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Motivation
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Conformal Module for Poly-annulus

Figure: Conformal mapping from a poly-annulus to a circle domain.
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Circle Domain

Definition (Circle Domain)

Suppose Ω ⊂ Ĉ is a planar domain, if ∂Ω has finite number of connected
components, each of them is either a circle or a point, then Ω is called a
circle domain.

Theorem (Koebe)

Suppose S is of genus zero, ∂S has finite number of connected
components, then S is conformal equivalent to a circle domain.
Furthermore, all such conformal mappings differ by a Möbius
transformation.
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Schwartz Reflection Principle

Definition (Mirror Reflection)

Given a circle Γ : |z − z0| = ρ, the reflection with respect to Γ is defined as:

ϕΓ : re iθ + z0 7→
ρ2

r
e iθ + z0. (1)

Two planar domains S and S ′ are symmetric about Γ, if ϕΓ(S) = S ′.

ρ

Γ

z

ϕΓ(z)

Figure: Reflection about a circle.
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Schwartz Reflection Principle

Definition (Reflection)

Suppose Γ is an analytic curve, domain S , S ′ and Γ are included in a
planar domain Ω. There is a conformal map f : Ω→ Ĉ, such that f (Γ) is
a canonical circle, f (S) and f (S ′) are symmetric about f (Γ), then we say
S and S ′ are symmetric about Γ, and denoted as

S |S ′ (Γ).

Γ

S

S ′

f

f (S)
f (S ′)

f (Γ)Ω f (Ω)

Figure: General symmetry.
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Schwartz Reflection Principle

Theorem (Schwartz Reflection Principle)

Assume f is an analytic function, defined on the upper half disk
{|z | < 1,=(z) > 0}. If f can be extended to a real continuous function on
the real axis, then f can be extended to an analytic function F defined on
the whole disk, satisfying

F (z) =

{
f (z), =(z) ≥ 0

f (z̄), =(z) < 0

f

Figure: Schwartz reflection principle.
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Multiple Reflection

Γ1 Γ2

Γ3

C0
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Multiple Reflection
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Multiple Reflection
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Multiple Reflection

1 Initial circle domain C 0: complex plane remove three disks, its
boundary is {Γ1, Γ2, Γ3};

2 First level reflection: C 0 is reflected about Γi1 to C i1 , i1 = 1, 2, 3;

∂C i1 = Γi1
i1
−
∑
j 6=i1

Γi1
j ,

where Γi1
i1

= Γi1 .

3 Second level reflection: C i1 is reflected about Γi2 to C i1i2 , i1 6= i2; the
boundary of C i1i2 are Γi1i2

j , when j 6= i1, Γi1i2
j is an interior boundary;

when j = i1, Γi1i2
j is the exterior boundary, Γi1i2

i1
= Γi2

i1
.

∂C i1i2 = Γi2
i1
−
∑
j 6=i1

Γi1i2
j

when j = i1, Γi1i2
i1

= Γi2
i1

;
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Multiple Reflection

4 Third level reflection: C i1i2 is reflected about Γi3 to C i1i2i3 , i1 6= i2,
i2 6= i3; the boundary of C i1i2i3 are Γi1i2i3

j , when j 6= i1, Γi1i2i3
j is an

interior boundary; when j = i1, Γi1i2i3
j is the exterior boundary,

Γi1i2i3
i1

= Γi2i3
i1

.

∂C i1i2i3 = Γi2i3
i1
−
∑
j 6=i1

Γi1i2i3
j .

5 The m-level reflection: C i1i2...im−1 is reflected about Γim to
C i1i2...im−1im , ik 6= ik+1; the boundary of C i1i2...im−1im , ik 6= ik+1 are

Γ
i1i2...im−1im
j , when j 6= i1, Γ

i1i2...im−1im
j is an interior boundary; when

j = i1, Γ
i1i2...im−1im
j is the exterior boundary, Γ

i1i2...im−1im
i1

= Γ
i2...im−1im
i1

is
an interior boundary,

∂C i1i2...im = Γi2i3...im
i1

−
∑
j 6=i1

Γi1i2...im
j .

