Persistent Homology

David Gu

Yau Mathematics Science Center Tsinghua University Computer Science Department Stony Brook University

gu@cs.stonybrook.edu

August 28, 2020

Persistent Homology

Figure: Cech complex.

Definition (Cecg Complex)

Given a set of points $\{x_{\alpha}\}$ in Euclidean space \mathbb{R}^n , the Cech complex (also known as the nerve), \mathcal{C}_{ϵ} , is the abstract simplicial complex where a set of k+1 vertices spans a k-simplex whenever the k+1 corresponding closed $\epsilon/2$ -ball neighborhoods have nonempty intersection.

Definition (Vietoris-Rips Complex)

Given a set of points $\{x_{\alpha}\}$ in Euclidean space \mathbb{R}^n , the Vietoris-Rips complex, \mathcal{R}_{ϵ} , is the abstract simplicial complex where a set S of k+1 vertices spans a k-simplex whenever the distance between any pair of points in S is at most ϵ .

Figure: Cech complex.

Figure: Cech complex.

Figure: Cech complex.

Filtration

Definition (filtration)

A filtration of a simplicial complex $\ensuremath{\mathbb{K}}$ is a nested sequence of complexes,

$$\emptyset = \mathbb{K}_{-1} \subset \mathbb{K}_0 \subset \mathbb{K}_1 \subset \cdots \subset \mathbb{K}_n = \mathbb{K}.$$

Example

Suppose ${\mathbb K}$ is a simplicial complex, we sort all the simplices in a sequence

$$\sigma_1^0, \sigma_2^0, \cdots, \sigma_{n_0}^0, \sigma_1^1, \sigma_2^1, \cdots, \sigma_{n_1}^1, \sigma_1^2, \sigma_2^2, \cdots, \sigma_{n_2}^2.$$

where σ_i^k is the *i*-th *k*-simplex in \mathbb{K} . Then we relabel all the simplices as

$$\sigma^0, \sigma^1, \sigma^2, \cdots,$$

We define \mathbb{K}_i as the union of $\sigma^0, \sigma^1, \dots, \sigma^i$.

Homology

Figure: Chain, cycle, boundary groups and their images under the boundary operators.

$$H_k(\mathbb{K}, \mathbb{Z}_2) = \frac{\operatorname{Ker} \partial_k}{\operatorname{Img} \partial_{k+1}} = \frac{Z_k}{B_k}.$$

Persistent Homology

The inclusion map $f: \mathbb{K}_{i-1} \hookrightarrow \mathbb{K}_i$ defined by f(x) = x induces a homomorphism $f_*: H_p(\mathbb{K}_{i-1}) \to H_p(\mathbb{K}_i)$. The nested sequence of complexes corresponds to a sequence of homology groups connected by the induced maps,

$$0 = H_p(\mathbb{K}_{-1}) \to H_p(\mathbb{K}_0) \to \cdots \to H_p(\mathbb{K}_n) = H_p(\mathbb{K})$$

Persistent homology studies how the homology groups change over the filtration.

Generator and Killer

Definition (positive simplex)

Given a filtration of \mathbb{K} , suppose $\mathbb{K}_i - \mathbb{K}_{i-1} = \sigma_i$, where σ_i is a (k+1)-simplex. We call σ_i is positive if it belongs to a (k+1)-cycle in \mathbb{K}_i and negative otherwise.

A positive simplex is also called a generator, a negative simplex a killer.

Generator and Killer

Definition (Betti Number)

Given a complex K, the i-th Betti number β_i is the rank of $H_i(K)$,

$$\beta_i = \mathsf{Rank} H_i(K, \mathbb{Z}_2)$$

Suppose the number of positive k-simplexes is pos_k , and the number of negative k-simplexes is neg_k , then

$$\beta_k = \mathsf{pos}_k - \mathsf{neg}_{k+1}$$

Persistent Homology

Definition (Persistent Homology)

Define Z_k^I, B_k^I be the K-th cycle group and k-th boundary group respectively, of the I-complex K^I in a filtration. The p-persistent k-th homology group K^I is

$$H_k^{l,p} := \frac{Z_k^l}{B_k^{l+p} \cap Z_k^l}.$$

The *p*-persistent *k*-th Betti number $\beta_k^{I,p}$ of K^I is the rank of $H_k^{I,p}$.

