Surface Uniformization

David Gu

Yau Mathematics Science Center
Tsinghua University
Computer Science Department
Stony Brook University
gu@cs.stonybrook.edu

August 22, 2020

Surface Uniformization

Figure: Closed surface uniformization.

Surface Uniformization

Figure: Open surface uniformization.

Conformal Mapping of Infinite Triangle Mesh

Problem

Suppose we have an infinite triangle mesh, \tilde{M}, such as the universal covering space of a closed mesh, fix a point $v_{0} \in \tilde{M}$, choose a sequence of neighborhood $E_{n} \subset \tilde{M}$,

$$
v_{0} \in E_{0} \subset E_{1} \subset E_{2} \cdots E_{n} \cdots
$$

where each E_{k} is a topological disk, construct discrete conformal mapping $\varphi_{n}: E_{n} \rightarrow \mathbb{D}^{n}$, such that

$$
\varphi_{n}\left(v_{0}\right)=0, \quad \varphi_{n}^{\prime}\left(v_{0}\right)>0
$$

then what is the is limit of the sequence $\left\{\varphi_{n}\left(v_{0}\right)^{\prime}\right\}$?

Conformal Mapping of Infinite Triangle Mesh

Answer

(1) If \tilde{M} is the universal covering of a torus, then the limit is 0 ;
(2) If \tilde{M} is the universal covering space of a high genus mesh, then the limit is a positive number $\delta>0$.

Conformal Mapping of Infinite Triangle Mesh

Figure: Discrete Riemann mapping of triangle mesh.

Conformal Mapping of Infinite Triangle Mesh

Figure: Discrete Riemann mapping of triangle mesh.

Conformal Mapping of Infinite Triangle Mesh

Figure: Discrete Riemann mapping of triangle mesh.

Conformal Mapping of Infinite Triangle Mesh

Figure: Discrete Riemann mapping of triangle mesh.

Conformal Mapping of Infinite Triangle Mesh

Figure: Discrete Riemann mapping of triangle mesh.

Conformal Mapping of Infinite Triangle Mesh

Figure: Discrete Riemann mapping of triangle mesh.

Liuville Theorem

Theorem (Liuville)

Suppose a holomorphic function $f: \mathbb{C} \rightarrow \mathbb{C}$ is bounded, $|f(z)|<C$, for all $z \in \mathbb{C}$, then $f(z)=$ const.

Proof.

According to Cauchy's formula:

$$
f^{(n)}(a)=\frac{n!}{2 \pi i} \oint_{\Gamma} \frac{f(z)}{(z-a)^{n+1}} d z
$$

here Γ is a circle centered at a with radius r,

$$
\left|f^{\prime}(a)\right|=\left|\frac{1}{2 \pi i} \oint_{\Gamma} \frac{f(z)}{(z-a)^{2}} d z\right| \leq \frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{C}{r} d \theta=\frac{C}{r}
$$

let $r \rightarrow \infty$, the derivative goes to 0 . Hence the holomorhic function $f(z)$ is constant.

Liuville Theorem

The unit sphere \mathbb{S}^{2} is conformal equivalent to the augmented complex plane $\widehat{\mathbb{C}}$. Complex plane \mathbb{C} and the unit open disk \mathbb{D} are open sets, therefore they are not homeomorphic to the compact set \mathbb{S}^{2}. Liuville theorem shows \mathbb{C} and \mathbb{D} are not conformally equivalent to each other.

Corollary

The complex plane \mathbb{C} and the unit disk \mathbb{D} are not conformally equivalent.

Proof.

Suppose they are equivalent, there is a biholomorphic function $f: \mathbb{C} \rightarrow \mathbb{D}$, according to Liuville, $f(z)$ is constant. Contradiction to biholomorphic function.

Crescent and Full-Moon Theorem

Figure: Initial Map.

Crescent and Full-Moon Theorem

Figure: Analytic extension result.

