Circle Domain Mapping: Koebe's Theorem

David Gu

Yau Mathematics Science Center Tsinghua University Computer Science Department Stony Brook University

gu@cs.stonybrook.edu

August 16, 2020

Motivation

э

Conformal Module for Poly-annulus

Figure: Conformal mapping from a poly-annulus to a circle domain.

Definition (Circle Domain)

Suppose $\Omega \subset \hat{\mathbb{C}}$ is a planar domain, if $\partial \Omega$ has finite number of connected components, each of them is either a circle or a point, then Ω is called a circle domain.

Theorem (Koebe)

Suppose S is of genus zero, ∂S has finite number of connected components, then S is conformal equivalent to a circle domain. Furthermore, all such conformal mappings differ by a Möbius transformation.

Schwartz Reflection Principle

Definition (Mirror Reflection)

Given a circle $\Gamma : |z - z_0| = \rho$, the reflection with respect to Γ is defined as:

$$\varphi_{\Gamma}: re^{i\theta} + z_0 \mapsto \frac{\rho^2}{r}e^{i\theta} + z_0.$$
 (1)

Two planar domains S and S' are symmetric about Γ , if $\varphi_{\Gamma}(S) = S'$.

Figure: Reflection about a circle.

Definition (Reflection)

Suppose Γ is an analytic curve, domain S, S' and Γ are included in a planar domain Ω . There is a conformal map $f : \Omega \to \hat{\mathbb{C}}$, such that $f(\Gamma)$ is a canonical circle, f(S) and f(S') are symmetric about $f(\Gamma)$, then we say S and S' are symmetric about Γ , and denoted as

 $S|S' (\Gamma).$

Figure: General symmetry.

Theorem (Schwartz Reflection Principle)

Assume f is an analytic function, defined on the upper half disk $\{|z| < 1, \Im(z) > 0\}$. If f can be extended to a real continuous function on the real axis, then f can be extended to an analytic function F defined on the whole disk, satisfying

$$F(z) = \begin{cases} \frac{f(z)}{f(\bar{z})}, & \Im(z) \ge 0\\ \frac{f(z)}{f(\bar{z})}, & \Im(z) < 0 \end{cases}$$

Figure: Schwartz reflection principle.

David Gu (Stony Brook University)

Computational Conformal Geometry

August 16, 2020 8 / 72

David Gu (Stony Brook University)

August 16, 2020 9 / 72

David Gu (Stony Brook University)

August 16, 2020 10

э

10 / 72

- Initial circle domain C⁰: complex plane remove three disks, its boundary is {Γ₁, Γ₂, Γ₃};
- **②** First level reflection: C^0 is reflected about Γ_{i_1} to C^{i_1} , $i_1 = 1, 2, 3$;

$$\partial C^{i_1} = \Gamma^{i_1}_{i_1} - \sum_{j \neq i_1} \Gamma^{i_1}_j,$$

where $\Gamma_{i_1}^{i_1} = \Gamma_{i_1}$.

Second level reflection: C^{i_1} is reflected about Γ_{i_2} to $C^{i_1i_2}$, $i_1 \neq i_2$; the boundary of $C^{i_1i_2}$ are $\Gamma_j^{i_1i_2}$, when $j \neq i_1$, $\Gamma_j^{i_1i_2}$ is an interior boundary; when $j = i_1$, $\Gamma_j^{i_1i_2}$ is the exterior boundary, $\Gamma_{i_1}^{i_1i_2} = \Gamma_{i_1}^{i_2}$.

$$\partial C^{i_1 i_2} = \Gamma_{i_1}^{i_2} - \sum_{j \neq i_1} \Gamma_j^{i_1 i_2}$$

when $j = i_1$, $\Gamma_{i_1}^{i_1 i_2} = \Gamma_{i_1}^{i_2}$;

- Third level reflection: $C^{i_1i_2}$ is reflected about Γ_{i_3} to $C^{i_1i_2i_3}$, $i_1 \neq i_2$, $i_2 \neq i_3$; the boundary of $C^{i_1i_2i_3}$ are $\Gamma_j^{i_1i_2i_3}$, when $j \neq i_1$, $\Gamma_j^{i_1i_2i_3}$ is an interior boundary; when $j = i_1$, $\Gamma_j^{i_1i_2i_3}$ is the exterior boundary, $\Gamma_{i_1}^{i_1i_2i_3} = \Gamma_{i_1}^{i_2i_3}$. $\partial C^{i_1i_2i_3} = \Gamma_{i_1}^{i_2i_3} - \sum_{i \neq i_1} \Gamma_j^{i_1i_2i_3}$.
- So The *m*-level reflection: $C^{i_1i_2...i_{m-1}}$ is reflected about Γ_{i_m} to $C^{i_1i_2...i_{m-1}i_m}$, $i_k \neq i_{k+1}$; the boundary of $C^{i_1i_2...i_{m-1}i_m}$, $i_k \neq i_{k+1}$ are $\Gamma_j^{i_1i_2...i_{m-1}i_m}$, when $j \neq i_1$, $\Gamma_j^{i_1i_2...i_{m-1}i_m}$ is an interior boundary; when $j = i_1$, $\Gamma_j^{i_1i_2...i_{m-1}i_m}$ is the exterior boundary, $\Gamma_{i_1}^{i_1i_2...i_{m-1}i_m} = \Gamma_{i_1}^{i_2...i_{m-1}i_m}$ is an interior boundary,

$$\partial C^{i_1 i_2 \dots i_m} = \Gamma_{i_1}^{i_2 i_3 \dots i_m} - \sum_{j \neq i_1} \Gamma_j^{i_1 i_2 \dots i_m}$$

э

Figure: Reflection tree.