Lemma

Consider the homomorphism $\eta_k^{l,p}: H_k^l \to H_k^{l+p}$, then

$$\operatorname{img}\,\eta_k^{I,p}\cong H_k^{I,p}$$

Generator

Lemma

For each positive k-simplex σ^i , there exists a non-exact k-cycle c^i , c^i contains σ^i but no other positive k-simplices.

Proof.

Start with an arbitrary a k-cycle that contains σ^i and remove other positive k-simplices by adding their corresponding k-cycles. This method succeeds because each added cycle contains only one positive k-simplex by inductive assumption.

We use σ^i to represent c^i , and in turn the homologous class $[c^i] = c^i + B_k$.

$$\sigma^i \to c^i \to [c^i] = c^i + B_k. \quad \sigma^i \sim c^i$$

We add $[c^i]$ to the basis of $H_k(\mathbb{K}^i)$.

Generator

Figure: Generator, positive simplex.

Killer

For each negative (k+1)-simplex σ^j , its boundary $d=\partial_{k+1}\sigma^j$ is a k-cycle, and can be represented as the linear combination of the basis of $H_k(\mathbb{K}_{j-1})$,

$$[d] = \sum_{g} [c^g], \{c^g\} \text{ basis } H_k(\mathbb{K}_{j-1}),$$

each $[c^g]$ is represented by a positive k-simplex σ^g , g < j, that is not yet paired. The collection of positive non-paired k-simplices is denoted as $\Gamma = \Gamma(d)$,

$$\Gamma(d) := \left\{ \sigma^{\mathbf{g}} : [d] = \sum_{\mathbf{g}} [c^{\mathbf{g}}], \quad \sigma^{\mathbf{g}} \sim c^{\mathbf{g}} \right\}$$

Suppose the youngest positive simplex in $\Gamma(\partial_{k+1}\sigma^j)$ is σ^i , then we form the pair (σ^i, σ^j) , and remove $[c^i]$ from $H_k(\mathbb{K}_j)$. $[c^i]$ is created by σ^i and killed by σ^j , the persistence life of the k-cycle $[c^i]$ is j-i-1.

Example Filtration

Figure: Generators and killers.

Filtration

$$v_0, v_1, v_2, v_3, v_4, v_5, e_0, e_1, e_2, e_3, e_4, e_5, f_0, f_1, f_2$$

Relabel them as

$$\sigma^{0}, \sigma^{1}, \sigma^{2}, \sigma^{3}, \sigma^{4}, \sigma^{5}, \sigma^{6}, \sigma^{7}, \sigma^{8}, \sigma^{9}, \sigma^{10}, \sigma^{11}, \sigma^{12}, \sigma^{13}, \sigma^{14}, \sigma^{15}$$

Example Generators

Figure: Generators.

Example Killers

Figure: Killers.

Example Pairing

Figure: Generators and killers.

$$\partial_2 f_2 = \mathbf{e_2} + \mathbf{e_5} + \mathbf{e_6} + \mathbf{e_8} = (\mathbf{e_5} + 2\mathbf{e_4} + 2\mathbf{e_3}) + (\mathbf{e_2} + 2\mathbf{e_1} + 2\mathbf{e_0}) + \mathbf{e_6} + \mathbf{e_8}$$
$$= (\mathbf{e_5} + \mathbf{e_4} + \mathbf{e_3}) + (\mathbf{e_2} + \mathbf{e_1} + \mathbf{e_0}) + \partial_2 (f_0 + f_1)$$

Key Lemma

Definition (Collision Free Cycle)

A collision free cycle is one where the youngest positive simplex has not been paired (killed).

