Circle Domain Mapping: Koebe's Theorem

David Gu

Yau Mathematics Science Center
Tsinghua University
Computer Science Department
Stony Brook University
gu@cs.stonybrook.edu

August 16, 2020

Motivation

Conformal Module for Poly-annulus

Figure: Conformal mapping from a poly-annulus to a circle domain.

Circle Domain

Definition (Circle Domain)

Suppose $\Omega \subset \hat{\mathbb{C}}$ is a planar domain, if $\partial \Omega$ has finite number of connected components, each of them is either a circle or a point, then Ω is called a circle domain.

Theorem (Koebe)

Suppose S is of genus zero, ∂S has finite number of connected components, then S is conformal equivalent to a circle domain. Furthermore, all such conformal mappings differ by a Möbius transformation.

Schwartz Reflection Principle

Definition (Mirror Reflection)

Given a circle $\Gamma:\left|z-z_{0}\right|=\rho$, the reflection with respect to Γ is defined as:

$$
\begin{equation*}
\varphi_{\Gamma}: r e^{i \theta}+z_{0} \mapsto \frac{\rho^{2}}{r} e^{i \theta}+z_{0} \tag{1}
\end{equation*}
$$

Two planar domains S and S^{\prime} are symmetric about Γ, if $\varphi_{\Gamma}(S)=S^{\prime}$.

Figure: Reflection about a circle.

Schwartz Reflection Principle

Definition (Reflection)

Suppose Γ is an analytic curve, domain S, S^{\prime} and Γ are included in a planar domain Ω. There is a conformal map $f: \Omega \rightarrow \widehat{\mathbb{C}}$, such that $f(\Gamma)$ is a canonical circle, $f(S)$ and $f\left(S^{\prime}\right)$ are symmetric about $f(\Gamma)$, then we say S and S^{\prime} are symmetric about Γ, and denoted as

$$
S \mid S^{\prime} \quad(\Gamma)
$$

Figure: General symmetry.

Schwartz Reflection Principle

Theorem (Schwartz Reflection Principle)

Assume f is an analytic function, defined on the upper half disk $\{|z|<1, \Im(z)>0\}$. If f can be extended to a real continuous function on the real axis, then f can be extended to an analytic function F defined on the whole disk, satisfying

$$
F(z)= \begin{cases}f(z), & \Im(z) \geq 0 \\ \overline{f(\bar{z}),} & \Im(z)<0\end{cases}
$$

Figure: Schwartz reflection principle.

Multiple Reflection

Multiple Reflection

Multiple Reflection

Multiple Reflection

(1) Initial circle domain C^{0} : complex plane remove three disks, its boundary is $\left\{\Gamma_{1}, \Gamma_{2}, \Gamma_{3}\right\}$;
(2) First level reflection: C^{0} is reflected about $\Gamma_{i_{1}}$ to $C^{i_{1}}, i_{1}=1,2,3$;

$$
\partial C^{i_{1}}=\Gamma_{i_{1}}^{i_{1}}-\sum_{j \neq i_{1}} \Gamma_{j}^{i_{1}}
$$

where $\Gamma_{i_{1}}^{i_{1}}=\Gamma_{i_{1}}$.
(3) Second level reflection: $C^{i_{1}}$ is reflected about $\Gamma_{i_{2}}$ to $C^{i_{1} i_{2}}, i_{1} \neq i_{2}$; the boundary of $C^{i_{1} i_{2}}$ are $\Gamma_{j}^{i_{1} i_{2}}$, when $j \neq i_{1}, \Gamma_{j}^{i_{1} i_{2}}$ is an interior boundary; when $j=i_{1}, \Gamma_{j}^{i_{1} i_{2}}$ is the exterior boundary, $\Gamma_{i_{1}}^{i_{1} i_{2}}=\Gamma_{i_{1}}^{i_{2}}$.

$$
\partial C^{i_{1} i_{2}}=\Gamma_{i_{1}}^{i_{2}}-\sum_{j \neq i_{1}} \Gamma_{j}^{i_{1} i_{2}}
$$

when $j=i_{1}, \Gamma_{i_{1}}^{i_{1} i_{2}}=\Gamma_{i_{1}}^{i_{2}} ;$

Multiple Reflection

(9) Third level reflection: $C^{i_{1} i_{2}}$ is reflected about $\Gamma_{i_{3}}$ to $C^{i_{1} i_{2} i_{3}}, i_{1} \neq i_{2}$, $i_{2} \neq i_{3}$; the boundary of $C^{i_{1} i_{2} i_{3}}$ are $\Gamma_{j}^{i_{1} i_{2} i_{3}}$, when $j \neq i_{1}$, $\Gamma_{j}^{i_{1} i_{2} i_{3}}$ is an interior boundary; when $j=i_{1}, \Gamma_{j}^{i_{1} i_{2} i_{3}}$ is the exterior boundary, $\Gamma_{i_{1}}^{i_{1} i_{2} i_{3}}=\Gamma_{i_{1}}^{i_{2} i_{3}}$.

$$
\partial C^{i_{1} i_{2} i_{3}}=\Gamma_{i_{1}}^{i_{2} i_{3}}-\sum_{j \neq i_{1}} \Gamma_{j}^{i_{1} i_{2} i_{3}} .
$$

(5) The m-level reflection: $C^{i_{1} i_{2} \ldots i_{m-1}}$ is reflected about $\Gamma_{i_{m}}$ to $C^{i_{1} i_{2} \ldots i_{m-1} i_{m}}, i_{k} \neq i_{k+1}$; the boundary of $C^{i_{1} i_{2} \ldots i_{m-1} i_{m}}, i_{k} \neq i_{k+1}$ are $\Gamma_{j}^{i_{1} i_{2} \ldots i_{m-1} i_{m}}$, when $j \neq i_{1}, \Gamma_{j}^{i_{1} i_{2} \ldots i_{m-1} i_{m}}$ is an interior boundary; when $j=i_{1}, \Gamma_{j}^{i_{1} i_{2} \ldots i_{m-1} i_{m}}$ is the exterior boundary, $\Gamma_{i_{1}}^{i_{1} i_{2} \ldots i_{m-1} i_{m}}=\Gamma_{i_{1}}^{i_{2} \ldots i_{m-1} i_{m}}$ is an interior boundary,

$$
\partial C^{i_{1} i_{2} \ldots i_{m}}=\Gamma_{i_{1}}^{i_{1} i_{3} \ldots i_{m}}-\sum_{j \neq i_{1}} \Gamma_{j}^{i_{1} i_{2} \ldots i_{m}} .
$$

Multiple Reflection

Multiple Reflection

- Each node represents a domain $C^{i_{1} i_{2} \ldots i_{m}}$;

Figure: Reflection tree.