- Each node represents a domain $C^{i_1i_2...i_m};$
- Each edge represents a circle Γ_k,
 k = 1,..., n;
- Father and Son share an edge i_1

$$\Gamma_{i_1}^{i_1i_2\cdots i_m} = \Gamma_{i_1}^{i_2\cdots i_m}$$

• Each node $C^{(i)}$, $(i) = i_1 i_2 \dots i_m$ is the path from the root to $C^{(i)}$,

$$C^{(i)} = \varphi_{\Gamma_{i_m}} \circ \varphi_{\Gamma_{i_{m-1}}} \cdots \varphi_{\Gamma_{i_1}}(C^0).$$

Figure: Embedding tree.

• Father node $C^{i_2 \cdots i_m}$ and child node $C^{i_1 i_2 \cdots i_m}$ is connected by edge i_1 , the exterior boundary of child equals to an interior boundary of the father

$$\Gamma_{i_1}^{i_1i_2\cdots i_m} = \Gamma_{i_1}^{i_2\cdots i_m}$$

• From the root C^0 to $C^{i_1 \cdots i_m}$, the path is inverse to the index

$$(i)^{-1}=i_mi_{m-1}\cdots i_2i_1,$$

starting from C^0 crosses Γ^{i_m} to C^{i_m} , crosses $\Gamma^{i_m}_{i_{m-1}}$ to $C^{i_{m-1}i_m}$; when arrives at $C^{i_{k+1}\cdots i_1}$, crosses $\Gamma^{i_{k+1}\cdots i_1}_{i_k}$ to $C^{i_k i_{k+1}\cdots i_1}$; and eventually reach $C^{(i)}$

Lemma

Suppose $C^{(i)}$ is an interior node in the reflection tree,

$$(i)=i_1i_2\cdots i_m,$$

its exterior boundary is $\Gamma_{i_1}^{(i)}$, interior boundaries are $\Gamma_j^{(i)}$, $j \neq i_1$, we have the estimate:

$$\sum_{j\neq i_1} \alpha(\Gamma_j^{(\prime)}) \leq \mu^4 \alpha(\Gamma_{i_1}^{(\prime)}).$$

Hole Area Estimation

Enlarge all Γ_k 's by factor μ^{-1} to $\overline{\Gamma}_k$, $\overline{\Gamma}_1$ and $\overline{\Gamma}_3$ touch each other; reflect C^0 about Γ_2

•
$$\Gamma_k | \Gamma_k^2$$
 (Γ_2).
• $\tilde{\Gamma}_k | \Gamma_k^2$ (Γ_2).
 $\alpha(\tilde{\Gamma}_1^2) = \mu^{-2} \alpha(\Gamma_1^2)$
 $\alpha(\tilde{\Gamma}_3^2) = \mu^{-2} \alpha(\Gamma_3^2)$
 $\alpha(\tilde{\Gamma}_2^2) = \mu^2 \alpha(\Gamma_2)$

Figure: Hole area estimation.

$$\alpha(\Gamma_1^2) + \alpha(\Gamma_3^2) = \mu^2(\alpha(\tilde{\Gamma}_1^2) + \alpha(\tilde{\Gamma}_3^2)) \le \mu^2\alpha(\tilde{\Gamma}_2^2) = \mu^4\alpha(\Gamma^2)$$

Lemma

Suppose the boundaries of the initial circle domain C^0 are $\Gamma_1, \Gamma_2, \dots, \Gamma_n$, consider the reflection tree with m layers, then the total area of the holes bounded by the interior boundaries of leaf nodes is no greater than μ^{4m} times the area bounded by Γ_k 's,

$$\sum_{(i)=i_1i_2\ldots i_m}\sum_{k\neq i_1}\alpha(\Gamma_k^{(i)})\leq \mu^{4m}\sum_{i=1}^n\alpha(\Gamma_i).$$

Proof.

By induction on m. The area bounded by the exterior boundaries of the nodes in the k + 1-layer is no greater than μ^4 times that of the k-layer. The total area of the interior boundaries of leaf nodes is no greater than the area bounded by the exterior boundaries of leaf nodes.

(2)

Theorem (Uniqueness)

Given two circle domains $C_1, C_2 \subset \hat{\mathbb{C}}, f : C_1 \to C_2$ is a univalent holomorphic function, then f is a linear rational, namely a Möbus transformation.

Proof.

Assume both C_1 and C_2 include ∞ , and $f(\infty) = \infty$. Since f is holomorhic, it maps the boundary circles of C_1 to those of C_2 . By Schwartz reflection principle, f can be extended to the multiple reflected domains. By the area estimation of the holes Eqn. 2, the multiple reflected domains cover the whole $\hat{\mathbb{C}}$, hence f can be extended to the whole $\hat{\mathbb{C}}$, since $f(\infty) = \infty$, f is a linear function. If $f(\infty) \neq \infty$, we can use a Möbius map to transform $f(\infty)$ to ∞ .

