Assignment Five: Geometric Optimal Transport Map

David Gu

Yau Mathematics Science Center Tsinghua University Computer Science Department Stony Brook University

gu@cs.stonybrook.edu

August 15, 2020

Computational Results

Computational Results

< A → < 3

Computational Results

Convex Geometric View

Problem (Brenier)

Given (Ω, μ) and (Σ, ν) and the cost function $c(x, y) = \frac{1}{2}|x - y|^2$, the optimal transportation map $T : \Omega \to \Sigma$ is the gradient map of the Brenier potential $u : \Omega \to \mathbb{R}$, which satisfies the Monge-Ampére equation,

$$det\left(\frac{\partial^2 u(x)}{\partial x_i \partial x_j}\right) = \frac{f(x)}{g \circ \nabla u(x)}$$

Semi-Discrete Optimal Transportation Problem

Problem (Semi-discrete OT)

Given a compact convex domain Ω in \mathbb{R}^d , and p_1, p_2, \dots, p_k and weights $w_1, w_2, \dots, w_k > 0$, find a transport map $T : \Omega \to \{p_1, \dots, p_k\}$, such that $vol(T^{-1}(p_i)) = w_i$, so that T minimizes the transportation cost:

$$\mathcal{C}(T) := \frac{1}{2} \int_{\Omega} |x - T(x)|^2 dx$$

Semi-Discrete Optimal Transportation Problem

According to Brenier theorem, there will be a piecewise linear convex function $u: \Omega \to \mathbb{R}$, the gradient map gives the optimal transport map.

Theorem (Alexandrov 1950)

Given Ω compact convex domain in \mathbb{R}^n , p_1, \dots, p_k distinct in \mathbb{R}^n , $A_1, \dots, A_k > 0$, such that $\sum A_i = Vol(\Omega)$, there exists PL convex function

$$f(\mathbf{x}) := \max\{\langle \mathbf{x}, \mathbf{p}_i \rangle + h_i | i = 1, \cdots, k\}$$

unique up to translation such that

$$Vol(W_i) = Vol(\{\mathbf{x} | \nabla f(\mathbf{x}) = \mathbf{p}_i\}) = A_i.$$

Alexandrov's proof is topological, not variational. It has been open for years to find a constructive proof.

Theorem (Gu-Luo-Sun-Yau 2013)

 Ω is a compact convex domain in \mathbb{R}^n , y_1, \dots, y_k distinct in \mathbb{R}^n , μ a positive continuous measure on Ω . For any $\nu_1, \dots, \nu_k > 0$ with $\sum \nu_i = \mu(\Omega)$, there exists a vector (h_1, \dots, h_k) so that

$$u(\mathbf{x}) = \max\{\langle \mathbf{x}, \mathbf{p}_i \rangle + h_i\}$$

satisfies $\mu(W_i \cap \Omega) = \nu_i$, where $W_i = \{\mathbf{x} | \nabla f(\mathbf{x}) = \mathbf{p}_i\}$. Furthermore, **h** is the maximum point of the concave function

$$E(\mathbf{h}) = \sum_{i=1}^{k} \nu_i h_i - \int_{\mathbf{0}}^{\mathbf{h}} \sum_{i=1}^{k} w_i(\eta) d\eta_i,$$

where $w_i(\eta) = \mu(W_i(\eta) \cap \Omega)$ is the μ -volume of the cell.

Geometric Interpretation

One can define a cylinder through $\partial\Omega$, the cylinder is truncated by the xy-plane and the convex polyhedron. The energy term $\int^{\mathbf{h}} \sum w_i(\eta) d\eta_i$ equals to the volume of the truncated cylinder.

Computational Algorithm

Definition (Alexandrov Potential)

The concave energy is

$$E(h_1, h_2, \cdots, h_k) = \sum_{i=1}^k \nu_i h_i - \int_0^h \sum_{j=1}^k w_j(\eta) d\eta_j,$$

David Gu (Stony Brook University)

Computational Conformal Geometry

Computational Algorithm

The Hessian of the energy is the length ratios of edge and dual edges,

$$\frac{\partial w_i}{\partial h_j} = -\frac{|\boldsymbol{e}_{ij}|}{|\bar{\boldsymbol{e}}_{ij}|}$$

Input: A set of distinct points $P = \{p_1, p_2, \dots, p_k\}$, and the weights $\{A_1, A_2, \dots, A_k\}$; A convex domain Ω , $\sum A_j = \text{Vol}(\Omega)$; Output: The optimal transport map $T : \Omega \to P$

• Scale and translate P, such that $P \subset \Omega$;

- **2** Initialize $\mathbf{h}^0 \leftarrow \frac{1}{2}(|p_1|^2, |p_2|^2, \cdots, |p_k|^2)^T;$
- Compute the Brenier potential u(h^k) (envelope of π_i's) and its Legendre dual u^{*}(h^k) (convex hull of π_i^{*}'s);
- Project the Brenier potential and Legendre dual to obtain weighted Delaunay triangulation T(h^k) and power diagram D(h^k);

Ompute the gradient of the energy

$$\nabla E(\mathbf{h}) = (A_1 - w_1(\mathbf{h}), A_2 - w_2(\mathbf{h}), \cdots, A_k - w_k(\mathbf{h}))^T.$$

• If $||E(\mathbf{h}^k)||$ is less than ε , then return $T = \nabla u(\mathbf{h}^k)$;

Compute the Hessian matrix of the energy

$$\frac{\partial w_i(\mathbf{h})}{\partial h_j} = -\frac{|e_{ij}|}{|\bar{e}_{ij}|}, \quad \frac{\partial w_i}{\partial h_i} = -\sum_j \frac{\partial w_i(\mathbf{h})}{\partial h_j}.$$

Solve linear system

 $\nabla E(\mathbf{h}) = \operatorname{Hess}(\mathbf{h}^k)\mathbf{d};$

- 9 Set the step length $\lambda \leftarrow 1$;
- Construct the convex hull Conv($\mathbf{h}^k + \lambda \mathbf{d}$);
- **(D)** if there is any empty power cell, $\lambda \leftarrow \frac{1}{2}\lambda$, repeat step 3 and 4, until all power cells are non-empty;
- \mathbf{Q} set $\mathbf{h}^{k+1} \leftarrow \mathbf{h}^k + \lambda \mathbf{d}$;
- