General Discrete Surface Curvature Flows

David Gu

Yau Mathematics Science Center
Tsinghua University
Computer Science Department
Stony Brook University
gu@cs.stonybrook.edu

September 6, 2020

General Derivative Cosine Laws

Different Schemes

Different Schemes

Derivative Cosine law

$$
\begin{aligned}
\frac{\partial}{\partial l_{i}}\left(2 l_{j} l_{k} \cos \theta_{i}\right) & =\frac{\partial}{\partial l_{i}}\left(l_{j}^{2}+l_{k}^{2}-l_{i}^{2}\right) \\
-2 l_{j} l_{k} \sin \theta_{i} \frac{d \theta_{i}}{d l_{i}} & =-2 l_{i} \\
\frac{d \theta_{i}}{d l_{i}} & =\frac{l_{i}}{A}
\end{aligned}
$$

Derivative Cosine law

$$
\begin{aligned}
\frac{\partial}{\partial l_{j}}\left(2 l_{j} l_{k} \cos \theta_{i}\right) & =\frac{\partial}{\partial l_{j}}\left(l_{j}^{2}+l_{k}^{2}-l_{i}^{2}\right) \\
2 l_{j} & =2 l_{k} \cos \theta_{i}-2 l_{j} l_{k} \sin \theta_{i} \frac{d \theta_{i}}{d l_{j}} \\
\frac{d \theta_{i}}{d l_{j}} & =\frac{l_{k} \cos \theta_{i}-l_{j}}{A} \\
& =-\frac{l_{i} \cos \theta_{k}}{A} \\
& =-\frac{d \theta_{i}}{d l_{i}} \cos \theta_{k}
\end{aligned}
$$

Derivative Cosine law

$$
l_{k}^{2}=r_{i}^{2}+r_{j}^{2}+2 r_{i} r_{j} l_{i j}
$$

$\iota_{i j}$ inversive distance.

$$
\begin{aligned}
\frac{\partial}{\partial r_{j}} l_{i}^{2} & =\frac{\partial}{\partial r_{j}}\left(r_{j}^{2}+r_{k}^{2}+2 r_{j} r_{k} l_{j k}\right) \\
2 l_{i} \frac{d l_{i}}{d r_{j}} & =2 r_{j}+2 r_{k} l_{j k} \\
\frac{d l_{i}}{d r_{j}} & =\frac{2 r_{j}^{2}+2 r_{j} r_{k} l_{j k}}{2 l_{i} r_{j}} \\
& =\frac{r_{j}^{2}+r_{k}^{2}+2 r_{j} r_{k} l_{j k}+r_{j}^{2}-r_{k}^{2}}{2 l_{i} r_{j}} \\
& =\frac{l_{i}^{2}+r_{j}^{2}-r_{k}^{2}}{2 l_{i} r_{j}}
\end{aligned}
$$

Cosine law

Let $u_{i}=\log r_{i}$, then $\frac{d \theta}{d u}=\frac{d \theta}{d l} \frac{d l}{d r} \frac{d r}{d u}$

$$
\begin{aligned}
& \left(\begin{array}{c}
d \theta_{1} \\
d \theta_{2} \\
d \theta_{3}
\end{array}\right)=\frac{-1}{A}\left(\begin{array}{ccc}
l_{1} & 0 & 0 \\
0 & l_{2} & 0 \\
0 & 0 & l_{3}
\end{array}\right)\left(\begin{array}{ccc}
-1 & \cos \theta_{3} & \cos \theta_{2} \\
\cos \theta_{3} & -1 & \cos \theta_{1} \\
\cos \theta_{2} & \cos \theta_{1} & -1
\end{array}\right) \\
& \left(\begin{array}{ccc}
0 & \frac{l_{1}^{2}+r_{2}^{2}-r_{3}^{2}}{2 l_{1} r_{2}} & \frac{l_{1}^{2}+r_{3}^{2}-r_{2}^{2}}{2 l_{2} r_{3}} \\
\frac{l_{2}^{2}+r_{1}^{2}-r_{3}^{2}}{2 l_{1} r_{1}} & 0 & \frac{l_{2}^{2}+r_{3}^{3}-r_{1}^{2}}{2 l_{2} r_{3}} \\
\frac{l_{3}^{2}+r_{1}^{1}-r_{2}^{2}}{2 l_{3} r_{1}} & \frac{l_{3}^{2}+r_{2}^{2}-r_{1}^{2}}{2 l_{3} r_{2}} & 0
\end{array}\right)\left(\begin{array}{ccc}
r_{1} & 0 & 0 \\
0 & r_{2} & 0 \\
0 & 0 & r_{3}
\end{array}\right)\left(\begin{array}{l}
d u_{1} \\
d u_{2} \\
d u_{3}
\end{array}\right)
\end{aligned}
$$

Power

Power

Suppose a point p is not coincident of the center of a circle $\mathbf{c}=(c, r)$ on the plane, the line through p intersects the circle at q_{1} and q_{2}, T is the tangent point, then the power of p with respect to the circle is

$$
\begin{aligned}
\operatorname{pow}(p, \mathbf{c}) & =\left|p q_{1}\right|\left|p q_{2}\right| \\
& =|p T|^{2} \\
& =|p c|^{2}-r^{2}
\end{aligned}
$$

Power

Equi-Power line

Suppose there are two circles

$\operatorname{pow}\left(p, \mathbf{c}_{1}\right)=\left|p p_{1}\right|\left|p p_{2}\right|=\operatorname{pow}\left(p, \mathbf{c}_{2}\right)$
$\mathbf{c}_{\mathbf{1}}=\left(c_{1}, r_{1}\right), \mathbf{c}_{\mathbf{2}}=\left(c_{2}, r_{2}\right)$, the equi-power line is the locus

$$
\operatorname{pow}\left(p, \mathbf{c}_{1}\right)=\operatorname{pow}\left(p, \mathbf{c}_{2}\right) .
$$

The equation of p is

$$
\left|p-c_{1}\right|^{2}-r_{1}^{2}=\left|p-c_{2}\right|^{2}-r_{2}^{2} .
$$

If two circles intersect at p_{1} and p_{2}, then the line through them is the equi-power line.

Power

Suppose there are two circles
$\mathbf{c}_{\mathbf{k}}=\left(c_{k}, r_{k}\right)$, the line through c_{1} and c_{2} intersects the equi-power line at the point p. Assume the length between c_{1} and c_{2} is l. The distance from p to c_{2} is denoted as d_{21}, then

$$
\begin{aligned}
& d_{12}=\frac{l^{2}+r_{1}^{2}-r_{2}^{2}}{2 l} \\
& d_{21}=\frac{I^{2}+r_{2}^{2}-r_{1}^{2}}{2 l}
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{pow}\left(p, \mathbf{c}_{\mathbf{1}}\right) & =\operatorname{pow}\left(p, \mathbf{c}_{2}\right) \\
d_{12}^{2}-r_{1}^{2} & =d_{21}^{2}-r_{2}^{2}
\end{aligned}
$$

obviously, $d_{12}+d_{21}=l$.

Power

compute the power of p with respect to two circles

$$
\begin{gathered}
\operatorname{pow}\left(p, \mathbf{c}_{1}\right)=d_{12}^{2}-r_{1}^{2} \\
\operatorname{pow}\left(p, \mathbf{c}_{2}\right)=d_{21}^{2}-r_{2}^{2} \\
d_{12}^{2}-d_{21}^{2}=\left(d_{12}+d_{21}\right)\left(d_{12}-d_{21}\right) \\
\\
=l \frac{r_{1}^{2}-r_{2}^{2}}{l}=r_{1}^{2}-r_{2}^{2}
\end{gathered}
$$

Power

Lemma

The equi-power line is orthogonal to the line connecting the centers.

Proof.

Define a function $\phi(p)=\operatorname{pow}\left(p, \mathbf{c}_{1}\right)-\operatorname{pow}\left(p, \mathbf{c}_{2}\right)$,

$$
\begin{aligned}
\phi(p) & =\left\langle p-c_{1}, p-c_{1}\right\rangle-r_{1}^{2}-\left\langle p-c_{2}, p-c_{2}\right\rangle+r_{2}^{2} \\
d \phi(p) & =\left\langle d p, c_{2}-c_{1}\right\rangle
\end{aligned}
$$

so $\nabla \phi=c_{2}-c_{1}$, orthogonal to the level sets of ϕ. The equi-power line is the 0 -level set

Power

Given three circles $\mathbf{c}_{\mathbf{k}}, k=1,2,3$, then three equi-power lines intersect at one point o, which is called the power center,
The equi-power lines of $\mathbf{c}_{\mathbf{1}}, \mathbf{c}_{\mathbf{2}}$ and $\mathbf{c}_{\mathbf{1}}, \mathbf{c}_{\mathbf{3}}$ intersects at the point o. Then $\operatorname{pow}\left(o, \mathbf{c}_{1}\right)=\operatorname{pow}\left(o, \mathbf{c}_{2}\right)=\operatorname{pow}\left(o, \mathbf{c}_{3}\right)$
so o is also on the equi-power line of $\mathbf{c}_{2}, \mathbf{c}_{3}$.