(I) < (II) <

Definition (Kernel)

Suppose $\{B_n\}$ is a family of domains on the complex plane, $\infty \in B_k$ for all k. Suppose B is the maximal set: $\infty \in B$, and for any closed set $K \subset B$, there is an N, such that for any n > N, $K \subset B_n$. Then B is called the kernel of $\{B_n\}$.

Definition (Domain Convergence)

We say a sequence $\{B_n\}$ converges to its kernel B, if any sub-sequence $\{B_{n_k}\}$ of $\{B_n\}$ has the same kernel B. We denote $B_n \to B$.

Theorem (Goluzin)

Let $\{A_n\}$ be a sequence of domains on the complex domain. Any domain A_n includes ∞ , $n = 1, 2, \dots, A$ ssume $\{A_n\}$ converges to its kernel A. Let $\{f_n(z)\}$ be a family of analytic function, for all n, $f_n(z)$ maps A_n to B_n surjectively, such that $f_n(\infty) = \infty$, $f'_n(\infty) = 1$. Then $\{f_n(z)\}$ uniformly converges to a univalent analytic function f(z) in the interior of A, if and only if $\{B_n\}$ converges to its kernel B, then the univalent analytic function f(z) maps A to B surjectively.

(日)

Theorem (Existence)

On the z-plane, every n-connected domain Ω can be mapped to a circle domain on the ζ -plane by a univalent holomorphic function. Choose a point $a \in \Omega$, there is a unique map which maps a to $\zeta = \infty$, and in a neighborhood of z = a, the map has the power series

$$\frac{1}{z-a} + a_1(z-a) + \cdots \text{ if } a \neq \infty$$
$$z + \frac{a_1}{z} + \cdots \text{ if } a = \infty$$

Existence

Proof.

According to Hilbert theorem, all *n*-connected domains are conformally equivalent to slit domains. We can assume Ω is a slit domain. We use S represent all the *n*-connected slit domains with horizontal slits, and C the *n*-connected circle domains. We label all the boundaries of the domains, $\partial \Omega = \bigcup_{k=1}^{n} \gamma_k$. For each slit γ_k , we represent it by the starting point p_k and the length I_k , then we get the coordinates of the slit domain Ω

$$(p_1, l_1, p_2, l_2, \cdots, p_n, l_n).$$

Hence S is a connected open set in \mathbb{R}^{3n} . Similarly, consider a circle domain $\mathcal{D} \in \mathcal{C}$, we use the center and the radius to represent each circle (q_k, r_k) , and the coordinates of \mathcal{D} are given by,

$$(q_1, r_1, q_2, r_2, \cdots, q_n, r_n).$$

C is also a connected open set in \mathbb{R}^{3n} .

Consider a normalized univalent holomorphic function $f : \Omega \to D$, $\Omega \in S$ and $\mathcal{D} \in C$, f maps the k-th boundary curve γ_k to the k-th circular boundary of \mathcal{D} . By the existence of slit mapping and the uniqueness of circle domain mapping, we have

- **(**) Every circle domain $\mathcal{D} \in \mathcal{C}$ corresponds to a unique slit domain $\Omega \in \mathcal{S}$;
- $\label{eq:constraint} \textbf{@} \mbox{ Every slit domain } \Omega \in \mathcal{S} \mbox{ corresponds to at most one circle domain } \\ \mathcal{D} \in \mathcal{C}.$

Then we establish a mapping from circle domains to slit domains $\varphi: \mathcal{C} \to \mathcal{S}.$

Assume $\{\mathcal{D}_n\}$ is a family of circle domains, converge to the kernel \mathcal{D}^* . The domain convergence definition is consistent with the convergence of coordinates, namely, the boundary circles of \mathcal{D}_n converge to the corresponding boundary circles of \mathcal{D}^* , denoted as $\lim_{n\to\infty} \mathcal{D}_n = \mathcal{D}^*$. The convergence of slit domains can be similarly defined. By Goluzin's theorem, we obtain the mapping $\varphi : \mathcal{C} \to \mathcal{S}$ is continuous:

$$\varphi(\lim_{n\to\infty}\mathcal{D}_n)=\lim_{n\to\infty}\varphi(\mathcal{D}_n).$$

By the uniqueness of circle domain mapping, we obtain φ is injective. We will prove the mapping φ is surjective.