David Gu (Stony Brook University) Computational Conformal Geometry August 16, 2020 12 / 72



Multiple Reflection
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Multiple Reflection

C0

C1 C3C2

C12 C13 C21 C23 C31 C32

1

2

3

23 1 3 1

2

Figure: Reflection tree.

Each node represents a domain
C i1i2...im ;

Each edge represents a circle Γk ,
k = 1, . . . , n;

Father and Son share an edge i1

Γi1i2···im
i1

= Γi2···im
i1

.

Each node C (i), (i) = i1i2 . . . im is
the path from the root to C (i),

C (i) = ϕΓim
◦ ϕΓim−1

· · ·ϕΓi1
(C 0).
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Multiple Reflection

C0

C1 C3C2

C21 C31 C12 C32 C13 C23

1

2

3

23 1 3 1

2

Figure: Embedding tree.

Father node C i2···im and child node
C i1i2···im is connected by edge i1, the
exterior boundary of child equals to
an interior boundary of the father

Γi1i2···im
i1

= Γi2···im
i1

.

From the root C 0 to C i1···im , the
path is inverse to the index

(i)−1 = imim−1 · · · i2i1,

starting from C 0 crosses Γim to C im ,
crosses Γim

im−1
to C im−1im ; when

arrives at C ik+1···i1 , crosses Γ
ik+1···i1
ik

to C ik ik+1···i1 ; and eventually reach
C (i).
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Hole Area Estimation

Lemma

Suppose C (i) is an interior node in the reflection tree,

(i) = i1i2 · · · im,

its exterior boundary is Γ
(i)
i1

, interior boundaries are Γ
(i)
j , j 6= i1, we have

the estimate: ∑
j 6=i1

α(Γ
(i)
j ) ≤ µ4α(Γ

(i)
i1

).
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Hole Area Estimation
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Figure: Hole area estimation.

α(Γ2
1)+α(Γ2

3) = µ2(α(Γ̃2
1)+α(Γ̃2

3)) ≤ µ2α(Γ̃2
2) = µ4α(Γ2).

Enlarge all Γk ’s by factor µ−1

to Γ̃k , Γ̃1 and Γ̃3 touch each
other; reflect C 0 about Γ2

Γk |Γ2
k (Γ2).

Γ̃k |Γ2
k (Γ2).

α(Γ̃2
1) = µ−2α(Γ2

1)

α(Γ̃2
3) = µ−2α(Γ2

3)

α(Γ̃2
2) = µ2α(Γ2)
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Hole Area Estimation

Lemma

Suppose the boundaries of the initial circle domain C 0 are Γ1, Γ2, · · · , Γn,
consider the reflection tree with m layers, then the total area of the holes
bounded by the interior boundaries of leaf nodes is no greater than µ4m

times the area bounded by Γk ’s,

∑
(i)=i1i2...im

∑
k 6=i1

α(Γ
(i)
k ) ≤ µ4m

n∑
i=1

α(Γi ). (2)

Proof.

By induction on m. The area bounded by the exterior boundaries of the
nodes in the k + 1-layer is no greater than µ4 times that of the k-layer.
The total area of the interior boundaries of leaf nodes is no greater than
the area bounded by the exterior boundaries of leaf nodes.

David Gu (Stony Brook University) Computational Conformal Geometry August 16, 2020 18 / 72



Uniqueness

Theorem (Uniqueness)

Given two circle domains C1,C2 ⊂ Ĉ, f : C1 → C2 is a univalent
holomorphic function, then f is a linear rational, namely a Möbus
transformation.

Proof.