Power Center

There are 3 circles $\mathbf{c}_{\mathbf{k}}=\left(c_{k}, r_{k}\right)$, the power center o is also the center of the unique circle (p, r), which is orthogonal to all 3 circles.
$\operatorname{pow}\left(o, \mathbf{c}_{\mathbf{k}}\right)=\left\langle o-c_{k}, o-c_{k}\right\rangle-r_{k}^{2}=r^{2}$,
so the power center is the center of the circle which is orthogonal to the 3 circles.

Derivative Cosine law

$$
\begin{gathered}
\frac{\partial}{\partial r_{j}} l_{k}^{2}=\frac{\partial}{\partial r_{j}}\left(r_{i}^{2}+r_{j}^{2}+2 l_{i j} r_{i} r_{j}\right) \\
\operatorname{pow}\left(o, \mathbf{c}_{\mathbf{i}}\right)=\operatorname{pow}\left(o, \mathbf{c}_{\mathbf{j}}\right) \\
\left|o v_{i}\right|^{2}-r_{i}^{2}=\left|o v_{j}\right|^{2}-r_{j}^{2}
\end{gathered}
$$

$$
\begin{aligned}
2 I_{k} \frac{d I_{k}}{d r_{j}} & =2 r_{j}+\left.2 r_{i} l_{i j}\right|^{2}-\left|o v_{j}\right|^{2}=r_{i}^{2}-r_{j}^{2} \\
r_{j} \frac{d I_{k}}{d r_{j}} & =\frac{2 r_{j}^{2}+2 r_{i} r_{j} l_{i j}}{2 I_{k}} \\
& =\frac{r_{j}^{2}+2 r_{i} r_{j} l_{i j}+r_{i}^{2}-r_{i}^{2}+r_{j}^{2}}{2 l_{k}} \\
& =\frac{l_{k}^{2}+r_{j}^{2}-r_{i}^{2}}{2 I_{k}} \\
& =\frac{l_{k}^{2}+\left|o v_{j}\right|^{2}-\left|o v_{i}\right|^{2}}{2 I_{k}}=d_{j i}
\end{aligned}
$$

Therefore in $\Delta v_{i} v_{j} o, \frac{d l_{k}}{d u_{j}}=d_{j i}$.

Derivative Cosine law

Theorem (Symmetry)

$$
\begin{aligned}
\frac{d \theta_{i}}{d u_{j}} & =\frac{d \theta_{j}}{d u_{i}}=\frac{h_{k}}{I_{k}} \\
\frac{d \theta_{j}}{d u_{k}} & =\frac{d \theta_{k}}{d u_{j}}=\frac{h_{i}}{l_{i}} \\
\frac{d \theta_{k}}{d u_{i}} & =\frac{d \theta_{i}}{d u_{k}}=\frac{h_{j}}{l_{j}}
\end{aligned}
$$

The distance from o to edge $\left[v_{i}, v_{j}\right]$ is h_{k}.

Derivative Cosine law

Proof.

$$
\begin{aligned}
\frac{\partial \theta_{i}}{\partial u_{j}} & =\frac{\partial \theta_{i}}{\partial I_{i}} \frac{\partial I_{i}}{\partial u_{j}}+\frac{\partial \theta_{i}}{\partial I_{k}} \frac{\partial I_{k}}{\partial u_{j}} \\
& =\frac{\partial \theta_{i}}{\partial I_{i}}\left(\frac{\partial I_{i}}{\partial u_{j}}-\frac{\partial I_{k}}{\partial u_{j}} \cos \theta_{j}\right) \\
& =\frac{I_{i}}{A}\left(d_{j k}-d_{j i} \cos \theta_{j}\right) \\
& =\frac{d l_{i}}{I_{i} I_{k} \sin \theta_{j}} \\
& =\frac{h_{k} \sin \theta_{j}}{I_{k} \sin \theta_{j}} \\
& =\frac{h_{k}}{I_{k}}
\end{aligned}
$$

Inversive Distance CP Metric - Local Rigidity

The Discrete Ricci energy of Inversive distance CP metric is convex, but the conformal factor space is non-convex. Therefore it has local rigidity, not global rigidity.