 $\begin{array}{l} \mathcal{C} \text{ is an open set in Euclidean space } \varphi: \mathcal{C} \to \mathcal{S} \text{ is injective continuous map.} \\ \text{According to invariance of domain theorem, } \varphi(\mathcal{C}) \text{ is an open set,} \\ \varphi: \mathcal{C} \to \varphi(\mathcal{C}) \text{ is a homeomorphism.} \\ \text{Choose a circle domain } \mathcal{D}_0 \in \mathcal{C}, \text{ its corresponding slit domain is} \\ \varphi(\mathcal{D}_0) = \Omega_0 \in \mathcal{S}, \text{ then } \Omega_0 \in \varphi(\mathcal{C}). \text{ Choose another slit map } \Omega_1 \in \mathcal{S}, \text{ we} \\ \text{don't know if } \Omega_1 \text{ is in } \varphi(\mathcal{C}) \text{ or not. We draw a path } \Gamma: [0,1] \to \mathcal{S}, \\ \Gamma(0) = \Omega_0 \text{ and } \Gamma(1) = \Omega_1. \text{ Let} \end{array}$

$$t^* = \sup\{t \in [0,1] | \forall 0 \le \tau \le t, \Gamma(\tau) \in \varphi(\mathcal{C})\},$$

namely Γ from starting point to t^* belongs to $\varphi(\mathcal{C})$.

By the definition of domain convergence,

$$\lim_{n\to\infty}\Gamma(t_n)\to\Gamma(t^*).$$

By $\{\Gamma(t_n)\} \subset \varphi(\mathcal{C})$, there is a family of circle domains $\{\mathcal{D}_n\} \subset \mathcal{C}$, $\varphi(\mathcal{D}_n) = \Gamma(t_n)$. Let $\lim_{n\to\infty} \mathcal{D}_n = \mathcal{D}^*$, by domain limit theorem, we have

$$\varphi(\mathcal{D}^*) = \varphi(\lim_{n \to \infty} \mathcal{D}_n) = \lim_{n \to \infty} \varphi(\mathcal{D}_n) = \lim_{n \to \infty} \Gamma(t_n) = \Gamma(t^*),$$

namely $\varphi(\mathcal{D}^*) = \Gamma(t^*)$, hence $\Gamma(t^*) \in \varphi(\mathcal{C})$. But $\varphi(\mathcal{C})$ is an open set, hence if $t^* < 1$, t^* can be further extended. This contradict to the choice of t^* , hence $t^* = 1$. Therefore $\Omega_1 \in \varphi(\mathcal{C})$. Since Ω_1 is arbitrarily chosen, hence $\varphi : \mathcal{C} \to S$ is surjective. This proves the existence of the circle domain mapping.

3

イロト イポト イヨト イヨト

Convergence of Koebe Iteration Method

Input: Poly annulus M, $\partial M = \gamma_0 - \gamma_1 - \cdots - \gamma_n$; Output:Conformal map $\varphi : M \to \mathbb{D}$, where \mathbb{D} is a circle domain.

- Compute a slit map, map the surface to the circular slit domain
 f : *M* → ℂ, γ₀ and γ_k are mapped to the exetior and interior circular
 boundary of ℂ;
- I Fill the inner circle using Delaunay refinement mesh generation;
- Sepeat step 1 and 2, fill all the holes step by step;

Figure: Slit map.

David Gu (Stony Brook University)

Computational Conformal Geometry

August 16, 2020 3

30 / 72

Figure: Hole filling and slit map.

Figure: Hole filling and slit map.

Figure: All holes are filled.

- 9 Puch a hole at the k-th inner boundary;
- Compute a conformal map, to map the surface onto a canonical planar annulus;
- Fill the inner circular hole;
- Repeat step 4 through 6, each time punch a different hole, until the process convergences.

August 16, 2020 37

7 / 72

August 16, 2020 38

38 / 72

David Gu (Stony Brook University)

August 16, 2020 4

40 / 72

Figure: Final result.

Lemma

Suppose A is a topological annulus on \mathbb{C} , the conformal module of A is $\mu^{-1} > 1$, the exterior and interior boundaries of A are Jorgan curves Γ_0 and Γ_1 , $\partial A = \Gamma_0 - \Gamma_1$, then we have the area and diameter estimates:

$$\alpha(\Gamma_1) \le \mu^2 \alpha(\Gamma_0), \tag{3}$$

and

$$[diam\Gamma_1]^2 \le \frac{\pi}{2\log\mu^{-1}}\alpha(\Gamma_0),\tag{4}$$

where $\alpha(\Gamma_k)$ is the area bounded by Γ_k , k = 0, 1.

Area, Diameter Estimate

Figure: Topological annulus with conformal module μ^{-1} .

Area, Diameter Estimate

Proof.

Let holomorphic function g maps $\{1 \le |w| \le \mu^{-1}\}$ to A,

$$g(w) = w + a_0 + \frac{a_1}{w} + \frac{a_2}{w^2} + \cdots$$

By Gnowell area estimate, we have

$$\alpha(\Gamma_1) = \pi \left(1 - \sum_{n=1}^{\infty} n |a_n|^2 \right)$$
$$\alpha(\Gamma_0) = \pi \left(\mu^{-2} - \sum_{n=1}^{\infty} n |a_n|^2 \mu^{2n} \right)$$

hence, this proves the area inequality (3)

$$\alpha(\Gamma_0) - \mu^{-2}\alpha(\Gamma_1) = \pi \sum_{n=1}^{\infty} n|a_n|^2(\mu^{-2} - \mu^{2n}) \ge 0$$

David Gu (Stony Brook University)