- Each edge represents a circle Γ_{k}, $k=1, \ldots, n$;
- Father and Son share an edge i_{1}

$$
\Gamma_{i_{1}}^{i_{1} i_{2} \cdots i_{m}}=\Gamma_{i_{1}}^{i_{2} \cdots i_{m}} .
$$

- Each node $C^{(i)},(i)=i_{1} i_{2} \ldots i_{m}$ is the path from the root to $C^{(i)}$,

$$
C^{(i)}=\varphi_{\Gamma_{i_{m}}} \circ \varphi_{\Gamma_{i_{m-1}}} \cdots \varphi_{\Gamma_{i_{1}}}\left(C^{0}\right)
$$

Multiple Reflection

- Father node $C^{i_{2} \cdots i_{m}}$ and child node $C^{i_{1} i_{2} \cdots i_{m}}$ is connected by edge i_{1}, the exterior boundary of child equals to an interior boundary of the father

$$
\Gamma_{i_{1}}^{i_{1} i_{2} \cdots i_{m}}=\Gamma_{i_{1}}^{i_{2} \cdots i_{m}} .
$$

- From the root C^{0} to $C^{i_{1} \cdots i_{m}}$, the path is inverse to the index

$$
(i)^{-1}=i_{m} i_{m-1} \cdots i_{2} i_{1}
$$

starting from C^{0} crosses $\Gamma^{i_{m}}$ to $C^{i_{m}}$, crosses $\Gamma_{i_{m-1}}^{i_{m}}$ to $C^{i_{m-1} i_{m}}$; when arrives at $C^{i_{k+1} \cdots i_{1}}$, crosses $\Gamma_{i_{k}}^{i_{k+1} \cdots i_{1}}$ to $C^{i_{k} i_{k+1} \cdots i_{1}}$; and eventually reach $C^{(i)}$.

Hole Area Estimation

Lemma

Suppose $C^{(i)}$ is an interior node in the reflection tree,

$$
(i)=i_{1} i_{2} \cdots i_{m},
$$

its exterior boundary is $\Gamma_{i_{1}}^{(i)}$, interior boundaries are $\Gamma_{j}^{(i)}, j \neq i_{1}$, we have the estimate:

$$
\sum_{j \neq i_{1}} \alpha\left(\Gamma_{j}^{(i)}\right) \leq \mu^{4} \alpha\left(\Gamma_{i_{1}}^{(i)}\right)
$$

Hole Area Estimation

Enlarge all Γ_{k} 's by factor μ^{-1} to $\tilde{\Gamma}_{k}, \tilde{\Gamma}_{1}$ and $\tilde{\Gamma}_{3}$ touch each other; reflect C^{0} about Γ_{2}

- $\Gamma_{k} \mid \Gamma_{k}^{2}\left(\Gamma_{2}\right)$.
- $\tilde{\Gamma}_{k} \mid \Gamma_{k}^{2} \quad\left(\Gamma_{2}\right)$.
$\alpha\left(\tilde{\Gamma}_{1}^{2}\right)=\mu^{-2} \alpha\left(\Gamma_{1}^{2}\right)$
$\alpha\left(\tilde{\Gamma}_{3}^{2}\right)=\mu^{-2} \alpha\left(\Gamma_{3}^{2}\right)$
$\alpha\left(\tilde{\Gamma}_{2}^{2}\right)=\mu^{2} \alpha\left(\Gamma_{2}\right)$
Figure: Hole area estimation.

$$
\alpha\left(\Gamma_{1}^{2}\right)+\alpha\left(\Gamma_{3}^{2}\right)=\mu^{2}\left(\alpha\left(\tilde{\Gamma}_{1}^{2}\right)+\alpha\left(\tilde{\Gamma}_{3}^{2}\right)\right) \leq \mu^{2} \alpha\left(\tilde{\Gamma}_{2}^{2}\right)=\mu^{4} \alpha\left(\Gamma^{2}\right) .
$$

Hole Area Estimation

Lemma

Suppose the boundaries of the initial circle domain C^{0} are $\Gamma_{1}, \Gamma_{2}, \cdots, \Gamma_{n}$, consider the reflection tree with m layers, then the total area of the holes bounded by the interior boundaries of leaf nodes is no greater than $\mu^{4 m}$ times the area bounded by Γ_{k} 's,

$$
\sum_{(i)=i_{1} i_{2} \ldots i_{m}} \sum_{k \neq i_{1}} \alpha\left(\Gamma_{k}^{(i)}\right) \leq \mu^{4 m} \sum_{i=1}^{n} \alpha\left(\Gamma_{i}\right)
$$

Proof.

By induction on m. The area bounded by the exterior boundaries of the nodes in the $k+1$-layer is no greater than μ^{4} times that of the k-layer. The total area of the interior boundaries of leaf nodes is no greater than the area bounded by the exterior boundaries of leaf nodes.

Uniqueness

Theorem (Uniqueness)

Given two circle domains $C_{1}, C_{2} \subset \widehat{\mathbb{C}}, f: C_{1} \rightarrow C_{2}$ is a univalent holomorphic function, then f is a linear rational, namely a Möbus transformation.

Proof.