Assume both C1 and C2 include ∞, and f (∞) =∞. Since f is
holomorhic, it maps the boundary circles of C1 to those of C2. By
Schwartz reflection principle, f can be extended to the multiple reflected
domains. By the area estimation of the holes Eqn. 2, the multiple reflected
domains cover the whole Ĉ, hence f can be extended to the whole Ĉ,
since f (∞) =∞, f is a linear function. If f (∞) 6=∞, we can use a
Möbius map to transform f (∞) to ∞.
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Existence

Definition (Kernel)

Suppose {Bn} is a family of domains on the complex plane, ∞ ∈ Bk for all
k . Suppose B is the maximal set: ∞ ∈ B, and for any closed set K ⊂ B,
there is an N, such that for any n > N, K ⊂ Bn. Then B is called the
kernel of {Bn}.

Definition (Domain Convergence)

We say a sequence {Bn} converges to its kernel B, if any sub-sequence
{Bnk} of {Bn} has the same kernel B. We denote Bn → B.
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Goluzin Theorem

Theorem (Goluzin)

Let {An} be a sequence of domains on the complex domain. Any domain
An includes ∞, n = 1, 2, · · · ,. Assume {An} converges to its kernel A. Let
{fn(z)} be a family of analytic function, for all n, fn(z) maps An to Bn

surjectively, such that fn(∞) =∞, f ′n(∞) = 1. Then {fn(z)} uniformly
converges to a univalent analytic function f (z) in the interior of A, if and
only if {Bn} converges to its kernel B, then the univalent analytic function
f (z) maps A to B surjectively.
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Existence

Theorem (Existence)

On the z-plane, every n-connected domain Ω can be mapped to a circle
domain on the ζ-plane by a univalent holomorphic function. Choose a
point a ∈ Ω, there is a unique map which maps a to ζ =∞, and in a
neighborhood of z = a, the map has the power series

1

z − a
+ a1(z − a) + · · · if a 6=∞

z +
a1

z
+ · · · if a =∞
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Existence

Proof.

According to Hilbert theorem, all n-connected domains are conformally
equivalent to slit domains. We can assume Ω is a slit domain. We use S
represent all the n-connected slit domains with horizontal slits, and C the
n-connected circle domains. We label all the boundaries of the domains,
∂Ω =

⋃n
k=1 γk . For each slit γk , we represent it by the starting point pk

and the length lk , then we get the coordinates of the slit domain Ω

(p1, l1, p2, l2, · · · , pn, ln).

Hence S is a connected open set in R3n. Similarly, consider a circle
domain D ∈ C, we use the center and the radius to represent each circle
(qk , rk), and the coordinates of D are given by,

(q1, r1, q2, r2, · · · , qn, rn).

C is also a connected open set in R3n.
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Existence

continued

Consider a normalized univalent holomorphic function f : Ω→ D, Ω ∈ S
and D ∈ C, f maps the k-th boundary curve γk to the k-th circular
boundary of D. By the existence of slit mapping and the uniqueness of
circle domain mapping, we have

1 Every circle domain D ∈ C corresponds to a unique slit domain Ω ∈ S;

2 Every slit domain Ω ∈ S corresponds to at most one circle domain
D ∈ C.

Then we establish a mapping from circle domains to slit domains
ϕ : C → S.
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Existence

continued

Assume {Dn} is a family of circle domains, converge to the kernel D∗.
The domain convergence definition is consistent with the convergence of
coordinates, namely, the boundary circles of Dn converge to the
corresponding boundary circles of D∗, denoted as limn→∞Dn = D∗. The
convergence of slit domains can be similarly defined. By Goluzin’s
theorem, we obtain the mapping ϕ : C → S is continuous:

ϕ( lim
n→∞

Dn) = lim
n→∞

ϕ(Dn).

By the uniqueness of circle domain mapping, we obtain ϕ is injective. We
will prove the mapping ϕ is surjective.
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Existence

continued

C is an open set in Euclidean space ϕ : C → S is injective continuous map.
According to invariance of domain theorem, ϕ(C) is an open set,
ϕ : C → ϕ(C) is a homeomorphism.
Choose a circle domain D0 ∈ C, its corresponding slit domain is
ϕ(D0) = Ω0 ∈ S, then Ω0 ∈ ϕ(C). Choose another slit map Ω1 ∈ S, we
don’t know if Ω1 is in ϕ(C) or not. We draw a path Γ : [0, 1]→ S,
Γ(0) = Ω0 and Γ(1) = Ω1. Let

t∗ = sup{t ∈ [0, 1]|∀0 ≤ τ ≤ t, Γ(τ) ∈ ϕ(C)},

namely Γ from starting point to t∗ belongs to ϕ(C).
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Existence

continued

By the definition of domain convergence,

lim
n→∞

Γ(tn)→ Γ(t∗).

By {Γ(tn)} ⊂ ϕ(C), there is a family of circle domains {Dn} ⊂ C,
ϕ(Dn) = Γ(tn). Let limn→∞Dn = D∗, by domain limit theorem, we have

ϕ(D∗) = ϕ( lim
n→∞

Dn) = lim
n→∞

ϕ(Dn) = lim
n→∞

Γ(tn) = Γ(t∗),

namely ϕ(D∗) = Γ(t∗), hence Γ(t∗) ∈ ϕ(C). But ϕ(C) is an open set,
hence if t∗ < 1, t∗ can be further extended. This contradict to the choice
of t∗, hence t∗ = 1. Therefore Ω1 ∈ ϕ(C). Since Ω1 is arbitrarily chosen,
hence ϕ : C → S is surjective. This proves the existence of the circle
domain mapping.
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Convergence of Koebe Iteration Method
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Koebe Iteration Algorithm

Input: Poly annulus M, ∂M = γ0 − γ1 − · · · − γn;
Output:Conformal map ϕ : M → D, where D is a circle domain.

1 Compute a slit map, map the surface to the circular slit domain
f : M → C, γ0 and γk are mapped to the exetior and interior circular
boundary of C;

2 Fill the inner circle using Delaunay refinement mesh generation;

3 Repeat step 1 and 2, fill all the holes step by step;
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Koebe Iteration Method

Figure: Slit map.
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Koebe Iteration Method

Figure: Hole filling and slit map.
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Koebe Iteration Method

Figure: Hole filling and slit map.
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Koebe Iteration Method

Figure: All holes are filled.
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Koebe Iteration Algorithm

4 Puch a hole at the k-th inner boundary;

5 Compute a conformal map, to map the surface onto a canonical
planar annulus;

6 Fill the inner circular hole;

7 Repeat step 4 through 6, each time punch a different hole, until the
process convergences.
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Koebe Iteration Method
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Koebe Iteration Method
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Koebe Iteration Method
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Koebe Iteration Method
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Koebe Iteration Method
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Koebe Iteration Method
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Koebe Iteration Method
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Koebe Iteration Method

Figure: Final result.
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Area, Diameter Estimate

Lemma

Suppose A is a topological annulus on C, the conformal module of A is
µ−1 > 1, the exterior and interior boundaries of A are Jorgan curves Γ0

and Γ1, ∂A = Γ0 − Γ1, then we have the area and diameter estimates:

α(Γ1) ≤ µ2α(Γ0), (3)

and
[diamΓ1]2 ≤ π

2 logµ−1
α(Γ0), (4)

where α(Γk) is the area bounded by Γk , k = 0, 1.
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Area, Diameter Estimate

Γ0

Γ1

A

γ
1

µ−1g

Figure: Topological annulus with conformal module µ−1.
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Area, Diameter Estimate

Proof.