Computational Conformal Geometry

The diameter diam Γ_1 is determined by $g(\{1 < |w| < \rho\})$, where $\rho \in (1, \mu^{-1})$. The diameter is bounded by half of the boundary length $g(|w| = \rho)$, we have

$$2\mathsf{diam}\Gamma_1 \leq \int_{|w|=\rho} |g'(w)| dw = \int_0^{2\pi} |g'(\rho e^{i\theta})| \rho \theta = \int_0^2 \pi |g'(\rho e^{i\theta})| \sqrt{\rho} \sqrt{\rho} d\theta$$

By Schwartz inequality, we have

$$[2\mathsf{diam}\Gamma_1]^2 \leq \int_0^{2\pi} |g'(\rho e^{i\theta})|^2 \rho d\theta \int_0^{2\pi} \rho d\theta = 2\pi\rho \int_0^{2\pi} |g'(\rho e^{i\theta})|^2 \rho d\theta$$

Area, Diameter Estimate

Continued

Equivalent

$$rac{2}{\pi
ho}[\mathsf{diam} \mathsf{\Gamma}_1]^2 \leq \int_0^{2\pi} |g'(
ho e^{i heta})|^2
ho d heta$$

Integrate with respect to ρ ,

$$\int_1^{\mu^{-1}} \frac{2}{\pi\rho} [\mathsf{diam}\Gamma_1]^2 d\rho \leq \int_1^{\mu^{-1}} \int_0^{2\pi} |g'(\rho e^{i\theta})|^2 \rho d\theta d\rho = \alpha(\Gamma_0) - \alpha(\Gamma_1).$$

Calculate left

$$\frac{2\log\mu^{-1}}{\pi}[\mathsf{diam}\Gamma_1]^2 \le \alpha(\Gamma_0) - \alpha(\Gamma_1) \le \alpha(\Gamma_0).$$

This proves inequality (4).

< □ > < 凸

Definition (Multi-reflected circle domain)

Given an m-level embedding relation tree of a circle domain C, the union of all nodes in the tree is called a multiple-reflected circle domain,

$$\Omega_m = \bigcup_{k \le m} \bigcup_{(i)=i_1 i_2 \cdots i_k} C^{(i)} = \hat{\mathbb{C}} \setminus \bigcup_{(i)=i_1 i_2 \cdots i_m} \bigcup_{k \ne i_1} \alpha(\Gamma_k^{(i)})$$

where $\alpha(\Gamma)$ is the area bounded by Γ .

Suppose we have a holomorphic univalent map $g_m:\Omega_m
ightarrow\hat{\mathbb{C}}$, define

$$C_m = g_m(C^0)$$
$$C_m^{(i)} = g_m(C^{(i)})$$
$$\Gamma_{m,k} = g_m(\Gamma_k)$$
$$\Gamma_{m,k}^{(i)} = g_m(\Gamma_k^{(i)})$$

According to the reflection generation tree, we have the symmetry

$$C^{i_1i_2\cdots i_{m-1}i_m} \mid C^{i_1i_2\cdots i_{m-1}i_m} (\Gamma_{i_m})$$

this symmetric relation is preserved by the holomorphic map g_m :

$$C_{m}^{i_{1}i_{2}\cdots i_{m-1}i_{m}} \mid C_{m}^{i_{1}i_{2}\cdots i_{m-1}i_{m}} (\Gamma_{m,i_{m}})$$

therefore g_m maps the embedding relation tree of $\{C^{(i)}\}$ to the embedding relation tree of $\{C_m^{(i)}\}$.

Lemma

Suppose the boundaries of C_m are $\Gamma_{m,1}, \Gamma_{m,2}, \ldots, \Gamma_{m,n}$. In the m-level embedding relation tree of C_m , the total area of the holes bounded by the interior boundaries of leaf nodes is less than μ^{4m} times the total area of holes bounded by $\Gamma_{m,k}$'s,

$$\sum_{(i)=i_1i_2\cdots i_m}\sum_{k\neq i_1}\alpha(\Gamma_{m,k^{(i)}}) \le \mu^{4m}\sum_{i=1}^n\alpha(\Gamma_{m,i}).$$
(5)

Proof.

Using area estimate (3) and induction on m.

David Gu (Stony Brook University)

August 16, 2020

2

Key Observation

Given a multi-annulus \mathcal{R} , there is a bioholomorphic map $g : \mathcal{C} \to \mathcal{R}$ maps a circle domain \mathcal{C} to \mathcal{R} . During the process of Koebe's iteration, the domain of the mapping \mathcal{C} can be extended to the image of the multiple reflection, (multiple reflected circle domain), which eventually covers the whole augmented complex plane $\hat{\mathbb{C}}$.

Lemma

During Koebe's iteration, at the mn-th step, the algorithm generates a univalent holomorphic function g_{mn} , its domain is extended to the m-level reflected circle domain,

 $g_{mn}:\Omega_m\to\hat{\mathbb{C}}.$

Proof.

Initial domain is $C_0, \infty \in C_0$, the complementary sets are $D_{0,1}, D_{0,2}, \cdots, D_{0,n}, \partial D_{0,i} = \Gamma_{0,i}, i = 1, 2, \cdots, n.$ There is a biholomorphic function, $f : C_0 \to C$, the complementary of C is the set D_1, D_2, \cdots, D_n , where D_i 's are disks, $\partial D_i = \Gamma_i$ is a canonical circle. In the neighborhood of ∞ , $f(z) = z + O(z^{-1})$.