Yamabe Flow

Shrink three circles to vertices, then the power center o becomes the circum-center.

$$
\begin{aligned}
\frac{\partial \theta_{i}}{\partial u_{j}} & =\frac{\partial \theta_{i}}{\partial I_{i}} \frac{\partial I_{i}}{\partial u_{j}}+\frac{\partial \theta_{i}}{\partial I_{k}} \frac{\partial I_{k}}{\partial u_{j}} \\
& =\frac{\partial \theta_{i}}{\partial I_{i}}\left(\frac{\partial I_{i}}{\partial u_{j}}-\frac{\partial I_{k}}{\partial u_{j}} \cos \theta_{j}\right) \\
& =\frac{I_{i}}{A}\left(I_{i}-I_{k} \cos \theta_{j}\right) \\
& =\frac{2 I_{i} d}{I_{i} I_{k} \sin \theta_{j}} \\
& =\frac{2 h_{k}}{I_{k}} \\
& =\cot \theta_{k}
\end{aligned}
$$

Discrete Yamabe flow - Local Rigidity

The Discrete Ricci energy of discrete Yamabe flow is convex, but the conformal factor space is non-convex. Therefore it has local rigidity, not global rigidity.

Extremal Length

Figure: The conformal module of a topological quadrilateral.

Topological Annulus

Figure: The conformal module of a topological annulus.

Costa Minimal Surface

Figure: Costa minimal surface.

Circle Packing and Square Packing

Figure: Circle packing and square packing.

Circle Packing Art

Figure: Girl with a Pearl Earring. (by Mario Klingemann)

Circle Packing Art

Figure: Mona Lisa. (by Mario Klingemann)

Circle Packing Art

Figure: The Starry Night. (by Mario Klingemann)
David Gu (Stony Brook University)

Hyperbolic Surface Ricci Flow

Polyhedral Surface

Figure: Polyhedral surface.

Background Geometries

Figure: Constant curvature triangle.

We can glue hyperbolic or spherical triangles isometrically along the common edges to construct the triangle mesh. Then we say the surface is with hyperbolic or spherical background geometry.

Hyperbolic Triangle

Cosine law:

$$
\cos \theta_{i}=\frac{\cosh /_{j} \cosh I_{k}-\cosh /_{i}}{\sinh /_{j} \sinh I_{k}}
$$

Sine law:

$$
\frac{\sinh /_{i}}{\sin \theta_{i}}=\frac{\sinh /_{j}}{\sin \theta_{j}}=\frac{\sinh /_{k}}{\sin \theta_{k}}
$$

Area
Figure: Hyperbolic triangle.

$$
A=\frac{1}{2} \sinh /_{j} \sinh /_{k} \sin \theta_{i}
$$

Hyperbolic Derivative Cosine Law

Lemma

The hyperbolic derivative cosine law is represented as:

$$
\frac{\partial \theta_{i}}{\partial l_{i}}=\frac{\sinh /_{i}}{A}, \frac{\partial \theta_{i}}{\partial l_{j}}=-\frac{\sinh /_{i}}{A} \cos \theta_{k}
$$

Compared with Euclidean cosine law, we replace the edge lengths I_{i} by $\sinh I_{i}$.

Curvature

Definition (Discrete Curvature)

Given a discrete surface with hyperbolic background geometry (S, V, \mathcal{T}, I), every triangle is a hyperbolic geodesic triangle, the vertex discrete curvature is defined as the angle deficit

$$
K(v)= \begin{cases}2 \pi-\sum_{j k} \theta_{i}^{j k}, & v \notin \partial S \\ \pi-\sum_{j k} \theta_{i}^{j k}, & v \in \partial S\end{cases}
$$

Theorem (Gauss-Bonnet)

The discrete Gauss-Bonnet theorem is represented as:

$$
\sum_{v \notin \partial S} K(v)+\sum_{v \in \partial S} K(v)-\operatorname{Area}(S)=2 \pi \chi(S)
$$