Let holomorphic function g maps {1 ≤ |w | ≤ µ−1} to A,

g(w) = w + a0 +
a1

w
+

a2

w2
+ · · ·

By Gnowell area estimate, we have

α(Γ1) = π

(
1−

∞∑
n=1

n|an|2
)

α(Γ0) = π

(
µ−2 −

∞∑
n=1

n|an|2µ2n

)

hence, this proves the area inequality (3)

α(Γ0)− µ−2α(Γ1) = π

∞∑
n=1

n|an|2(µ−2 − µ2n) ≥ 0
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Area, Diameter Estimate

Continued

The diameter diamΓ1 is determined by g({1 < |w | < ρ}), where
ρ ∈ (1, µ−1). The diameter is bounded by half of the boundary length
g(|w | = ρ), we have

2diamΓ1 ≤
∫
|w |=ρ

|g ′(w)|dw =

∫ 2π

0
|g ′(ρe iθ)|ρθ =

∫ 2

0
π|g ′(ρe iθ)|√ρ√ρdθ,

By Schwartz inequality, we have

[2diamΓ1]2 ≤
∫ 2π

0
|g ′(ρe iθ)|2ρdθ

∫ 2π

0
ρdθ = 2πρ

∫ 2π

0
|g ′(ρe iθ)|2ρdθ
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Area, Diameter Estimate

Continued

Equivalent
2

πρ
[diamΓ1]2 ≤

∫ 2π

0
|g ′(ρe iθ)|2ρdθ

Integrate with respect to ρ,∫ µ−1

1

2

πρ
[diamΓ1]2dρ ≤

∫ µ−1

1

∫ 2π

0
|g ′(ρe iθ)|2ρdθdρ = α(Γ0)− α(Γ1).

Calculate left

2 logµ−1

π
[diamΓ1]2 ≤ α(Γ0)− α(Γ1) ≤ α(Γ0).

This proves inequality (4).

David Gu (Stony Brook University) Computational Conformal Geometry August 16, 2020 47 / 72



Multiple Reflected Domain

Definition (Multi-reflected circle domain)

Given an m-level embedding relation tree of a circle domain C , the union
of all nodes in the tree is called a multiple-reflected circle domain,

Ωm =
⋃
k≤m

⋃
(i)=i1i2···ik

C (i) = Ĉ \
⋃

(i)=i1i2···im

⋃
k 6=i1

α(Γ
(i)
k )

where α(Γ) is the area bounded by Γ.

Suppose we have a holomorphic univalent map gm : Ωm → Ĉ, define

Cm = gm(C 0)

C
(i)
m = gm(C (i))

Γm,k = gm(Γk)

Γ
(i)
m,k = gm(Γ

(i)
k )
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Symmetric Relation

According to the reflection generation tree, we have the symmetry

C i1i2···im−1im | C i1i2···im−1im (Γim)

this symmetric relation is preserved by the holomorphic map gm:

C
i1i2···im−1im
m | C i1i2···im−1im

m (Γm,im)

therefore gm maps the embedding relation tree of
{
C (i)

}
to the

embedding relation tree of
{
C

(i)
m

}
.
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Hole Area Estimation

Lemma

Suppose the boundaries of Cm are Γm,1, Γm,2, . . . , Γm,n. In the m-level
embedding relation tree of Cm, the total area of the holes bounded by the
interior boundaries of leaf nodes is less than µ4m times the total area of
holes bounded by Γm,k ’s,

∑
(i)=i1i2···im

∑
k 6=i1

α(Γm,k(i)) ≤ µ4m
n∑

i=1

α(Γm,i ). (5)

Proof.

Using area estimate (3) and induction on m.
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Koebe’s Iteration
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Figure: Caption
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Koebe’s Iteration

Key Observation

Given a multi-annulus R, there is a bioholomorphic map g : C → R maps
a circle domain C to R. During the process of Koebe’s iteration, the
domain of the mapping C can be extended to the image of the multiple
reflection, (multiple reflected circle domain), which eventually covers the
whole augmented complex plane Ĉ.

David Gu (Stony Brook University) Computational Conformal Geometry August 16, 2020 52 / 72



Koebe’s Iteration

Lemma

During Koebe’s iteration, at the mn-th step, the algorithm generates a
univalent holomorphic function gmn, its domain is extended to the m-level
reflected circle domain,

gmn : Ωm → Ĉ.

Proof.