Assume both C_{1} and C_{2} include ∞, and $f(\infty)=\infty$. Since f is holomorhic, it maps the boundary circles of C_{1} to those of C_{2}. By Schwartz reflection principle, f can be extended to the multiple reflected domains. By the area estimation of the holes Eqn. 2, the multiple reflected domains cover the whole $\hat{\mathbb{C}}$, hence f can be extended to the whole $\widehat{\mathbb{C}}$, since $f(\infty)=\infty, f$ is a linear function. If $f(\infty) \neq \infty$, we can use a Möbius map to transform $f(\infty)$ to ∞.

Existence

Definition (Kernel)

Suppose $\left\{B_{n}\right\}$ is a family of domains on the complex plane, $\infty \in B_{k}$ for all k. Suppose B is the maximal set: $\infty \in B$, and for any closed set $K \subset B$, there is an N, such that for any $n>N, K \subset B_{n}$. Then B is called the kernel of $\left\{B_{n}\right\}$.

Definition (Domain Convergence)

We say a sequence $\left\{B_{n}\right\}$ converges to its kernel B, if any sub-sequence $\left\{B_{n_{k}}\right\}$ of $\left\{B_{n}\right\}$ has the same kernel B. We denote $B_{n} \rightarrow B$.

Goluzin Theorem

Theorem (Goluzin)

Let $\left\{A_{n}\right\}$ be a sequence of domains on the complex domain. Any domain A_{n} includes $\infty, n=1,2, \cdots$, . Assume $\left\{A_{n}\right\}$ converges to its kernel A. Let $\left\{f_{n}(z)\right\}$ be a family of analytic function, for all $n, f_{n}(z)$ maps A_{n} to B_{n} surjectively, such that $f_{n}(\infty)=\infty, f_{n}^{\prime}(\infty)=1$. Then $\left\{f_{n}(z)\right\}$ uniformly converges to a univalent analytic function $f(z)$ in the interior of A, if and only if $\left\{B_{n}\right\}$ converges to its kernel B, then the univalent analytic function $f(z)$ maps A to B surjectively.

Existence

Theorem (Existence)

On the z-plane, every n-connected domain Ω can be mapped to a circle domain on the ζ-plane by a univalent holomorphic function. Choose a point $a \in \Omega$, there is a unique map which maps a to $\zeta=\infty$, and in a neighborhood of $z=a$, the map has the power series

$$
\begin{array}{r}
\frac{1}{z-a}+a_{1}(z-a)+\cdots \text { if } a \neq \infty \\
z+\frac{a_{1}}{z}+\cdots \text { if } a=\infty
\end{array}
$$

Existence

Proof.

According to Hilbert theorem, all n-connected domains are conformally equivalent to slit domains. We can assume Ω is a slit domain. We use \mathcal{S} represent all the n-connected slit domains with horizontal slits, and \mathcal{C} the n-connected circle domains. We label all the boundaries of the domains, $\partial \Omega=\bigcup_{k=1}^{n} \gamma_{k}$. For each slit γ_{k}, we represent it by the starting point p_{k} and the length I_{k}, then we get the coordinates of the slit domain Ω

$$
\left(p_{1}, l_{1}, p_{2}, l_{2}, \cdots, p_{n}, I_{n}\right)
$$

Hence \mathcal{S} is a connected open set in $\mathbb{R}^{3 n}$. Similarly, consider a circle domain $\mathcal{D} \in \mathcal{C}$, we use the center and the radius to represent each circle $\left(q_{k}, r_{k}\right)$, and the coordinates of \mathcal{D} are given by,

$$
\left(q_{1}, r_{1}, q_{2}, r_{2}, \cdots, q_{n}, r_{n}\right)
$$

\mathcal{C} is also a connected open set in $\mathbb{R}^{3 n}$.

Existence

continued

Consider a normalized univalent holomorphic function $f: \Omega \rightarrow \mathcal{D}, \Omega \in \mathcal{S}$ and $\mathcal{D} \in \mathcal{C}, f$ maps the k-th boundary curve γ_{k} to the k-th circular boundary of \mathcal{D}. By the existence of slit mapping and the uniqueness of circle domain mapping, we have
(1) Every circle domain $\mathcal{D} \in \mathcal{C}$ corresponds to a unique slit domain $\Omega \in \mathcal{S}$;
(2) Every slit domain $\Omega \in \mathcal{S}$ corresponds to at most one circle domain $\mathcal{D} \in \mathcal{C}$.
Then we establish a mapping from circle domains to slit domains $\varphi: \mathcal{C} \rightarrow \mathcal{S}$.

Existence

continued

Assume $\left\{\mathcal{D}_{n}\right\}$ is a family of circle domains, converge to the kernel \mathcal{D}^{*}. The domain convergence definition is consistent with the convergence of coordinates, namely, the boundary circles of \mathcal{D}_{n} converge to the corresponding boundary circles of \mathcal{D}^{*}, denoted as $\lim _{n \rightarrow \infty} \mathcal{D}_{n}=\mathcal{D}^{*}$. The convergence of slit domains can be similarly defined. By Goluzin's theorem, we obtain the mapping $\varphi: \mathcal{C} \rightarrow \mathcal{S}$ is continuous:

$$
\varphi\left(\lim _{n \rightarrow \infty} \mathcal{D}_{n}\right)=\lim _{n \rightarrow \infty} \varphi\left(\mathcal{D}_{n}\right)
$$

By the uniqueness of circle domain mapping, we obtain φ is injective. We will prove the mapping φ is surjective.

