (d, w) is
isotopic to one of such T;.

v

By Akiyoshi theorem, {p} x RZ, intersects Tp(S, V) at a finite number of
cells, hence we can assume the Delaunay triangulation 7 is fixed.
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Existence Proof

{xk} leaves all the compact sets in Q,. By taking subsequences, we may
(k)

assume that for each vertex v;, limy x;"’ = t; exists in [—00, +00]. Due to

the normalization that Z,-x,-(k) = 0 and x(¥) doesn't converge to any
vector in €2, there exists t; = co and tj = —oo. We label vertices by black
and white. The vertex v; is black if and only if t; = —oo and white
otherwise.

Lemma (Coloring)

© There doesn't exist a triangle T € T with exactly two white vertices.

@ If Aviwvavs is a triangle in T with exactly one white vertex at vy, then
the inner angle at vi converges to 0 as k — oo in the metric dj.
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Existence Proof

Proof.

To see (1) suppose otherwise, there exists a Euclidean triangle of lengths
U
aje +u” i, J, Kk} =1{1,2,3}, where lim, u; (" > _oo for i = 2,3 and

lim, ug N~ oo, By the triangle inequality, we have

u(")—l—u3

are 1 2

(n) (n) T ()
+ azelr T >a” .

This is the same as

_ _ —af®
are 2 4 a3e™'s3 >alu1 .

However, the left-hand-side is bounded, the right-hand-side tends to oc.
The contradiction shows (1) holds.

To see (2), the triangle is similar to one with edge lengths,

{ale*”gn), age*”gn), a3e*”§n)}, converge to {c, 00,00}, hence the angle o

tends to 0. OJ
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Existence Proof

[

We now finish the proof of F(€,) = Qy as follows. Since the surface S is
connected, there exists an edge e whose end points v, v; have different
colors. Assume v is white and v; is black. Let v, ..., vk be the set of all
vertices adjacent to v so that v, v;, vi11 form vertices of a triangle and let
Vk+1 = v1. Now apply above lemma to triangle Avviv, with v white and
v1 black, we conclude that v» must be black. Inductively, we conclude
that all v;'s, for i = 1,2,..., k, are black. By part (2) of the above lemma,
we conclude that the curvature of d,, at v tends to 2. This shows that
F(Qg")) tends to oo of Q. Therefore F(Q2,) = Q. O
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