Lemma (Collision)

Given a filtration, $\mathbb{K}_j - \mathbb{K}_{j-1} = \sigma^j$, σ^i is the youngest positive simplex in $\Gamma(\partial_{k+1}\sigma^j)$. Let e be a collision free k-cycle in \mathbb{K}_{j-1} homologous to $\partial_{k+1}\sigma^j$. Suppose the youngest positive simplex in e is σ^g , then

$$\sigma^i = \sigma^g$$
.

 $\max \Gamma(\partial_{k+1} \sigma^j) = \max(e) \quad \forall e \text{ collision free}, [e] = [\partial \sigma^j].$

Key Lemma

Proof.

Let f be the sum of the basis cycles, homologous to $d = \partial_{k+1}\sigma^j$. By definition, f's youngest positive simplex is σ^i , namely the youngest simplex in $\Gamma(\partial_{k+1}\sigma^j)$,

$$\sigma^{i} = \max \Gamma(\partial_{k+1}\sigma^{j}).$$

This implies that there are no cycles homologous to d in \mathbb{K}_{i-1} or earlier complexes. Let σ^g be the youngest positive simplex in e. [e] = [d], therefore $g \geq i$.

If g > i, then e = f + c, where c bounds in \mathbb{K}^{j-1} . $\sigma^g \notin f$, implies $\sigma^g \in c$, and as σ^g is the youngest in e, it is also the youngest in c.

Key Lemma

continued.

Since e is collision free, the cycle created by σ^g , denoted as c^g , is still a non-boundary cycle in \mathbb{K}_{j-1} . Hence c^g can't be c, and can't be homologous to c when c becomes a boundary. Namely, when c is killed, σ^g is not paired yet.

It follows that the negative (k+1)-simplex that kills c must pair a positive k-simplex in c, which is younger than σ^g , a contradiction.

This lemma shows, when σ^j is added to \mathbb{K}_{j-1} , we need to find any collision free cycle e homologous to $\partial_{k+1}\sigma^j$, and pair σ^j with the youngest positive simplex of e.

Pair Algorithm

$Pair(\sigma)$

- **2** τ is the youngest positive (p-1)-simplex in c.
- **3** while σ is paired and c is not empty **do**
- find (τ, d) , d is the p-simplex paired with τ ;
- $c \leftarrow \partial_{p} d + c$
- Update τ to be the youngest positive (p-1)-simplex in c
- end while
- **3 if** *c* is not empty **then**
- σ is negative p-simplex and paired with τ
- else
- σ is a positive *p*-simplex
- endif

Handle Loop and Tunnel Loop

- **1** The simplices on the surface M are added into the filtration in any arbitrary order. Since $H_1(M)$ is of rank 2g, the algorithm Pair generates 2g number of unpaired positive edges.
- 3 The simplices up to dimension 2 in I are added into the filtration. Since $H_1(I)$ of rank g, half of 2g positive edges generated in step 1 get paired with the negative triangles in I. Each pair correponds to a killed loop, these g loops are handle loops.
- **3** Or the simplices up to dimension 2 in O are added into the filtration. Since $H_1(O)$ of rank g, half of 2g positive edges genrated in step 2 get paried with the negative triangles in O. Each pair corresponds to a killed loop, these g loops are tunnel loops.

3.
$$\partial st = s + t$$
, (t_1, st_3)

6.
$$\partial sw = s + w$$
, (w_5, sw_6)

7:
$$\partial tw = w + t = w + t + \partial st + \partial sw$$

= $w + t + (s + t) + (s + w)$
= 0.

8.
$$\partial uv = u + v$$
, (v_4, uv_8)

9.
$$(u_2, sv_9)$$

9.
$$\partial sv = s + v = s + v + \partial uv$$

$$= s + v + (u + v)$$

$$= s + u$$

10. *su*

11. *uw*

10.
$$\partial su = s + u = s + u + \partial sv$$

 $= s + u + (s + v)$
 $= u + v = u + v + \partial uv$
 $= 0.$

11.
$$\partial uw = u + w = u + w + \partial sw$$

 $= u + w + (s + w)$
 $= s + u = s + u + \partial sv$
 $= s + u = s + u + (s + v)$
 $= u + v = u + v + \partial uv$
 $= u + v + (u + v)$
 $= 0$

12. tu

13. $tuw,(tu_{12}, tuw_{13})$

12.
$$\partial tu = t + u = t + u + \partial sv$$

 $= t + u + (s + v)$
 $= t + u + s + v + \partial uv$
 $= t + u + s + v + (u + v)$ 13. $\partial tuw = tu + uw + wt$
 $= t + s$ (tuw, tu)
 $= s + t + \partial st$
 $= s + t + (t + s)$
 $= 0$.

