Assignment Seven: Persistent Homology for Handle and Tunnel Loops

David Gu

Yau Mathematics Science Center Tsinghua University Computer Science Department Stony Brook University

gu@cs.stonybrook.edu

August 29, 2020

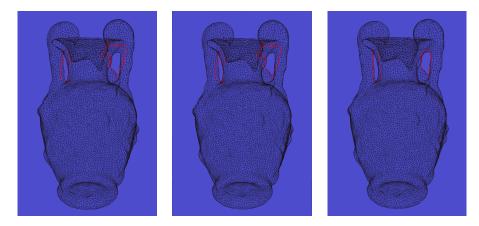


Figure: Handle and tunnel loops of the amphora model.

Tunnel Loops

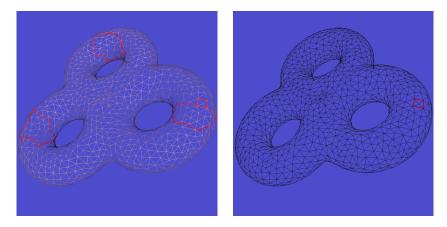


Figure: Null homotopy detection.

David Gu (Stony Brook University)

Computational Conformal Geometry

August 29, 2020 3 / 23

Tunnel Loops

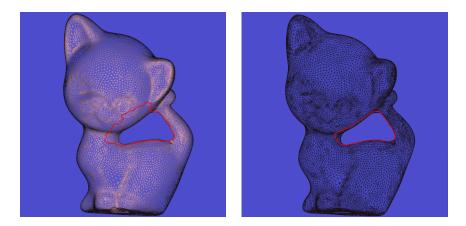


Figure: Birkhoff curve shortening.

Topological Torus

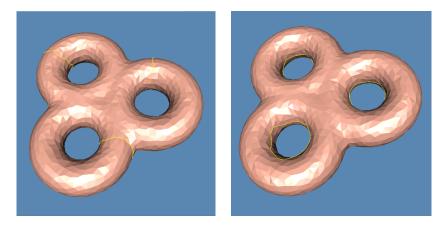


Figure: Handle and tunnel loops.

< 円

Topological Torus

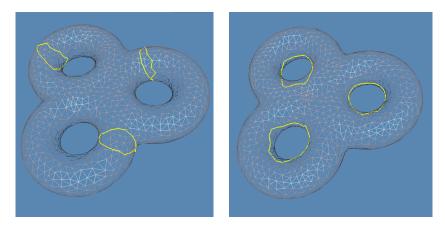


Figure: Handle and tunnel loops.

David Gu (Stony Brook University)

Computational Conformal Geometry

August 29, 2020 6 / 23

Topological Torus

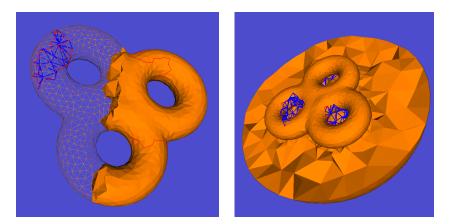


Figure: Interior and exterior volumes.

David Gu (Stony Brook University)

Computational Conformal Geometry

August 29, 2020 7 /

- (日)

The input is an oriented closed triangular mesh, use Dr. Hang Si's tetgen to generate the inteior and exterior volumetric mesh.

Interior Volume

Use Tetgen to generate the interior tetrahedral mesh inside the mesh M, denoted as I_M .

Exterior Volume

Construct a sphere enclosing the input mesh M, use Tetgen to generate a tetrahedral mesh between the sphere and the mesh M. Add the infinity point ∞ , connect ∞ with each triangle face on the sphere to form a tetrahedron, denoted as O_M .

Interior Volume

Extract the boundary surface of the interior volume $M = \partial I_M$; Sort all the vertices, edges, faces of M,

$$\sigma_0^1, \sigma_0^2, \cdots, \sigma_0^{n_0}, \sigma_1^1, \sigma_1^2, \cdots, \sigma_1^{n_1}, \sigma_2^1, \sigma_2^2, \cdots, \sigma_2^{n_2}.$$

After that insert the interior vertices, edges, faces and tetrahedra of $I_M \setminus M$,

$$\tau_0^1, \tau_0^2, \cdots, \tau_0^{m_0}, \tau_1^1, \tau_1^2, \cdots, \tau_1^{m_1}, \tau_2^1, \tau_2^2, \cdots, \tau_2^{m_2}, \tau_3^1, \tau_3^2, \cdots, \tau_3^{m_3}.$$

Exterior Volume

Extract the boundary surface of the exterior volume $M = \partial O_M$; Sort all the vertices, edges, faces of M,

$$\sigma_0^1, \sigma_0^2, \cdots, \sigma_0^{n_0}, \sigma_1^1, \sigma_1^2, \cdots, \sigma_1^{n_1}, \sigma_2^1, \sigma_2^2, \cdots, \sigma_2^{n_2}.$$