Discrete Conformal Metric Deformation

Definition (Conformal Deformation)

Given discrete conformal factor function $u: V(\mathcal{T}) \rightarrow \mathbb{R}$, hyperbolic vertex scaling is defined as $y:=u * I$,

$$
\sinh \frac{y_{k}}{2}=e^{\frac{u_{j}}{2}} \sinh \frac{I_{k}}{2} e^{\frac{u_{j}}{2}}
$$

Lemma (Symmetry)

The symmetric relations holds:

$$
\frac{\partial \theta_{i}}{\partial u_{j}}=\frac{\partial \theta_{j}}{\partial u_{i}}=\frac{C_{i}+C_{j}-C_{k}-1}{A\left(C_{k}+1\right)}
$$

where $S_{k}=\sinh y_{k}, C_{k}=\cosh y_{k}$.

Discrete Hyperbolic Entropy Energy

Definition (Hyperbolic Entropy Energy)

$$
E_{f}\left(u_{i}, u_{j}, u_{k}\right)=\int^{\left(u_{i}, u_{j}, u_{k}\right)} \theta_{i} d u_{i}+\theta_{j} d u_{j}+\theta_{k} d u_{k}
$$

The Hessian matrix of the entropy energy is:
$\left(\begin{array}{l}d \theta_{1} \\ d \theta_{2} \\ d \theta_{3}\end{array}\right)=\frac{-1}{A}\left(\begin{array}{ccc}S_{1} & 0 & 0 \\ 0 & S_{2} & 0 \\ 0 & 0 & S_{3}\end{array}\right)\left(\begin{array}{ccc}-1 & \cos \theta_{3} & \cos \theta_{2} \\ \cos \theta_{3} & -1 & \cos \theta_{1} \\ \cos \theta_{2} & \cos \theta_{1} & -1\end{array}\right)\left(\begin{array}{ccc}0 & \frac{S_{1}}{C_{1}+1} & \frac{S_{1}}{C_{1}+1} \\ \frac{S_{2}}{C_{2}+1} & 0 & \frac{S_{2}}{C_{2}+1} \\ \frac{S_{3}}{C_{3}+1} & \frac{S_{3}}{C_{3}+1} & 0\end{array}\right)$ which is strictly convex.

Discrete Entropy Energy on a Mesh

Definition (Entropy Energy)

The entropy energy on a triangle mesh with hyperbolic background geometry equals to

$$
E(\mathbf{u})=\int^{\mathbf{u}} \sum_{i}\left(\bar{K}_{i}-K_{i}\right) d u_{i}
$$

Definition (Hyperbolic Ricci Flow)

Hence the discrete hyperbolic surface Ricci flow is defined as:

$$
\frac{d u_{i}(t)}{d t}=\bar{K}_{i}-K_{i}(t)
$$

which is the gradient flow of the discrete hyperbolic entropy energy. The strict concavity of the discrete entropy ensures the uniqueness of the solution to the flow. The existence is given by Gu-Luo-Sun using Teichmüller theory and hyperbolic geometry.

Uniformizaton of High Genus Surface

Figure: Uniformization of a genus two surface.

Uniformization

Figure: Uniformization of a genus three surface.

Uniformization

Figure: Uniformization of a genus two surface.

Shortest Word

Figure: Shortest word problem.

Discrete Riemann Mapping

Unified Discrete Surface Ricci Flow

Unified Ricci Flow

(a)Tangential CP

(b) Generalized Hyperbolic

Tetrahedron, $(\eta, \epsilon)=(1,1)$

Figure: Tangential circle packing.

Thurston's Circle Packing

(a)Thurston's Circle packing

(b)Generalized Hyperbolic

Tetrahedron, $0 \leq \eta<1, \epsilon=1$

Figure: Thurston's circle packing.

Inversive Distance Circle Packing

(c)Inversive distance CP

(d)Generalized Hyperbolic

Tetrahedron, $\eta>1, \epsilon=1$

Figure: Inversive distance circle packing.

Yamabe Flow

Figure: Yamabe flow.

Virtual Radius Circle Packing

(e)Virtual radius CP

(f)Generalized Hyperbolic

Tetrahedron, $\eta>0, \epsilon=-1$

Figure: virtual radius circle packing.

$$
l_{k}^{2}=-r_{i}^{2}-r_{j}^{2}+2 \eta_{i j} r_{i} r_{j}
$$

Mixed Type

Figure: Mixed typed circle packing.