14.
$$\partial suw = uw + su + sw$$

 (uw_{11}, suw_{14})

15. stu, (tw_7, stu_{15})

15.
$$\partial stu = su + tu + st$$

 $= su + st + tu + \partial tuw$
 $= su + st + tu + (tu + uw + tw)$
 $= su_{10} + st + uw_{11} + tw_{7}$
 $= su_{10} + st + uw_{11} + tw_{7} + \partial suw$
 $= su_{10} + st + uw_{11} + tw_{7} + (sw + su_{10} + uw_{11})$
 $= st + tw_{7} + sw$

Hence we obtain the pair (stu, tw).

16.
$$\partial suv = su + uv + sv$$

 (su_{10}, suv_{16})

17. *stw*

Example

17.
$$\partial stw = tw + sw + st$$

 $= sw + st + tw + \partial stu$
 $= sw + st + tw_7 + (st + tu_{12} + us_{10})$
 $= sw + st + tw_7 + (st + tu_{12} + us_{10}) + \partial tuw$
 $= sw + st + tw_7 + (st + tu_{12} + us_{10}) + (tu_{12} + uw_{11} + wt_7)$
 $= sw + us_{10} + uw_{11}$
 $= sw + us_{10} + uw_{11} + \partial suw$
 $= sw + us_{10} + uw_{11} + (su_{10} + uw_{11} + ws)$
 $= 0$.

Example

Crostor	Killor
Creater	Killer
t_1	st ₃
<i>u</i> ₂	<i>SV</i> 9
<i>V</i> 4	uv ₈
W ₅	sw ₆
tw ₇	stu ₁₅
<i>su</i> ₁₀	suv ₁₆
<i>uw</i> ₁₁	suw ₁₄
tu ₁₂	tuw ₁₃

Incidence Matrix

Assuming an ordering of the (p-1) simplices and of the p-simplices, the boundary of a p-chian can be obtained by multiplication of the corresponding vector with the incidence matrix,

$$\partial(c_p)=D_pc_p.$$

The incidence matrix is defined as

$$D_{p}[i,j] = \begin{cases} 1 & \sigma_{i}^{p-1} \in \sigma_{j}^{p} \\ 0 & \sigma_{i}^{p-1} \notin \sigma_{j}^{p} \end{cases}$$

Incidence Matrix and Betti Number

A classic algorithm computes the Betti numbers of K by reducing its incidence matrices to Smith normal form. It uses row and column operations to zero out all entries except along an initial portion of the diagonal.

Figure: Smith norm of incidence matrix in \mathbb{Z}_2 .

The Betti number

$$\beta_p = \operatorname{rank} Z_p - \operatorname{rank} B_p.$$

Pairing Algorithm

Definition (Monotonous Filtering)

A filtering is monotonous, if in the ordering of K, any simplex σ is proceeded by its faces.

An algorithm computes the persistence diagrams by pairing the simplices, which uses column operator to reduce D and another 0-1 matrix R. Let $low_R(j)$ be the row index of the last 1 in column j of R, and (undefined if the column is zero).

Definition (Reduced Matrix and Pairing)

We call R reduced and lowR a pairing function, if

$$low_R(j) \neq low_R(j'),$$

whenever $j \neq j'$ specify two non-zero columns.

Pairing Algorithm

Algorithm: Incidence matrix reduction

- R ← D
- ② for j = 1 to n do
- while $\exists j' < j$ with $low_R(j') = low_R(j)$ do
- add column j' to column j
- endwhile
- o endfor.