After that insert the interior vertices, edges, faces and tetrahedra of $O_M \setminus M$,

$$\tau_0^1, \tau_0^2, \cdots, \tau_0^{m_0}, \tau_1^1, \tau_1^2, \cdots, \tau_1^{m_1}, \tau_2^1, \tau_2^2, \cdots, \tau_2^{m_2}, \tau_3^1, \tau_3^2, \cdots, \tau_3^{m_3}.$$

Pair Algorithm

 $\mathsf{Pair}(\sigma)$

- $\bullet c = \partial_p \sigma$
- **2** au is the youngest positive (p-1)-simplex in c.
- **3** while au is paired and c is not empty do
- find (τ, d) , d is the p-simplex paired with τ ;

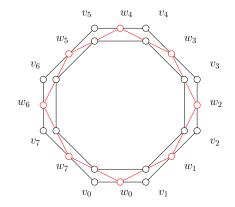
$$o c \leftarrow \partial_p d + c$$

• Update au to be the youngest positive (p-1)-simplex in c

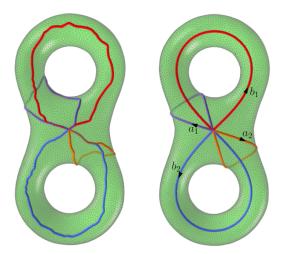
🧿 end while

- **if** *c* is not empty **then**
- σ is negative *p*-simplex and paired with au

🕛 else


🔮 endif

- The simplices on the surface M are added into the filtration in any arbitrary order. Since $H_1(M)$ is of rank 2g, the algorithm Pair generates 2g number of unpaired positive edges.
- The simplices up to dimension 2 in *I* are added into the filtration. Since H₁(*I*) of rank *g*, half of 2*g* positive edges generated in step 1 get paired with the negative triangles in *I*. Each pair correponds to a killed loop, these *g* loops are handle loops.
- Or the simplices up to dimension 2 in O are added into the filtration. Since H₁(O) of rank g, half of 2g positive edges genrated in step 2 get paried with the negative triangles in O. Each pair corresponds to a killed loop, these g loops are tunnel loops.


Input : a graph G on the mesh M labeled as sharp edges; Output: remove null homological cycles

- **9** Build a spanning tree T of G, $G \setminus T = \{e_1, e_2, \dots, e_k\};$
- **2** Construct cycles $c_i = T \cup e_i$, $i = 1, 2, \cdots, k$;
- Ompute the persistent homology of the mesh M;
- If or each cycle c_i find the unpaired youngest generator; if one can not find the generator, then c_i is null homologous.

Birkhoff curve shortening

Birkhoff curve shortening

David Gu (Stony Brook University)

Computational Conformal Geometry

August 29, 2020 15 /

5/23

Input : a loop c on M labeled as sharp edges; Output: a shortened cycle homotopic to c;

- Sort the vertices of c as $v_0, v_1, \ldots, v_{n-1}$;
- Find the shortest path between v₀ and v_{n/3}, and replace the sequence of edges between v₀ and v_{n/3};
- Find the shortest path between v_{n/3} and v_{2n/3}, and replace the sequence of edges between v_{n/3} and v_{2n/3};
- Find the shortest path between v_{2n/3} and v₀, and replace the sequence of edges between v_{2n/3} and v₀;
- Solution Cyclically shift the vertex sequence, and repeat step 2 through step 4.

Instruction

э

- 'DartLib', a volumetric mesh library based on Dart data structure.
- 'freeglut', a free-software/open-source alternative to the OpenGL Utility Toolkit (GLUT) library.

- 3rdparty/DartLib, header files for volumetric mesh;
- HandleTunnelLoop/include, the header files for handle-tunnel loop computation;
- data,Some data models and batch scripts;
- CMakeLists.txt, CMake configuration file;
- resources, snapshot for circular slit mapping results;

Before you start, read README.md carefully, then go three the following procedures, step by step.

- Install [CMake](https://cmake.org/download/).
- 2 Download the source code of the C++ framework.
- Sonfigure and generate the project for Visual Studio.
- Open the .sln using Visual Studio, and complie the solution.
- Sinish your code in your IDE.
- Run the executable program.

- open a command window
- cd Assignment_7_skeleton
- Image: mkdir build
- Cd build
- o cmake ..
- open CCGHomework.sln inside the build directory.

- You need to modify the file: HandleTunnelLoop.cpp;
- search for comments "insert your code"
- Modify functions:
 - OchandleTunnelLoop :: _pair(std :: set < M :: CVertex* > &vertices)
 - OchandleTunnelLoop :: _pair(std :: set < M :: CEdge* > &edges)
 - OchandleTunnelLoop :: _pair(std :: set < M :: CFace* > &faces)
 - OHANDLE CONTRACTION CONTRACTICON CONTE

Modify assignment one, CutGraph, to implement the algorithms for null homologous cycle detection and Birkhoff curve shortening.