< ロ > < 同 > < 回 > < 回 > < 回 > <

continued.

By Riemann mapping theorem, there is a Riemann mapping

$$h_1: \hat{\mathbb{C}} \setminus D_{0,1} \to \hat{\mathbb{C}} \setminus \mathbb{D},$$

maps $\Gamma_{0,1}$ to the unit circle $\Gamma_{1,1}$, C_0 to C_1 , satisfying the normalization condition,

$$h_1(\infty) = \infty, \quad h_1'(\infty) = 1,$$

and

$$D_{1,k} = h_1(D_{0,k}), \ k = 2, \cdots, n.$$

Repeat this procedure, at $k \leq n$ step, construct a Riemann mapping,

$$h_k: \hat{\mathbb{C}} \setminus D_{k-1,k} \to \hat{\mathbb{C}} \setminus \mathbb{D},$$

which maps $\Gamma_{k-1,k}$ to the unit circle, C_{k-1} to C_k , $h_k(\infty) = \infty$ and $h'(\infty) = 1$.

continued.

We recursively define the symbols as follows:

$$C_k = h_k(C_{k-1})$$

$$\Gamma_{k,i} = h_k(\Gamma_{k-1,i}), i \neq k$$

$$D_{k,i} = h_k(D_{k-1}, i), i \neq k$$

 $D_{k,k}$ is the unit disk \mathbb{D} , $\Gamma_{k,k}$ the unit circle. We construct a biholomorphic map $f_k : C_0 \to C_k$:

$$f_k = h_k \circ h_{k-1} \circ \cdots h_1$$

and the biholomorphic map from the circle domain $\mathcal C$ to $\mathcal C_k$, $g_k:\mathcal C o \mathcal C_k$,

$$g_k:=f_k\circ f^{-1},$$

 g_k satisfies normalization condition $g_k(\infty) = \infty$, $g'_k(\infty) = 1$.

55 / 72

continued.

We generalize the domain of g_k to multiple reflected circle domain. Because $\Gamma_{1,1}$ is a canonical circle, C_1 can be reflected about $\Gamma_{1,1}$ to C_1^1 ,

 $C_1 | C_1^1 (\Gamma_{1,1})$

 $h_2: \hat{\mathbb{C}} \setminus D_{1,2} o \hat{\mathbb{C}} \setminus \mathbb{D}$, hence h_2 is well defined on $D_{1,1}$. we denote

$$C_2^1 := h_2(C_1^1), \quad C_2^1 | C_2 \quad (\Gamma_{2,1}).$$

when $k = 2, 3, \dots, n$, the Riemann mapping h_k is well defined on $C_k \cup D_{k,1}$, domain

$$C_k^1 := h_k \circ h_{k-1} \circ \cdots \circ h_1(C_1^1), \ k = 2, \cdots, n,$$

satisfying

$$C_k^1|C_k$$
 ($\Gamma_{k,1}$).

э

• • • • • • • • • •

continued.

But the map h_{n+1} on $D_{n,1}$ is not defined. We can use Schwartz reflection to define C_{n+1}^1 . Consider the composition:

$$\beta_n := h_n \circ h_{n-1} \circ \cdots \circ h_2 : C_1 \to C_n,$$

 β_n is well defined on $D_{1,1}$.

$$h_{n+1}\circ\beta_n:C_1\to C_{n+1},$$

maps the circle $\Gamma_{1,1}$ to the circle $\Gamma_{n+1,1}$, but is not defined on $D_{1,1}$. By Schwartz reflection principle, the map $h_{n+1} \circ \beta_n$ can be extended to

$$H_{n+1}: C_1 \cup C_1^1 \to C_{n+1} \cup C_{n+1}^1,$$

where

$$C_{n+1}^1|C_n \quad (\Gamma_{n+1,1}).$$

Continued.

$$\begin{array}{cccc} C_1 \cup C_1^1 & \xrightarrow{\beta_n} & C_n \cup C_n^1 \\ H_{n+1} & & \downarrow H_{n+1 \circ \beta_n^{-1}} \\ C_{n+1} \cup C_{n+1}^1 & \xrightarrow{Id} & C_{n+1} \cup C_{n+1}^1 \end{array}$$

we obtain the composition map

$$H_{n+1} \circ \beta_n^{-1} : C_n \cup \underline{C_n^1} \to C_{n+1} \cup \underline{C_{n+1}^1}.$$

for convenience, we still use h_{n+1} to represent $H_{n+1} \circ \beta_n^{-1}$. Hence, we extend the domain of h_{n+1} to C_n^1 : $h_{n+1} : C_n \cup C_n^1 \to C_{n+1} \cup C_{n+1}^1$. Repeat this procedure, we conclude: for all $k \ge 1$, C_k^1 and C_k are symmetric,

$$C_k^1|C_k (\Gamma_{k,1}).$$

< □ > < □ > < □ > < □ > < □ > < □ >

Similarly, when k = 2, $\Gamma_{2,2}$ is a circle, C_2^2 and C_2 are symmetric about $\Gamma_{2,2}$. When k > 2, we define