Crescent and Full Moon

Lemma (Crescent and Full Moon)

As shown in Fig. 9, the boundaries of the crescent domain A_{1} are circular arcs a_{1} and a_{2}, they have intersection angle $\pi / 2^{m}, m \in \mathbb{Z}^{+}$. A conformal $\operatorname{map} \varphi_{1}: A_{1} \rightarrow B_{1}$ is defined on the crescent $A_{1}, \varphi_{1}\left(a_{k}\right)=b_{k}, k=1,2$, b_{2} is a circular arc. Then there exist analytic functions, $g, G: \mathbb{D} \rightarrow \mathbb{D}$, as shown Fig. 10, satisfying
(1) $A^{*}=g(\bar{A}), C^{*}=g\left(A_{1}\right)$;
(2) $B^{*}=G(\bar{B}), C^{*}=G\left(B_{1}\right)$;
(3) $\left.g\right|_{A_{1}}=\left.G \circ \varphi_{1}\right|_{A_{1}}$;
and the restriction on a_{k} 's and b_{k} 's, the mappings g and G are homeomorphisms.

Crescent and Full-Moon Theorem

Figure: Analytic extension, step one.

Crescent and Full Moon

Proof.

As shown in Fig. (11), crescents A_{1} and A_{2} are symmetric about a_{2}, by the Schwartz reflection principle, analytic function $\varphi_{1}: A_{1} \rightarrow B_{1}$ can be extended about the circular arc a_{2} to

$$
\Phi_{1}: A_{1}+A_{2} \rightarrow B_{1}+B_{2},
$$

using Riemann mapping

$$
\psi_{1}: B_{1}+B_{2}+\bar{B} \rightarrow \mathbb{D}
$$

which maps the target to the unit disk. For convenience, we relabel $\psi_{1}\left(B_{1}\right), \psi_{1}\left(B_{2}\right)$ as B_{1} and B_{2}, then the composition map is:

$$
\varphi_{2}=\psi_{1} \circ \Phi_{1}: A_{1}+A_{2} \rightarrow B_{1}+B_{2}
$$

Crescent and Full-Moon Theorem

Figure: Analytic extension, step two.

Crescent and Full Moon

continued.

As shown in Fig. (12), we extend $\varphi_{2}: A_{1}+A_{2} \rightarrow B_{1}+B_{2}$ again, $A_{1}+A_{2}$ is reflected about a_{3} to a crescent A_{3}, by Schwartz reflection principle,

$$
\Phi_{2}:\left(A_{1}+A_{2}\right)+A_{3} \rightarrow\left(B_{1}+B_{2}\right)+B_{3},
$$

then composed with the Riemann mapping $\psi_{2}: B_{1}+B_{2}+B_{3}+\bar{B} \rightarrow \mathbb{D}$, we get the result for the second step extension,

$$
\varphi_{3}=\psi_{2} \circ \Phi_{2}: A_{1}+A_{2}+A_{3} \rightarrow B_{1}+B_{2}+B_{3} .
$$

Repeat this procedure, by analytic extension we get conformal mappings:

$$
\varphi_{k}: \sum_{i=1}^{k} A_{i} \rightarrow \sum_{j=1}^{k} B_{j}
$$

Crescent and Full Moon

continued.

Consider the inner angle of the crescents, the angle of A_{k} is θ_{k}, we have recursive relations,

$$
\left\{\begin{aligned}
\theta_{1} & =\pi / 2^{m} \\
\theta_{2} & =\pi / 2^{m} \\
\theta_{k} & =\sum_{j=1}^{k-1} \theta_{j}, k>2
\end{aligned}\right.
$$

therefore at the $m+1$ step, all the crescents cover the whole disk. Hence, we obtain analytic function

$$
G=\psi_{m} \circ \psi_{m-1} \circ \cdots \circ \psi_{2} \circ \psi_{1}
$$

and

$$
g=\psi_{m} \circ \psi_{m-1} \circ \cdots \circ \psi_{2} \circ \phi_{1} .
$$

Uniformization

We use a combinatorial representation to define a Riemann surface. Given a Riemann surface M, and a triangulation \mathcal{T}. If \mathcal{T} has finite number of faces, then M is a compact surface; if the surface has countable infinite number of faces, then M is an open surface. Van der Waerden proves the existence of a special type of triangulation.