Conformal Factor

Definition (Discrete Conformal Factor)

The discrete conformal factor is defined as $u: V \rightarrow \mathbb{R}$,

$$
u_{i}= \begin{cases}\log \gamma_{i} & \mathbb{E}^{2} \\ \log \tanh \frac{\gamma_{i}}{2} & \mathbb{H}^{2} \\ \log \tan \frac{\gamma_{i}}{2} & \mathbb{S}^{2}\end{cases}
$$

Edge Length

Definition (Edge Length)

The edge lengths are given by

$$
u_{i}=\left\{\begin{array}{rlr}
l_{i j}^{2} & =2 \eta_{i j} e^{u_{i}+u_{j}}+\varepsilon_{i} e^{2 u_{i}}+\varepsilon_{j} e^{2 u_{j}} & \mathbb{E}^{2} \\
\cosh l_{i j} & =\frac{4 \eta_{i j} e^{u_{i}+u_{j}}+\left(1+\varepsilon_{i} e^{2 u_{i}}\right)\left(1+\varepsilon_{j} e^{2 u_{j}}\right)}{\left(1-\varepsilon_{i} e^{2 u_{i}}\right)\left(1-\varepsilon_{j} e^{2 u_{j}}\right)} & \mathbb{H}^{2} \\
\cos l_{i j} & =\frac{-4 \eta_{i j} e^{u_{i}+u_{j}}+\left(1-\varepsilon_{i} e^{2 u_{i}}\right)\left(1-\varepsilon_{j} e^{2 u_{j}}\right)}{\left(1+\varepsilon_{i} e^{2 u_{i}}\right)\left(1+\varepsilon_{j} e^{2 u_{j}}\right)} & \mathbb{S}^{2}
\end{array}\right.
$$

Edge Length

Scheme	ε_{i}	ε_{j}	$\eta_{i j}$
Tangential Circle Packing	+1	+1	+1
Thurston's Circle Packing	+1	+1	$[0,1]$
Inversive Distance Circle Packing	+1	+1	$(0, \infty)$
Yamabe Flow	0	0	$(0, \infty)$
Virtual Distance Circle Packing	-1	-1	$(0, \infty)$
Mixed Type	$\{-1,0,+1\}$	$\{-1,0,+1\}$	$(0, \infty)$

Table: Parameters for schemes.

Entropy Energy

Definition (Entroy on a Face)

A discrete surface with $\mathbb{S}^{2}, \mathbb{E}^{2}, \mathbb{H}^{2}$ background geometry, and a circle packing metric $(\Sigma, \gamma, \eta, \varepsilon)$. For each triangle $\left[v_{i}, v_{j}, v_{k}\right]$ with inner angle $\left(\theta_{i}, \theta_{j}, \theta_{k}\right)$, the entropy energy for the face is given by

$$
E_{f}\left(u_{i}, u_{j}, u_{k}\right)=\int^{\left(u_{i}, u_{j}, u_{k}\right)} \theta_{i} d u_{i}+\theta_{j} d u_{j}+\theta_{k} d u_{k}
$$

Entropy Energy

Definition (Entroy on a mesh)

A discrete surface with $\mathbb{S}^{2}, \mathbb{E}^{2}, \mathbb{H}^{2}$ background geometry, and a circle packing metric ($\Sigma, \gamma, \eta, \varepsilon$). The discrete entropy energy for the whole mesh is defined as

$$
E_{=} \int^{\left(u_{1}, u_{2}, \cdots, u_{n}\right)} \sum_{i=1}^{n}\left(\bar{K}_{i}-K_{i}\right) d u_{i}
$$

The mesh entropy can be represented as the face energies

$$
E_{\sigma}=\sum_{i=1}^{n}\left(\bar{K}_{i}-2 \pi\right) u_{i}+\sum_{f \in F} E_{f}
$$