Existence

continued

\mathcal{C} is an open set in Euclidean space $\varphi: \mathcal{C} \rightarrow \mathcal{S}$ is injective continuous map. According to invariance of domain theorem, $\varphi(\mathcal{C})$ is an open set, $\varphi: \mathcal{C} \rightarrow \varphi(\mathcal{C})$ is a homeomorphism.
Choose a circle domain $\mathcal{D}_{0} \in \mathcal{C}$, its corresponding slit domain is $\varphi\left(\mathcal{D}_{0}\right)=\Omega_{0} \in \mathcal{S}$, then $\Omega_{0} \in \varphi(\mathcal{C})$. Choose another slit map $\Omega_{1} \in \mathcal{S}$, we don't know if Ω_{1} is in $\varphi(\mathcal{C})$ or not. We draw a path $\Gamma:[0,1] \rightarrow \mathcal{S}$, $\Gamma(0)=\Omega_{0}$ and $\Gamma(1)=\Omega_{1}$. Let

$$
t^{*}=\sup \{t \in[0,1] \mid \forall 0 \leq \tau \leq t, \Gamma(\tau) \in \varphi(\mathcal{C})\}
$$

namely Γ from starting point to t^{*} belongs to $\varphi(\mathcal{C})$.

Existence

continued

By the definition of domain convergence,

$$
\lim _{n \rightarrow \infty} \Gamma\left(t_{n}\right) \rightarrow \Gamma\left(t^{*}\right)
$$

By $\left\{\Gamma\left(t_{n}\right)\right\} \subset \varphi(\mathcal{C})$, there is a family of circle domains $\left\{\mathcal{D}_{n}\right\} \subset \mathcal{C}$, $\varphi\left(\mathcal{D}_{n}\right)=\Gamma\left(t_{n}\right)$. Let $\lim _{n \rightarrow \infty} \mathcal{D}_{n}=\mathcal{D}^{*}$, by domain limit theorem, we have

$$
\varphi\left(\mathcal{D}^{*}\right)=\varphi\left(\lim _{n \rightarrow \infty} \mathcal{D}_{n}\right)=\lim _{n \rightarrow \infty} \varphi\left(\mathcal{D}_{n}\right)=\lim _{n \rightarrow \infty} \Gamma\left(t_{n}\right)=\Gamma\left(t^{*}\right)
$$

namely $\varphi\left(\mathcal{D}^{*}\right)=\Gamma\left(t^{*}\right)$, hence $\Gamma\left(t^{*}\right) \in \varphi(\mathcal{C})$. But $\varphi(\mathcal{C})$ is an open set, hence if $t^{*}<1, t^{*}$ can be further extended. This contradict to the choice of t^{*}, hence $t^{*}=1$. Therefore $\Omega_{1} \in \varphi(\mathcal{C})$. Since Ω_{1} is arbitrarily chosen, hence $\varphi: \mathcal{C} \rightarrow \mathcal{S}$ is surjective. This proves the existence of the circle domain mapping.

Convergence of Koebe Iteration Method

Koebe Iteration Algorithm

Input: Poly annulus $M, \partial M=\gamma_{0}-\gamma_{1}-\cdots-\gamma_{n}$;
Output:Conformal map $\varphi: M \rightarrow \mathbb{D}$, where \mathbb{D} is a circle domain.
(1) Compute a slit map, map the surface to the circular slit domain $f: M \rightarrow \mathbb{C}, \gamma_{0}$ and γ_{k} are mapped to the exetior and interior circular boundary of \mathbb{C};
(2) Fill the inner circle using Delaunay refinement mesh generation;
(3) Repeat step 1 and 2, fill all the holes step by step;

Koebe Iteration Method

Figure: Slit map.

Koebe Iteration Method

Figure: Hole filling and slit map.

Koebe Iteration Method

Figure: Hole filling and slit map.

Koebe Iteration Method

Figure: All holes are filled.

Koebe Iteration Algorithm

(9) Puch a hole at the k-th inner boundary;
(3) Compute a conformal map, to map the surface onto a canonical planar annulus;
(6) Fill the inner circular hole;
(3) Repeat step 4 through 6 , each time punch a different hole, until the process convergences.

Koebe Iteration Method

Figure: Final result.

Area, Diameter Estimate

Lemma

Suppose A is a topological annulus on \mathbb{C}, the conformal module of A is $\mu^{-1}>1$, the exterior and interior boundaries of A are Jorgan curves Γ_{0} and $\Gamma_{1}, \partial A=\Gamma_{0}-\Gamma_{1}$, then we have the area and diameter estimates:

$$
\begin{equation*}
\alpha\left(\Gamma_{1}\right) \leq \mu^{2} \alpha\left(\Gamma_{0}\right) \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
\left[\operatorname{diam} \Gamma_{1}\right]^{2} \leq \frac{\pi}{2 \log \mu^{-1}} \alpha\left(\Gamma_{0}\right) \tag{4}
\end{equation*}
$$

where $\alpha\left(\Gamma_{k}\right)$ is the area bounded by $\Gamma_{k}, k=0,1$.

Area, Diameter Estimate

Figure: Topological annulus with conformal module μ^{-1}.

Area, Diameter Estimate

Proof.

Let holomorphic function g maps $\left\{1 \leq|w| \leq \mu^{-1}\right\}$ to A,

$$
g(w)=w+a_{0}+\frac{a_{1}}{w}+\frac{a_{2}}{w^{2}}+\cdots
$$

By Gnowell area estimate, we have

$$
\begin{aligned}
& \alpha\left(\Gamma_{1}\right)=\pi\left(1-\sum_{n=1}^{\infty} n\left|a_{n}\right|^{2}\right) \\
& \alpha\left(\Gamma_{0}\right)=\pi\left(\mu^{-2}-\sum_{n=1}^{\infty} n\left|a_{n}\right|^{2} \mu^{2 n}\right)
\end{aligned}
$$

hence, this proves the area inequality (3)

$$
\alpha\left(\Gamma_{0}\right)-\mu^{-2} \alpha\left(\Gamma_{1}\right)=\pi \sum^{\infty} n\left|a_{n}\right|^{2}\left(\mu^{-2}-\mu^{2 n}\right) \geq 0
$$