Uniformization

Lemma (Van der Waerden)

Assume \tilde{M} is an open surface, then its triangulation can be sorted,

$$
\mathcal{T}=\left\{\Delta_{1}, \Delta_{2}, \Delta_{3}, \cdots, \Delta_{n}, \cdots\right\}
$$

such that for any $n=1,2, \cdots$,

$$
\mathcal{T}_{n}:=\bigcup_{k=1}^{n} \Delta_{k}
$$

and Δ_{n+1} has only one intersection edge (and the third non-intersecting vertex), or two edges, namely \mathcal{T}_{n} is a topological disk.

Uniformization

Let \tilde{M} be the universal covering space of a Riemann surface, then \tilde{M} is a simply connected Riemann surface, its triangulation \mathcal{T} is sorted in Van der Waerden pattern. All the edges of \mathcal{T} are analytic arcs, and every face Δ_{k} is covered by a conformal local chart.

Lemma

For any $n>0$, the interior of

$$
E_{n}=\Delta_{1}+\Delta_{2}+\cdots+\Delta_{n}
$$

is conformally mapped onto the open unit disk, $\varphi_{n}: E_{n} \rightarrow R_{n}, R_{n}$ is an open unit disk, and the restriction on the boundary,

$$
\left.\varphi_{n}\right|_{\partial E_{n}}: \partial E_{n} \rightarrow \partial R_{n}
$$

is topological homeomorphic.

Uniformization

Figure: Initial induction step.

Uniformization

Proof.

Step one: when $n=1$, as shown in Fig. (13), E_{1} only includes one triangle Δ_{1}, denote $\Delta=\Delta_{1} . \Delta$ is covered by a conformal coordinate system $(U, t), \Delta \subset U$. Let $\bar{\Delta}, \bar{U}$ are the pre-images of Δ, U on the t-plane,

$$
t(\bar{\Delta})=\Delta, \quad t(\bar{U})=U
$$

$\bar{\Delta}$ is a simply connected domain, its boundary is piecewise analytic curves. According to Riemann mapping theorem, there is a holomorphic map $\psi: \bar{\Delta} \rightarrow R_{1}$, from $\bar{\Delta}$ to the unit disk R_{1} on s-plane, and the restriction on the boundary is topological homeomorphic,

$$
\left.\psi\right|_{\partial \bar{\Delta}}: \partial \bar{\Delta} \rightarrow \partial R_{1}
$$

then construct a holomorphic map $\varphi_{1}=\psi \circ t^{-1}: E_{1} \rightarrow R_{1}$, its restriction on the boundary is a homeomorphism.

Uniformization

Figure: Induction step.

Uniformization

continued.

Step two: when $n>1$, assume at the n-th step, E_{n} is conformally mapped onto the unit disk R_{n} on s-plane, $\varphi_{n}: E_{n} \rightarrow R_{n}$, the restriction on the boundary $\left.\varphi_{n}\right|_{\partial E_{n}}: \partial E_{n} \rightarrow \partial R_{n}$ is homeomorphic. As shown in Fig. (14), we consider $E_{n+1}=E_{n}+\Delta_{n+1}$. Let $\Delta=\Delta_{n+1}$, covered by a local conformal coordinates (U, t), the preimages of U and Δ are \bar{U} and $\bar{\Delta}$ respectively in the local coordinate system,

$$
t(\bar{U})=U, \quad t(\bar{\Delta})=\Delta
$$

E_{n} and Δ intersect at an analytic arc $a, \Delta \cap E_{n}=a$. The image of a under φ_{n} is $\tilde{a}, \varphi_{n}(a)=\tilde{a}$. The conformal local parametric representation of a is $\bar{a}, t(\bar{a})=a$.

Uniformization

continued.