Initial domain is C0, ∞ ∈ C0, the complementary sets are
D0,1,D0,2, · · · ,D0,n, ∂D0,i = Γ0,i , i = 1, 2, · · · , n.
There is a biholomorphic function, f : C0 → C, the complementary of C is
the set D1,D2, · · · ,Dn, where Di ’s are disks, ∂Di = Γi is a canonical
circle. In the neighborhood of ∞, f (z) = z + O(z−1).
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Koebe’s Iteration

continued.

By Riemann mapping theorem, there is a Riemann mapping

h1 : Ĉ \ D0,1 → Ĉ \ D,

maps Γ0,1 to the unit circle Γ1,1, C0 to C1, satisfying the normalization
condition,

h1(∞) =∞, h′1(∞) = 1,

and
D1,k = h1(D0,k), k = 2, · · · , n.

Repeat this procedure, at k ≤ n step, construct a Riemann mapping,

hk : Ĉ \ Dk−1,k → Ĉ \ D,

which maps Γk−1,k to the unit circle, Ck−1 to Ck , hk(∞) =∞ and
h′(∞) = 1.
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Koebe’s Iteration

continued.

We recursively define the symbols as follows:

Ck = hk(Ck−1)

Γk,i = hk(Γk−1,i ), i 6= k

Dk,i = hk(Dk−1, i), i 6= k

Dk,k is the unit disk D, Γk,k the unit circle. We construct a biholomorphic
map fk : C0 → Ck :

fk = hk ◦ hk−1 ◦ · · · h1

and the biholomorphic map from the circle domain C to Ck , gk : C → Ck ,

gk := fk ◦ f −1,

gk satisfies normalization condition gk(∞) =∞, g ′k(∞) = 1.
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Koebe’s Iteration

continued.

We generalize the domain of gk to multiple reflected circle domain.
Because Γ1,1 is a canonical circle, C1 can be reflected about Γ1,1 to C 1

1 ,

C1|C 1
1 (Γ1,1)

h2 : Ĉ \ D1,2 → Ĉ \ D, hence h2 is well defined on D1,1. we denote

C 1
2 := h2(C 1

1 ), C 1
2 |C2 (Γ2,1).

when k = 2, 3, · · · , n, the Riemann mapping hk is well defined on
Ck ∪ Dk,1, domain

C 1
k := hk ◦ hk−1 ◦ · · · ◦ h1(C 1

1 ), k = 2, · · · , n,

satisfying
C 1
k |Ck (Γk,1).
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Koebe’s Iteration

h2

C1
1 ⊂ D1,1

D1,2

C1

D2,2

D2,3

C2

D1,3

Γ1,1
Γ1,2

Γ1,3

Γ2,1 Γ2,2

Γ2,3

C1
2 ⊂ D2,1

C1
4 ⊂ D4,1

D4,2

C4 D4,3

Γ4,1
Γ4,2

Γ4,3

D3,2

D3,3
C3

Γ3,1
Γ3,2

Γ3,3

C1
3 ⊂ D3,1h3

h4

β3

H4
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Koebe’s Iteration

continued.

But the map hn+1 on Dn,1 is not defined. We can use Schwartz reflection
to define C 1

n+1. Consider the composition:

βn := hn ◦ hn−1 ◦ · · · ◦ h2 : C1 → Cn,

βn is well defined on D1,1.

hn+1 ◦ βn : C1 → Cn+1,

maps the circle Γ1,1 to the circle Γn+1,1, but is not defined on D1,1. By
Schwartz reflection principle, the map hn+1 ◦ βn can be extended to

Hn+1 : C1 ∪ C 1
1 → Cn+1 ∪ C 1

n+1,

where
C 1
n+1|Cn (Γn+1,1).
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Koebe’s Iteration

Continued.