Area, Diameter Estimate

Continued

The diameter $\operatorname{diam} \Gamma_{1}$ is determined by $g(\{1<|w|<\rho\})$, where $\rho \in\left(1, \mu^{-1}\right)$. The diameter is bounded by half of the boundary length $g(|w|=\rho)$, we have
$2 \operatorname{diam} \Gamma_{1} \leq \int_{|w|=\rho}\left|g^{\prime}(w)\right| d w=\int_{0}^{2 \pi}\left|g^{\prime}\left(\rho e^{i \theta}\right)\right| \rho \theta=\int_{0}^{2} \pi\left|g^{\prime}\left(\rho e^{i \theta}\right)\right| \sqrt{\rho} \sqrt{\rho} d \theta$
By Schwartz inequality, we have

$$
\left[2 \operatorname{diam} \Gamma_{1}\right]^{2} \leq \int_{0}^{2 \pi}\left|g^{\prime}\left(\rho e^{i \theta}\right)\right|^{2} \rho d \theta \int_{0}^{2 \pi} \rho d \theta=2 \pi \rho \int_{0}^{2 \pi}\left|g^{\prime}\left(\rho e^{i \theta}\right)\right|^{2} \rho d \theta
$$

Area, Diameter Estimate

Continued

Equivalent

$$
\frac{2}{\pi \rho}\left[\operatorname{diam} \Gamma_{1}\right]^{2} \leq \int_{0}^{2 \pi}\left|g^{\prime}\left(\rho e^{i \theta}\right)\right|^{2} \rho d \theta
$$

Integrate with respect to ρ,

$$
\int_{1}^{\mu^{-1}} \frac{2}{\pi \rho}\left[\operatorname{diam} \Gamma_{1}\right]^{2} d \rho \leq \int_{1}^{\mu^{-1}} \int_{0}^{2 \pi}\left|g^{\prime}\left(\rho e^{i \theta}\right)\right|^{2} \rho d \theta d \rho=\alpha\left(\Gamma_{0}\right)-\alpha\left(\Gamma_{1}\right)
$$

Calculate left

$$
\frac{2 \log \mu^{-1}}{\pi}\left[\operatorname{diam} \Gamma_{1}\right]^{2} \leq \alpha\left(\Gamma_{0}\right)-\alpha\left(\Gamma_{1}\right) \leq \alpha\left(\Gamma_{0}\right)
$$

This proves inequality (4).

Multiple Reflected Domain

Definition (Multi-reflected circle domain)

Given an m-level embedding relation tree of a circle domain C, the union of all nodes in the tree is called a multiple-reflected circle domain,

$$
\Omega_{m}=\bigcup_{k \leq m} \bigcup_{(i)=i_{1} i_{2} \cdots i_{k}} C^{(i)}=\hat{\mathbb{C}} \backslash \bigcup_{(i)=i_{1} i_{2} \cdots i_{m}} \bigcup_{k \neq i_{1}} \alpha\left(\Gamma_{k}^{(i)}\right)
$$

where $\alpha(\Gamma)$ is the area bounded by Γ.
Suppose we have a holomorphic univalent map $g_{m}: \Omega_{m} \rightarrow \hat{\mathbb{C}}$, define

$$
\begin{aligned}
C_{m} & =g_{m}\left(C^{0}\right) \\
C_{m}^{(i)} & =g_{m}\left(C^{(i)}\right) \\
\Gamma_{m, k} & =g_{m}\left(\Gamma_{k}\right) \\
\Gamma_{m, k}^{(i)} & =g_{m}\left(\Gamma_{k}^{(i)}\right)
\end{aligned}
$$

Symmetric Relation

According to the reflection generation tree, we have the symmetry

$$
C^{i_{1} i_{2} \cdots i_{m-1} i_{m}} \mid C^{i_{1} i_{2} \cdots i_{m-1} i_{m}} \quad\left(\Gamma_{i_{m}}\right)
$$

this symmetric relation is preserved by the holomorphic map g_{m} :

$$
C_{m}^{i_{1} i_{2} \cdots i_{m-1} i_{m}} \mid C_{m}^{i_{1} i_{2} \cdots i_{m-1} i_{m}} \quad\left(\Gamma_{m, i_{m}}\right)
$$

therefore g_{m} maps the embedding relation tree of $\left\{C^{(i)}\right\}$ to the embedding relation tree of $\left\{C_{m}^{(i)}\right\}$.

Hole Area Estimation

Lemma

Suppose the boundaries of C_{m} are $\Gamma_{m, 1}, \Gamma_{m, 2}, \ldots, \Gamma_{m, n}$. In the m-level embedding relation tree of C_{m}, the total area of the holes bounded by the interior boundaries of leaf nodes is less than $\mu^{4 m}$ times the total area of holes bounded by $\Gamma_{m, k}$'s,

$$
\begin{equation*}
\sum_{(i)=i_{1} i_{2} \ldots i_{m}} \sum_{k \neq i_{1}} \alpha\left(\Gamma_{m, k^{(i)}}\right) \leq \mu^{4 m} \sum_{i=1}^{n} \alpha\left(\Gamma_{m, i}\right) \tag{5}
\end{equation*}
$$

Proof.

Using area estimate (3) and induction on m.

Koebe's Iteration

Koebe's Iteration

Key Observation

Given a multi-annulus \mathcal{R}, there is a bioholomorphic map $g: \mathcal{C} \rightarrow \mathcal{R}$ maps a circle domain \mathcal{C} to \mathcal{R}. During the process of Koebe's iteration, the domain of the mapping \mathcal{C} can be extended to the image of the multiple reflection, (multiple reflected circle domain), which eventually covers the whole augmented complex plane $\widehat{\mathbb{C}}$.

Koebe's Iteration

Lemma

During Koebe's iteration, at the mn-th step, the algorithm generates a univalent holomorphic function $g_{m n}$, its domain is extended to the m-level reflected circle domain,

$$
g_{m n}: \Omega_{m} \rightarrow \hat{\mathbb{C}}
$$

Proof.