In the unit disk R_{n} on the s-plane, draw a circular arc \tilde{b}, two circular arcs \tilde{a} and \tilde{b} have the same ending points, and the intersection angles at the ending points equal to $\pi / 2^{k}$, where k is a big positive integer. The circlar arcs bound a crescent \tilde{B}, the pre-image of \tilde{B} on \tilde{M} is B; the image of B on the t-image is $\bar{B}, \varphi_{n}(B)=\tilde{B}, \quad t(\bar{B})=B$. We want to show the existence of holomorphic maps $s^{*}=g(s)$ and $s^{*}=G(t)$, satisfying:
(1) $g(\tilde{B})=B^{*}, g(\tilde{H})=H^{*}$, where $\tilde{H}=R_{n}-\tilde{B}$;
(2) $G(\bar{B})=B^{*}, G(\bar{\Delta})=\Delta^{*}$;
(3) on domain $\bar{B}, G(t)=g \circ \varphi_{n} \circ t$;
(9) $R_{n+1}=B^{*}+H^{*}+\Delta^{*}$

The combination of $g(s)$ and $G(t)$ gives the conformal mapping from E_{n+1} to R_{n+1}.

Uniformization

Figure: Combination of conformal mappings.

Uniformization

continued.

As shown in Fig. (15), by Riemann mapping, there is a mapping $t^{*}=\psi(t)$, mapping $\bar{\Delta}+\bar{B}$ to $\Delta^{*}+B^{*}$, the center of the disk is inside Δ^{*}. Then the composition

$$
\tau=\psi \circ \varphi_{n}^{-1}, \quad t^{*}=\tau(s)
$$

maps the crescent \tilde{B} to B^{*}. Note that $\tau: \tilde{B} \rightarrow B^{*}$ is defined on crescent \tilde{B}, not defined on \tilde{H}. By crescent-full moon lemma, there exist holomorphic functions g and G, this proves the existence of $\varphi_{n+1}: E_{n+1} \rightarrow R_{n+1}$. By induction, the lemma holds.

Uniformization

Theorem (Open Riemann Surface Uniformization)

Simply connected open Riemann surface is conformal equivalent to the whole complex plane \mathbb{C} or the unit open disk \mathbb{D}.

Proof.

Construct a sequence of holomorphic functions

$$
\varphi_{1, n}(s)=\varphi_{n} \circ \varphi_{1}^{-1}
$$

univalent on R_{1}, and normalized at $s=0, \varphi_{1, n}(0)=0, \varphi_{1, n}^{\prime}(0)=1$. Then $\left\{\varphi_{1, n}\right\}$ is a normal family. We choose subsequence $\Gamma_{1} \subset\left\{\varphi_{1, n}\right\}$, which converges to univalent function in the interior of R_{1}, denoted as

$$
\Gamma_{1}: \varphi_{1}^{1}(p), \varphi_{2}^{\frac{1}{2}}(p), \varphi_{3}^{1}(p), \cdots
$$

converges to a univalent function $\varphi_{0}(p)$ in E_{1}.

Construction of Normal Family

Figure: Construction of normal family $\left\{\varphi_{n} \circ \varphi_{1}^{-1}\right\}$.

Uniformization

continued.

Construct a sequence of holomorphic functions

$$
\varphi_{2, n}(s)=\varphi_{n}^{1} \circ \varphi_{2}^{-1}, \varphi_{n}^{1} \in \Gamma_{1}
$$

from $\left\{\varphi_{2, n}\right\}$ choose subsequence

$$
\Gamma_{2}: \varphi_{1}^{2}(p), \varphi_{2}^{2}(p), \cdots
$$

converges to a univalent holomorphic function on E_{2}, and the restriction on E_{1} equals to $\varphi_{0}(p)$, we still denote it as $\varphi_{0}(p)$.

Uniformization

continued.