Symmetry

Suppose a triangle $\left[v_{i}, v_{j}, v_{k}\right]$ is with background geometry $\mathbb{S}^{2}, \mathbb{E}^{2}, \mathbb{H}^{2}$, conformal factor $\left(u_{i}, u_{j}, u_{k}\right)$, edge length $\left(l_{i}, l_{j}, l_{k}\right)$, inner angles $\left(\theta_{i}, \theta_{j}, \theta_{k}\right)$, entropy energy is

$$
\begin{equation*}
E\left(u_{i}, u_{j}, u_{k}\right)=\int^{\left(u_{i}, u_{j}, u_{k}\right)} \theta_{i} d u_{i}+\theta_{j} d u_{j}+\theta_{k} d u_{k} \tag{1}
\end{equation*}
$$

Then the Hessian matrix is given by

$$
\begin{equation*}
\frac{\partial\left(\theta_{i}, \theta_{j}, \theta_{k}\right)}{\partial\left(u_{i}, u_{j}, u_{k}\right)}=-\frac{1}{2 A} L \Theta L^{-1} D \tag{2}
\end{equation*}
$$

where, A is the triangle area

$$
\begin{equation*}
A=\frac{1}{2} \sin \theta_{i} s\left(I_{j}\right) s\left(I_{k}\right) \tag{3}
\end{equation*}
$$

Symmetry

The matrix L is

$$
L=\left(\begin{array}{ccc}
s\left(I_{i}\right) & 0 & 0 \tag{4}\\
0 & s\left(l_{j}\right) & 0 \\
0 & 0 & s\left(I_{k}\right)
\end{array}\right)
$$

$$
\Theta=\left(\begin{array}{lll}
-1 & \cos \theta_{k} & \cos \theta_{j} \tag{5}\\
\cos \theta_{k} & -1 & \cos \theta_{i} \\
\cos \theta_{j} & \cos \theta_{i} & -1
\end{array}\right)
$$

matrix D is

$$
D=\left(\begin{array}{ccc}
0 & \tau(i, j, k) & \tau(i, k, j) \tag{6}\\
\tau(j, i, k) & 0 & \tau(j, k, i) \\
\tau(k, i, j) & \tau(k, j, i) & 0
\end{array}\right)
$$

Hessian Matrix

where

$$
s(x)= \begin{cases}x & \mathbb{E}^{2} \\ \sinh x & \mathbb{H}^{2} \\ \sin x & \mathbb{S}^{2}\end{cases}
$$

and

$$
\tau(i, j, k)= \begin{cases}\frac{1}{2}\left(l_{i}^{2}+\epsilon_{j} \gamma_{j}^{2}-\epsilon_{k} \gamma_{k}^{2}\right) & \mathbb{E}^{2} \\ \cosh l_{i} \cosh ^{\epsilon_{j}} \gamma_{j}-\cosh ^{\epsilon_{k}} \gamma_{k} & \mathbb{H}^{2} \\ \cos l_{i} \cos ^{\epsilon_{j}} \gamma_{j}-\cos ^{\epsilon_{k}} \gamma_{k} & \mathbb{S}^{2}\end{cases}
$$

Geometric Interpretation

For each triangle, there is a power circle, orthogonal to three vertex circles. The distance from the power center to each edge is h_{i}, h_{j}, h_{k}. Then we have the geometric interpretation to the Hessian matrix: with $\mathbb{E}^{2}, \mathbb{H}^{2}$ and \mathbb{S}^{2} background geometry,

$$
\frac{\partial \theta_{1}}{\partial u_{2}}=\frac{\partial \theta_{2}}{\partial u_{1}}=\frac{h_{3}}{l_{3}}
$$

$$
\frac{\partial \theta_{1}}{\partial u_{2}}=\frac{\partial \theta_{2}}{\partial u_{1}}=\frac{\tanh h_{3}}{\sinh ^{2} I_{3}} \sqrt{2 \cosh ^{\epsilon_{1}} r_{1} \cosh ^{\varepsilon_{2}} r_{2} \cosh I_{3}-\cosh ^{2 \varepsilon_{1}} r_{1}-\cosh ^{2 \varepsilon_{2}} r_{2}}
$$

$$
\frac{\partial \theta_{1}}{\partial u_{2}}=\frac{\partial \theta_{2}}{\partial u_{1}}=\frac{\tan h_{3}}{\sin ^{2} I_{3}} \sqrt{-2 \cos ^{\varepsilon_{1}} r_{1} \cos ^{\varepsilon_{2}} r_{2} \cos l_{3}+\cos ^{2 \varepsilon_{1}} r_{1}+\cos ^{2 \varepsilon_{2}} r_{2}}
$$