The pairing is given by

$$(\sigma_i, \sigma_j) \iff i = low_R(j)$$

 σ_i is positive, it generates a homology class; σ_j is negative, it kills a homolog class.

Killer

Figure: Generators and killers.

Boundary operator ∂_1 , incidence matrix D_1 ,

$\overline{}$									
	e_0	e_1	e_2	<i>e</i> ₃	<i>e</i> ₄	<i>e</i> 5	e_6	<i>e</i> ₇	<i>e</i> ₈
<i>v</i> ₀	1	0	1	0	0	0	1	0	0
v_1			0	0	0	0	0	1	0
<i>v</i> ₂	0	1	1	0	0	0	0	0	1
<i>V</i> ₃	0	0	0	1	0	1	1	0	0
V4	0	0	0	1	1	0	0		0
<i>V</i> ₅	0	0	0	0	1	1	0	0	1

$$1+2$$
, $4+5$, $3+7$, $4+8$

	<i>e</i> ₀	e_1	<i>e</i> ₂	<i>e</i> ₃	<i>e</i> ₄	<i>e</i> ₅	<i>e</i> ₆	e ₇	<i>e</i> ₈
<i>v</i> ₀	1	0	1	0	0	0	1	0	0
v_1			1	0	0	0	0	1	0
<i>v</i> ₂	0	1	0	0	0	0	0	0	1
<i>V</i> 3	0	0	0	1	0	1	1	1	0
<i>v</i> ₄	0	0	0	1	1	1	0	0	1
<i>V</i> 5	0	0	0	0	1	0	0	0	0

$$1+2$$
, $3+5$, $3+8$

	<i>e</i> ₀	e_1	<i>e</i> ₂	<i>e</i> ₃	<i>e</i> ₄	<i>e</i> ₅	<i>e</i> ₆	e ₇	<i>e</i> ₈
<i>v</i> ₀	1	0	0	0	0	0			0
v_1	1	1	0	0	0	0	0	1	0
<i>V</i> ₂	0	1	0	0	0	0	0	0	1
<i>V</i> 3	0	0	0	1	0	0	1	1	1
<i>V</i> ₄	0	0	0	1	1	0	0	0	0
<i>V</i> 5	0	0	0	0	1	0	0	0	0

$$6+7$$
, $6+8$

	<i>e</i> ₀	e_1	<i>e</i> ₂	<i>e</i> ₃	<i>e</i> ₄	<i>e</i> ₅	<i>e</i> ₆	e ₇	<i>e</i> ₈
									1
v_1	1	1	0	0	0	0	0	1	0
<i>v</i> ₂	0	1	0	0	0	0	0	0	1
<i>v</i> ₃	0	0	0	1	0	0	1	0	0
<i>v</i> ₄	0	0	0	1	1	0	0	0	0
<i>V</i> ₅	0	0	0	0	1	0	0	0	0

$$0+7,1+8,0+8$$

	e_0	e_1	e_2	<i>e</i> ₃	<i>e</i> ₄	<i>e</i> ₅		e ₇	<i>e</i> ₈
v_0	1	0	0	0	0	0	1	0	0
			0	0	0	0	0	0	0
<i>v</i> ₂	0	1	0	0			0	0	0
<i>V</i> 3	0	0	0	1	0	0	1	0	0
<i>V</i> 4	0	0	0	1	1	0	0	0	0
<i>v</i> ₅	0	0	0	0	1	0	0	0	0

Generators e_2 , e_5 , e_7 , e_8 , corresponding to 0 columns. Killers corresponds to non-zero columns. Pairing

$$(e_0, v_1), (e_1, v_2), (e_3, v_4), (e_4, v_5), (e_6, v_3)$$

The pairing is

$$(f_0, e_7), (f_1, e_8), (f_2, e_5)$$

Topological Annulus

Figure: Topological Annulus.

Figure: Handle and tunnel loops.

Figure: Handle and tunnel loops.

Figure: Interior and exterior volumes.