C1 ∪ C 1
1

βn−−−−→ Cn ∪ C 1
n

Hn+1

y yHn+1◦β−1
n

Cn+1 ∪ C 1
n+1

Id−−−−→ Cn+1 ∪ C 1
n+1

we obtain the composition map

Hn+1 ◦ β−1
n : Cn ∪ C 1

n → Cn+1 ∪ C 1
n+1.

for convenience, we still use hn+1 to represent Hn+1 ◦ β−1
n . Hence, we

extend the domain of hn+1 to C 1
n : hn+1 : Cn ∪ C 1

n → Cn+1 ∪ C 1
n+1. Repeat

this procedure, we conclude: for all k ≥ 1, C 1
k and Ck are symmetric,

C 1
k |Ck (Γk,1).
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Koebe’s Iteration

Continued.

Similarly, when k = 2, Γ2,2 is a circle, C 2
2 and C2 are symmetric about

Γ2,2. When k > 2, we define

C 2
k := hk ◦ hk−1 ◦ · · · h3(C 2

2 ),

similarly, for every hkn+2 map, we use Schwartz reflection principle to
extend analytically. For all k ≥ 2, Ck2 and Ck are symmetric:

C 2
k |Ck (Γk,2).

Similarly, for any i = 3, · · · , n, we use Schwartz reflection principle to
extend the domain and define C i

k symmetric to Ck , for all k ≥ i ,

C i
k |Ck (Γk,i ).
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Koebe’s Iteration

Continued.

After the first round of iterations, all C i
k , i = 1, 2, · · · , n are defined. Since

Γn+1,1 is the unit circle, we define C i1
n+1 to be the mirror image of C i

n+1

with respect to Γn+1,1, C 11
n+1 = Cn+1, but all other C i1

n+1 are newly
generated domains i 6= 1. Apply the extened Riemann mapping, we get a
series of mirror images:

C i1
k |C i

k (Γk,1), ∀k ≥ n + 1, i = 2, 3, · · · , n.

Similarly, we can define mirror image domains:

C ij
k |C i

k (Γk,j), ∀k ≥ n + j .
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Koebe’s Iteration

Continued.

After mn iterations, we obtain m-level mirror images C i1i2···im
k , satisfying

the symmetric relation:

C
i1i2···imim+1

k |C i1i2···im
k (Γk , im+1), k ≥ mn + im+1,

Now the j-th boundary of C
i1i2···imim+1

k is denoted as Γ
i1i2···imim+1

k,j ,

∂C
i1i2···imim+1

k = Γ
i1i2···imim+1

k,i1
−

n⋃
j 6=i1

Γ
i1i2···imim+1

k,j .
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Koebe’s Iteration

Continued.

Consider g−1
k = f ◦ f −1

k , for all k we have

C = g−1
k (Ck)

similarly,
C i1i2···im = g−1

k (C i1i2···im
k )

and its boundaries
Γi1i2···im
j = g−1

k (Γi1i2···im
k,j ).
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Error Estimate

The circle domain C = C 0 is reflected about Γi1 , Γi2 , · · · , Γik sequentially,
to a k-level mirror relfection image C i1i2···ik , its interior boundary is

Γi1i2···ik
j = Γj . . . . . . (i), j 6= i1,

such that il and il+1 are not equal. After analytic extension, gk is defined
on the augmented complex plane with n(n − 1)k−1 disks removed. The
boundaries of these disks are ⋃

i1i2···ik ,il 6=il+1

⋃
j 6=i1

Γi1i2···ik
j
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Error Estimate

We choose a big circle Γρ, enclosing all the initial boundaries Γj . For any
point w ∈ C 0, by Cauchy formula

g(w)− w =
1

2πi

∮
Γρ

gk(s)− w

s − w
ds −

∑
(i),j

1

2πi

∮
Γ

(i)
j

gk(s)− w

s − w
ds

at ∞ neighborhood, gk(w)− w = O(w−1), when ρ→∞

1

2πi

∮
Γρ

gk(s)− w

s − w
ds =

1

2πi

∮
Γρ

gk(s)− s

s − w
+

s − w

s − w
ds → 0.