$$C_k^2 := h_k \circ h_{k-1} \circ \cdots h_3(C_2^2),$$

similarly, for every h_{kn+2} map, we use Schwartz reflection principle to extend analytically. For all $k \ge 2$, $C_k 2$ and C_k are symmetric:

$$C_k^2|C_k \quad (\Gamma_{k,2}).$$

Similarly, for any $i = 3, \dots, n$, we use Schwartz reflection principle to extend the domain and define C_k^i symmetric to C_k , for all $k \ge i$,

$$C_k^i | C_k \quad (\Gamma_{k,i}).$$

After the first round of iterations, all C_k^i , $i = 1, 2, \dots, n$ are defined. Since $\Gamma_{n+1,1}$ is the unit circle, we define C_{n+1}^{i1} to be the mirror image of C_{n+1}^i with respect to $\Gamma_{n+1,1}$, $C_{n+1}^{11} = C_{n+1}$, but all other C_{n+1}^{i1} are newly generated domains $i \neq 1$. Apply the extended Riemann mapping, we get a series of mirror images:

$$C_k^{i1}|C_k^i \quad (\Gamma_{k,1}), \ \forall k \geq n+1, i=2,3,\cdots,n.$$

Similarly, we can define mirror image domains:

$$C_k^{ij}|C_k^i \quad (\Gamma_{k,j}), \quad \forall k \ge n+j.$$

After *mn* iterations, we obtain *m*-level mirror images $C_k^{i_1i_2\cdots i_m}$, satisfying the symmetric relation:

$$C_k^{i_1i_2\cdots i_mi_{m+1}}|C_k^{i_1i_2\cdots i_m}$$
 (Γ_k, i_{m+1}), $k \ge mn + i_{m+1}$,

Now the *j*-th boundary of $C_k^{i_1i_2\cdots i_mi_{m+1}}$ is denoted as $\Gamma_{k,j}^{i_1i_2\cdots i_mi_{m+1}}$,

$$\partial C_{k}^{i_{1}i_{2}\cdots i_{m}i_{m+1}} = \Gamma_{k,i_{1}}^{i_{1}i_{2}\cdots i_{m}i_{m+1}} - \bigcup_{j\neq i_{1}}^{n} \Gamma_{k,j}^{i_{1}i_{2}\cdots i_{m}i_{m+1}}.$$

Consider
$$g_k^{-1} = f \circ f_k^{-1}$$
, for all k we have

$$C = g_k^{-1}(C_k)$$

similarly,

$$C^{i_1i_2\cdots i_m} = g_k^{-1}(C_k^{i_1i_2\cdots i_m})$$

and its boundaries

$$\Gamma_{j}^{i_{1}i_{2}\cdots i_{m}} = g_{k}^{-1}(\Gamma_{k,j}^{i_{1}i_{2}\cdots i_{m}}).$$

э

The circle domain $C = C^0$ is reflected about $\Gamma_{i_1}, \Gamma_{i_2}, \cdots, \Gamma_{i_k}$ sequentially, to a *k*-level mirror reflection image $C^{i_1i_2\cdots i_k}$, its interior boundary is

$$\Gamma_j^{i_1i_2\cdots i_k}=\Gamma_j\ldots\ldots(i),\quad j\neq i_1,$$

such that i_l and i_{l+1} are not equal. After analytic extension, g_k is defined on the augmented complex plane with $n(n-1)^{k-1}$ disks removed. The boundaries of these disks are

$$\bigcup_{i_1i_2\cdots i_k, i_l\neq i_{l+1}}\bigcup_{j\neq i_1} \Gamma_j^{i_1i_2\cdots i_k}$$

We choose a big circle Γ_{ρ} , enclosing all the initial boundaries Γ_j . For any point $w \in C^0$, by Cauchy formula

$$g(w)-w=\frac{1}{2\pi i}\oint_{\Gamma_{\rho}}\frac{g_k(s)-w}{s-w}ds-\sum_{(i),j}\frac{1}{2\pi i}\oint_{\Gamma_j^{(i)}}\frac{g_k(s)-w}{s-w}ds$$

at ∞ neighborhood, $g_k(w) - w = O(w^{-1})$, when $ho o \infty$

$$\frac{1}{2\pi i}\oint_{\Gamma_{\rho}}\frac{g_k(s)-w}{s-w}ds=\frac{1}{2\pi i}\oint_{\Gamma_{\rho}}\frac{g_k(s)-s}{s-w}+\frac{s-w}{s-w}ds\to 0.$$

Error Estimate

Since w is outside all $\Gamma_j^{(i)}$, integration

$$\frac{1}{2\pi i}\oint_{\Gamma_j^{(i)}}\frac{w}{s-w}ds=0,$$

for any complex number $c_j^{(i)}$, integration

$$\frac{1}{2\pi i}\oint_{\Gamma_j^{(i)}}\frac{c_j^{(i)}}{s-w}ds=0$$

we obtain

$$g_k(w) - w = -\sum_{(i),j} \frac{1}{2\pi i} \oint_{\Gamma_j^{(i)}} \frac{g_k(s) - c_j^{(i)}}{s - w} ds$$