Initial domain is $C_{0}, \infty \in C_{0}$, the complementary sets are $D_{0,1}, D_{0,2}, \cdots, D_{0, n}, \partial D_{0, i}=\Gamma_{0, i}, i=1,2, \cdots, n$. There is a biholomorphic function, $f: C_{0} \rightarrow \mathcal{C}$, the complementary of \mathcal{C} is the set $D_{1}, D_{2}, \cdots, D_{n}$, where D_{i} 's are disks, $\partial D_{i}=\Gamma_{i}$ is a canonical circle. In the neighborhood of $\infty, f(z)=z+O\left(z^{-1}\right)$.

Koebe's Iteration

continued.

By Riemann mapping theorem, there is a Riemann mapping

$$
h_{1}: \hat{\mathbb{C}} \backslash D_{0,1} \rightarrow \hat{\mathbb{C}} \backslash \mathbb{D},
$$

maps $\Gamma_{0,1}$ to the unit circle $\Gamma_{1,1}, C_{0}$ to C_{1}, satisfying the normalization condition,

$$
h_{1}(\infty)=\infty, \quad h_{1}^{\prime}(\infty)=1
$$

and

$$
D_{1, k}=h_{1}\left(D_{0, k}\right), k=2, \cdots, n
$$

Repeat this procedure, at $k \leq n$ step, construct a Riemann mapping,

$$
h_{k}: \hat{\mathbb{C}} \backslash D_{k-1, k} \rightarrow \hat{\mathbb{C}} \backslash \mathbb{D}
$$

which maps $\Gamma_{k-1, k}$ to the unit circle, C_{k-1} to $C_{k}, h_{k}(\infty)=\infty$ and $h^{\prime}(\infty)=1$.

Koebe's Iteration

continued.

We recursively define the symbols as follows:

$$
\begin{aligned}
C_{k} & =h_{k}\left(C_{k-1}\right) \\
\Gamma_{k, i} & =h_{k}\left(\Gamma_{k-1, i}\right), i \neq k \\
D_{k, i} & =h_{k}\left(D_{k-1}, i\right), i \neq k
\end{aligned}
$$

$D_{k, k}$ is the unit disk $\mathbb{D}, \Gamma_{k, k}$ the unit circle. We construct a biholomorphic map $f_{k}: C_{0} \rightarrow C_{k}$:

$$
f_{k}=h_{k} \circ h_{k-1} \circ \cdots h_{1}
$$

and the biholomorphic map from the circle domain \mathcal{C} to $C_{k}, g_{k}: \mathcal{C} \rightarrow C_{k}$,

$$
g_{k}:=f_{k} \circ f^{-1}
$$

g_{k} satisfies normalization condition $g_{k}(\infty)=\infty, g_{k}^{\prime}(\infty)=1$.

Koebe's Iteration

continued.

We generalize the domain of g_{k} to multiple reflected circle domain. Because $\Gamma_{1,1}$ is a canonical circle, C_{1} can be reflected about $\Gamma_{1,1}$ to C_{1}^{1},

$$
C_{1} \mid C_{1}^{1} \quad\left(\Gamma_{1,1}\right)
$$

$h_{2}: \hat{\mathbb{C}} \backslash D_{1,2} \rightarrow \hat{\mathbb{C}} \backslash \mathbb{D}$, hence h_{2} is well defined on $D_{1,1}$. we denote

$$
C_{2}^{1}:=h_{2}\left(C_{1}^{1}\right), \quad C_{2}^{1} \mid C_{2} \quad\left(\Gamma_{2,1}\right)
$$

when $k=2,3, \cdots, n$, the Riemann mapping h_{k} is well defined on $C_{k} \cup D_{k, 1}$, domain

$$
C_{k}^{1}:=h_{k} \circ h_{k-1} \circ \cdots \circ h_{1}\left(C_{1}^{1}\right), k=2, \cdots, n,
$$

satisfying

$$
C_{k}^{1} \mid C_{k} \quad\left(\Gamma_{k, 1}\right)
$$

Koebe's Iteration

Koebe's Iteration

continued.

But the map h_{n+1} on $D_{n, 1}$ is not defined. We can use Schwartz reflection to define C_{n+1}^{1}. Consider the composition:

$$
\beta_{n}:=h_{n} \circ h_{n-1} \circ \cdots \circ h_{2}: C_{1} \rightarrow C_{n},
$$

β_{n} is well defined on $D_{1,1}$.

$$
h_{n+1} \circ \beta_{n}: C_{1} \rightarrow C_{n+1}
$$

maps the circle $\Gamma_{1,1}$ to the circle $\Gamma_{n+1,1}$, but is not defined on $D_{1,1}$. By Schwartz reflection principle, the map $h_{n+1} \circ \beta_{n}$ can be extended to

$$
H_{n+1}: C_{1} \cup C_{1}^{1} \rightarrow C_{n+1} \cup C_{n+1}^{1}
$$

where

$$
C_{n+1}^{1} \mid C_{n} \quad\left(\Gamma_{n+1,1}\right)
$$

Koebe's Iteration

Continued.

$$
\left.\begin{array}{ccc}
C_{1} \cup C_{1}^{1} & \xrightarrow{\beta_{n}} & C_{n} \cup C_{n}^{1} \\
H_{n+1} & & \\
& & \\
C_{n+1} \cup H_{n+1} \circ \beta_{n}^{-1}
\end{array}\right) \xrightarrow{l d} C_{n+1}^{1} \cup C_{n+1}^{1}
$$

we obtain the composition map

$$
H_{n+1} \circ \beta_{n}^{-1}: C_{n} \cup C_{n}^{1} \rightarrow C_{n+1} \cup C_{n+1}^{1}
$$

for convenience, we still use h_{n+1} to represent $H_{n+1} \circ \beta_{n}^{-1}$. Hence, we extend the domain of h_{n+1} to $C_{n}^{1}: h_{n+1}: C_{n} \cup C_{n}^{1} \rightarrow C_{n+1} \cup C_{n+1}^{1}$. Repeat this procedure, we conclude: for all $k \geq 1, C_{k}^{1}$ and C_{k} are symmetric,

$$
C_{k}^{1} \mid C_{k}\left(\Gamma_{k, 1}\right)
$$

Koebe's Iteration

Continued.