Furthermore, construct a sequence of functions

$$
\varphi_{3, n}(s)=\varphi_{n}^{2} \circ \varphi_{3}^{-1}, \varphi_{n}^{1} \in \Gamma_{2}
$$

from $\left\{\varphi_{3, n}\right\}$ choose subsequence

$$
\Gamma_{3}: \varphi_{1}^{3}(p), \varphi_{2}^{3}(p), \cdots
$$

converges to a univalent holomorphic function on E_{3}, and the restriction on E_{2} equals to $\varphi_{0}(p)$, we still denote it as $\varphi_{0}(p)$. Repeat this step, apply diagonal principle, we obtain a function sequence

$$
\varphi_{1}^{1}(p), \varphi_{2}^{2}(p), \varphi_{3}^{3}(p), \ldots
$$

where $\varphi_{k}^{k}(p)$ are well defined on $E_{n}(k \geq n)$, and converge to $\varphi_{0}(p)$ on E_{n}.

Uniformization

continued.

Since E_{n} exhausts the whole open Riemann surface $\tilde{M}, \varphi_{0}(p)$ is univalent, and maps \tilde{M} to a simply connected domain R on s-plane. Since \tilde{M} is open, R can't be the augmented complex plane. Hence, R is either the whole complex plane \mathbb{C}, or a domain on the complex plane. In the second situation, by Riemann mapping theorem, R can be conformally mapped to the unit disk \mathbb{D}.

Compact Surface Uniformization

Figure: Compact surface case.

Uniformization

Theorem (Compact Riemann Surface Uniformization)

Compact simply connected Riemann surface is conformal equivalent to the unit sphere.

Proof.

Suppose \tilde{M} has a triangulation \mathcal{T}, which includes a finite number of faces,

$$
\mathcal{T}_{n}=\Delta_{1}+\Delta_{2}+\cdots+\Delta_{n}
$$

the last triangle Δ_{n} has three common eges with T_{n-1}. Choose an interior point $q \in \Delta_{n}$, remove this point, we obtain an open Riemann surface,

$$
\tilde{M}_{0}=\tilde{M} \backslash\{q\}
$$

according to open Riemann surface uniformization theorem, there is a conformal mapping, $\varphi: \tilde{M}_{0} \rightarrow \mathbb{C}$, $s=\varphi(p)$, which maps the open Riemann surface either to a unit disk or the whole complex plane.

Uniformization

continued.

on s-complex plane, let $\varphi\left(\Delta_{n} \backslash\{q\}\right)=\Delta^{\prime}, \varphi\left(E_{n-1}\right)=E_{n}^{\prime}$, point $o \in E_{n-1}$, $\varphi(o)=0$. Let $R^{\prime} \subset E_{n}^{\prime}$ be a disk centered at the origin, then Δ^{\prime} is outside R^{\prime}.
Function $w=1 / z$ maps Δ^{\prime} to a bounded domain on w-plane. Consider a function $w=1 / \varphi(p)$ defined on $\tilde{M} \backslash\{q\}, w$ is bounded in a neighborhood of q, hence q is a removable singularity of function w. Let the image of q in w-plane is $w(q)$.
Assume $R=\varphi(\tilde{M} \backslash\{q\})$ is not the whole complex plane, but the unit disk. Choose a point sequence s_{1}, s_{2}, \cdots,, its accumulation point is on the unit circle. The corresponding point sequence on the surface is p_{1}, p_{2}, \cdots. Since \tilde{M} is compact, the accumulation point of the point sequence is on the surface. But the images of all points on $\tilde{M} \backslash\{q\}$ on s-plane are not on the unit circle, hence

$$
q=\lim _{n \rightarrow \infty} p_{n}
$$

Uniformization

continued.

For any point on the unit circle, $\bar{s} \in \partial R$, there is a point sequence converging to \bar{s}, hence

$$
1 / \bar{s}=w(q)
$$

but \bar{s} has infinite many value, hence $w(q)$ has infinite, contradiction. Hence the assumption is incorrect, $R=\varphi(\tilde{M} \backslash\{q\})$ is the whole complex plane, \tilde{M} is conformal equivalent to the augmented complex plane. \square