э

66 / 72

Multiple Reflection

David Gu (Stony Brook University)

э

Error Estimate

In the initial circle domain C^0 , let distance constant

$$\delta := \min_{i \neq j} \operatorname{dist}(\Gamma_i, \Gamma_j^i),$$

we have $\delta > 0$. Since $\Gamma_j^{(i)} \subset \Gamma_{i_{m-1}}^{i_m}$, $|s - w| > \delta$. Define

$$\delta_{k,j}^{(i)} := \operatorname{diam}(\Gamma_{k,j}^{(i)})$$

the curve $\Gamma_{k,j}^{(i)} = g_k(\Gamma_j^{(i)})$ is enclosed by the circle centered as $c_j^{(i)}$ and diameter $\delta_{k,j}^{(i)}$, then for all $s \in \Gamma_j^{(i)}$,

$$|g_k(s)-c_j^{(i)}|\leq \delta_{k,j}^{(i)},$$

the length of the integration is $\pi \delta_j^{(i)}$, where $\delta_j^{(i)} = \text{diam}(\Gamma_j^{(i)})$.

68 / 72

$$\begin{aligned} |g_{k}(w) - w| &\leq \sigma_{(i),j} \frac{1}{2\pi} \oint_{\Gamma_{j}^{(i)}} \frac{|g_{k}(s) - c_{j}^{(i)}|}{|s - w|} |ds| &\leq \sum_{(i),j} \frac{1}{2\pi} \frac{\delta_{k,j}^{(i)}}{\delta} \pi \delta_{j}^{(i)} \\ &= \sum_{(i),j} \frac{1}{2\delta} \delta_{k,j}^{(i)} \delta_{j}^{(i)} &\leq \sum_{(i),j} \frac{1}{4\delta} \left([\delta_{k,j}^{(i)}]^{2} + [\delta_{j}^{(i)}]^{2} \right) \end{aligned}$$

For the first term,

$$\sum_{(i),j} [\delta_j^{(i)}]^2 = \frac{4}{\pi} \sum_{(i),j} \alpha(\Gamma_j^{(i)}) \le \mu^{4m} \sum_j \alpha(\Gamma_j) = \frac{4}{\pi} \mu^{4m} \gamma_1,$$

where $\sum_{j} \alpha(\Gamma_j) = \gamma_1$.

Image: Image:

æ

For the second term, consider the topological annus bounded by $\tilde{\Gamma}_{k,j}^{(i)}$ and $\Gamma_{k,j}^{(i)}$, by the diameter estimation (4), we obtain

$$[\delta_{j,k}^{(i)}]^2 \leq \frac{\pi}{2\log\mu^{-1}}\alpha(\widetilde{\Gamma}_{k,j}^{(i)}),$$

By inequality (5), we obtain

$$\sum_{(i),j} [\delta_{j,k}^{(i)}]^2 \le \frac{\pi}{2\log\mu^{-1}} \sum_{(i),j} \alpha(\tilde{\Gamma}_{k,j}^{(i)}) \le \frac{\pi}{2\log\mu^{-1}} \sum_j \alpha(\tilde{\Gamma}_{k,j}) = \frac{\pi}{2\log\mu^{-1}} \mu^{4m} \gamma_2,$$

where $\gamma_2 = \sum_j \alpha(\tilde{\Gamma}_{k,j})$.

Error Estimate

We estimate γ_1 and γ_2 . The circle Γ_{ρ} enclose all the circles $\tilde{\Gamma}_i$, then $\gamma_1 < \pi \rho^2$. Using $g_k(w)$, we estimate γ_2 . g_k is univalent on $|w| > \rho$, in the neighborhood of ∞ , $g_k(w) = w + O(w^{-1})$. Perform coordinate change $\zeta = 1/w$, $\eta = 1/z$, construct univalent holomorphic function $\varphi : \zeta \to \eta$,

$$\varphi(\zeta) = rac{1}{g_k(1/\zeta)},$$

 φ is defined on the disk $|\zeta| < \rho^{-1}$, $\varphi(0) = 0$ and $\varphi'(0) = 1$. By Koebe 1/4 theorem,

$$\left\{ |\eta| < \frac{1}{4\rho} \right\} \subset \varphi \left(\left\{ |\zeta| < \frac{1}{\rho} \right\} \right),$$

equivalently

$$\{|z|>4\rho\}\subset g_k(\{|w|>\rho\}),$$

hence all $\tilde{\Gamma}_{k,j}$ are included in the interior of $|z| < 4\rho$, hence the total area of all holes

$$\gamma_2 = \sum_j \alpha(\tilde{\mathsf{\Gamma}}_{k,j}) < 16\pi\rho^2.$$

August 16, 2020

71 / 72

We proved the convergence rate of Koebe's iteration.

Theorem (Convergence Rate of Koebe's Iteration)

In the Koebe's iteration, when k > mn,

$$|g_k(w) - w| \leq \frac{1}{4\delta} \left(\frac{4}{\pi} \pi \rho^2 + \frac{\pi}{2 \log \mu^{-1}} 16 \pi \rho^2 \right) \mu^{4m}.$$

This shows μ controls the convergence rate.