Similarly, when $k=2, \Gamma_{2,2}$ is a circle, C_{2}^{2} and C_{2} are symmetric about $\Gamma_{2,2}$. When $k>2$, we define

$$
C_{k}^{2}:=h_{k} \circ h_{k-1} \circ \cdots h_{3}\left(C_{2}^{2}\right)
$$

similarly, for every $h_{k n+2}$ map, we use Schwartz reflection principle to extend analytically. For all $k \geq 2, C_{k} 2$ and C_{k} are symmetric:

$$
C_{k}^{2} \mid C_{k} \quad\left(\Gamma_{k, 2}\right)
$$

Similarly, for any $i=3, \cdots, n$, we use Schwartz reflection principle to extend the domain and define C_{k}^{i} symmetric to C_{k}, for all $k \geq i$,

$$
C_{k}^{i} \mid C_{k} \quad\left(\Gamma_{k, i}\right) .
$$

Koebe's Iteration

Continued.

After the first round of iterations, all $C_{k}^{i}, i=1,2, \cdots, n$ are defined. Since $\Gamma_{n+1,1}$ is the unit circle, we define $C_{n+1}^{i 1}$ to be the mirror image of C_{n+1}^{i} with respect to $\Gamma_{n+1,1}, C_{n+1}^{11}=C_{n+1}$, but all other $C_{n+1}^{i 1}$ are newly generated domains $i \neq 1$. Apply the extened Riemann mapping, we get a series of mirror images:

$$
C_{k}^{i 1} \mid C_{k}^{i} \quad\left(\Gamma_{k, 1}\right), \forall k \geq n+1, i=2,3, \cdots, n
$$

Similarly, we can define mirror image domains:

$$
C_{k}^{i j} \mid C_{k}^{i} \quad\left(\Gamma_{k, j}\right), \quad \forall k \geq n+j
$$

Koebe's Iteration

Continued.

After $m n$ iterations, we obtain m-level mirror images $C_{k}^{i_{1} i_{2} \cdots i_{m}}$, satisfying the symmetric relation:

$$
C_{k}^{i_{1} i_{2} \cdots i_{m} i_{m+1}} \mid C_{k}^{i_{1} i_{2} \cdots i_{m}} \quad\left(\Gamma_{k}, i_{m+1}\right), \quad k \geq m n+i_{m+1}
$$

Now the j-th boundary of $C_{k}^{i_{1} i_{2} \cdots i_{m} i_{m+1}}$ is denoted as $\Gamma_{k, j}^{i_{1} i_{2} \cdots i_{m} i_{m+1}}$,

$$
\partial C_{k}^{i_{1} i_{2} \cdots i_{m} i_{m+1}}=\Gamma_{k, i_{1}}^{i_{1} i_{2} \cdots i_{m} i_{m+1}}-\bigcup_{j \neq i_{1}}^{n} \Gamma_{k, j}^{i_{1} i_{2} \cdots i_{m} i_{m+1}}
$$

Koebe's Iteration

Continued.

Consider $g_{k}^{-1}=f \circ f_{k}^{-1}$, for all k we have

$$
C=g_{k}^{-1}\left(C_{k}\right)
$$

similarly,

$$
C^{i_{1} i_{2} \cdots i_{m}}=g_{k}^{-1}\left(C_{k}^{i_{1} i_{2} \cdots i_{m}}\right)
$$

and its boundaries

$$
\Gamma_{j}^{i_{1} i_{2} \cdots i_{m}}=g_{k}^{-1}\left(\Gamma_{k, j}^{i_{1} i_{2} \cdots i_{m}}\right) .
$$

Error Estimate

The circle domain $C=C^{0}$ is reflected about $\Gamma_{i_{1}}, \Gamma_{i_{2}}, \cdots, \Gamma_{i_{k}}$ sequentially, to a k-level mirror relfection image $C^{i_{1} i_{2} \cdots i_{k}}$, its interior boundary is

$$
\Gamma_{j}^{i_{1} i_{2} \cdots i_{k}}=\Gamma_{j \ldots \ldots(i), \quad j \neq i_{1}, ~}^{\ldots}
$$

such that i_{l} and i_{l+1} are not equal. After analytic extension, g_{k} is defined on the augmented complex plane with $n(n-1)^{k-1}$ disks removed. The boundaries of these disks are

$$
\bigcup_{i_{1} i_{2} \cdots i_{k}, i_{l} \neq i_{l+1}} \bigcup_{j \neq i_{1}} \Gamma_{j}^{i_{1} i_{2} \cdots i_{k}}
$$

Error Estimate

We choose a big circle Γ_{ρ}, enclosing all the initial boundaries Γ_{j}. For any point $w \in C^{0}$, by Cauchy formula

$$
g(w)-w=\frac{1}{2 \pi i} \oint_{\Gamma_{\rho}} \frac{g_{k}(s)-w}{s-w} d s-\sum_{(i), j} \frac{1}{2 \pi i} \oint_{\Gamma_{j}^{(i)}} \frac{g_{k}(s)-w}{s-w} d s
$$

at ∞ neighborhood, $g_{k}(w)-w=O\left(w^{-1}\right)$, when $\rho \rightarrow \infty$

$$
\frac{1}{2 \pi i} \oint_{\Gamma_{\rho}} \frac{g_{k}(s)-w}{s-w} d s=\frac{1}{2 \pi i} \oint_{\Gamma_{\rho}} \frac{g_{k}(s)-s}{s-w}+\frac{s-w}{s-w} d s \rightarrow 0
$$

Error Estimate

Since w is outside all $\Gamma_{j}^{(i)}$, integration

$$
\frac{1}{2 \pi i} \oint_{\Gamma_{j}^{(i)}} \frac{w}{s-w} d s=0
$$

for any complex number $c_{j}^{(i)}$, integration

$$
\frac{1}{2 \pi i} \oint_{\Gamma_{j}^{(i)}} \frac{c_{j}^{(i)}}{s-w} d s=0
$$

we obtain

$$
g_{k}(w)-w=-\sum_{(i), j} \frac{1}{2 \pi i} \oint_{\Gamma_{j}^{(i)}} \frac{g_{k}(s)-c_{j}^{(i)}}{s-w} d s
$$