David Gu (Stony Brook University) Computational Conformal Geometry August 16, 2020 65 / 72



Error Estimate

Since w is outside all Γ
(i)
j , integration

1

2πi

∮
Γ

(i)
j

w

s − w
ds = 0,

for any complex number c
(i)
j , integration

1

2πi

∮
Γ

(i)
j

c
(i)
j

s − w
ds = 0

we obtain

gk(w)− w = −
∑
(i),j

1

2πi

∮
Γ

(i)
j

gk(s)− c
(i)
j

s − w
ds
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Multiple Reflection
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Error Estimate

In the initial circle domain C 0, let distance constant

δ := min
i 6=j

dist(Γi , Γ
i
j),

we have δ > 0. Since Γ
(i)
j ⊂ Γim

im−1
, |s − w | > δ. Define

δ
(i)
k,j := diam(Γ

(i)
k,j ,

the curve Γ
(i)
k,j = gk(Γ

(i)
j ) is enclosed by the circle centered as c

(i)
j and

diameter δ
(i)
k,j , then for all s ∈ Γ

(i)
j ,

|gk(s)− c
(i)
j | ≤ δ

(i)
k,j ,

the length of the integration is πδ
(i)
j , where δ

(i)
j = diam(Γ

(i)
j ).
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Error Estimate

|gk(w)− w | ≤ σ(i),j
1

2π

∮
Γ

(i)
j

|gk(s)− c
(i)
j |

|s − w | |ds| ≤
∑
(i),j

1

2π

δ
(i)
k,j

δ
πδ

(i)
j

=
∑
(i),j

1

2δ
δ

(i)
k,jδ

(i)
j ≤

∑
(i),j

1

4δ

(
[δ

(i)
k,j ]

2 + [δ
(i)
j ]2

)
For the first term,∑

(i),j

[δ
(i)
j ]2 =

4

π

∑
(i),j

α(Γ
(i)
j ) ≤ µ4m

∑
j

α(Γj) =
4

π
µ4mγ1,

where
∑

j α(Γj) = γ1.
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Error Estimate

For the second term, consider the topological annlus bounded by Γ̃
(i)
k,j and

Γ
(i)
k,j , by the diameter estimation (4), we obtain

[δ
(i)
j ,k ]2 ≤ π

2 logµ−1
α(Γ̃

(i)
k,j),

By inequality (5), we obtain∑
(i),j

[δ
(i)
j ,k ]2 ≤ π

2 logµ−1

∑
(i),j

α(Γ̃
(i)
k,j) ≤

π

2 logµ−1

∑
j

α(Γ̃k,j) =
π

2 logµ−1
µ4mγ2,

where γ2 =
∑

j α(Γ̃k,j).
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Error Estimate

We estimate γ1 and γ2. The circle Γρ enclose all the circles Γ̃i , then
γ1 < πρ2. Using gk(w), we estimate γ2. gk is univalent on |w | > ρ, in the
neighborhood of ∞, gk(w) = w + O(w−1). Perform coordinate change
ζ = 1/w , η = 1/z , construct univalent holomorphic function ϕ : ζ → η,

ϕ(ζ) =
1

gk(1/ζ)
,

ϕ is defined on the disk |ζ| < ρ−1, ϕ(0) = 0 and ϕ′(0) = 1. By Koebe 1/4
theorem, {

|η| < 1

4ρ

}
⊂ ϕ

({
|ζ| < 1

ρ

})
,

equivalently
{|z | > 4ρ} ⊂ gk({|w | > ρ}),

hence all Γ̃k,j are included in the interior of |z | < 4ρ, hence the total area
of all holes

γ2 =
∑
j

α(Γ̃k,j) < 16πρ2.
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Error Estimate

We proved the convergence rate of Koebe’s iteration.

Theorem (Convergence Rate of Koebe’s Iteration)

In the Koebe’s iteration, when k > mn,

|gk(w)− w | ≤ 1

4δ

(
4

π
πρ2 +

π

2 logµ−1
16πρ2

)
µ4m.

This shows µ controls the convergence rate.
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