Multiple Reflection

Error Estimate

In the initial circle domain C^{0}, let distance constant

$$
\delta:=\min _{i \neq j} \operatorname{dist}\left(\Gamma_{i}, \Gamma_{j}^{i}\right),
$$

we have $\delta>0$. Since $\Gamma_{j}^{(i)} \subset \Gamma_{i_{m-1}}^{i_{m}},|s-w|>\delta$. Define

$$
\delta_{k, j}^{(i)}:=\operatorname{diam}\left(\Gamma_{k, j}^{(i)},\right.
$$

the curve $\Gamma_{k, j}^{(i)}=g_{k}\left(\Gamma_{j}^{(i)}\right)$ is enclosed by the circle centered as $c_{j}^{(i)}$ and diameter $\delta_{k, j}^{(i)}$, then for all $s \in \Gamma_{j}^{(i)}$,

$$
\left|g_{k}(s)-c_{j}^{(i)}\right| \leq \delta_{k, j}^{(i)}
$$

the length of the integration is $\pi \delta_{j}^{(i)}$, where $\delta_{j}^{(i)}=\operatorname{diam}\left(\Gamma_{j}^{(i)}\right)$.

Error Estimate

$$
\begin{aligned}
\left|g_{k}(w)-w\right| & \leq \sigma_{(i), j} \frac{1}{2 \pi} \oint_{\Gamma_{j}^{(i)}} \frac{\left|g_{k}(s)-c_{j}^{(i)}\right|}{|s-w|}|d s| \leq \sum_{(i), j} \frac{1}{2 \pi} \frac{\delta_{k, j}^{(i)}}{\delta} \pi \delta_{j}^{(i)} \\
& =\sum_{(i), j} \frac{1}{2 \delta} \delta_{k, j}^{(i)} \delta_{j}^{(i)} \leq \sum_{(i), j} \frac{1}{4 \delta}\left(\left[\delta_{k, j}^{(i)}\right]^{2}+\left[\delta_{j}^{(i)}\right]^{2}\right)
\end{aligned}
$$

For the first term,

$$
\sum_{(i), j}\left[\delta_{j}^{(i)}\right]^{2}=\frac{4}{\pi} \sum_{(i), j} \alpha\left(\Gamma_{j}^{(i)}\right) \leq \mu^{4 m} \sum_{j} \alpha\left(\Gamma_{j}\right)=\frac{4}{\pi} \mu^{4 m} \gamma_{1}
$$

where $\sum_{j} \alpha\left(\Gamma_{j}\right)=\gamma_{1}$.

Error Estimate

For the second term, consider the topological annlus bounded by $\tilde{\Gamma}_{k, j}^{(i)}$ and $\Gamma_{k, j}^{(i)}$, by the diameter estimation (4), we obtain

$$
\left[\delta_{j, k}^{(i)}\right]^{2} \leq \frac{\pi}{2 \log \mu^{-1}} \alpha\left(\tilde{\Gamma}_{k, j}^{(i)}\right)
$$

By inequality (5), we obtain
$\sum_{(i), j}\left[\delta_{j, k}^{(i)}\right]^{2} \leq \frac{\pi}{2 \log \mu^{-1}} \sum_{(i), j} \alpha\left(\tilde{\Gamma}_{k, j}^{(i)}\right) \leq \frac{\pi}{2 \log \mu^{-1}} \sum_{j} \alpha\left(\tilde{\Gamma}_{k, j}\right)=\frac{\pi}{2 \log \mu^{-1}} \mu^{4 m} \gamma_{2}$,
where $\gamma_{2}=\sum_{j} \alpha\left(\tilde{\Gamma}_{k, j}\right)$.

Error Estimate

We estimate γ_{1} and γ_{2}. The circle $\boldsymbol{\Gamma}_{\rho}$ enclose all the circles $\tilde{\Gamma}_{i}$, then $\gamma_{1}<\pi \rho^{2}$. Using $g_{k}(w)$, we estimate $\gamma_{2} . g_{k}$ is univalent on $|w|>\rho$, in the neighborhood of $\infty, g_{k}(w)=w+O\left(w^{-1}\right)$. Perform coordinate change $\zeta=1 / w, \eta=1 / z$, construct univalent holomorphic function $\varphi: \zeta \rightarrow \eta$,

$$
\varphi(\zeta)=\frac{1}{g_{k}(1 / \zeta)}
$$

φ is defined on the disk $|\zeta|<\rho^{-1}, \varphi(0)=0$ and $\varphi^{\prime}(0)=1$. By Koebe $1 / 4$ theorem,

$$
\left\{|\eta|<\frac{1}{4 \rho}\right\} \subset \varphi\left(\left\{|\zeta|<\frac{1}{\rho}\right\}\right)
$$

equivalently

$$
\{|z|>4 \rho\} \subset g_{k}(\{|w|>\rho\})
$$

hence all $\tilde{\Gamma}_{k, j}$ are included in the interior of $|z|<4 \rho$, hence the total area of all holes

$$
\gamma_{2}=\sum_{j} \alpha\left(\tilde{\Gamma}_{k, j}\right)<16 \pi \rho^{2}
$$

Error Estimate

We proved the convergence rate of Koebe's iteration.
Theorem (Convergence Rate of Koebe's Iteration)
In the Koebe's iteration, when $k>m n$,

$$
\left|g_{k}(w)-w\right| \leq \frac{1}{4 \delta}\left(\frac{4}{\pi} \pi \rho^{2}+\frac{\pi}{2 \log \mu^{-1}} 16 \pi \rho^{2}\right) \mu^{4 m}
$$

This shows μ controls the convergence rate.

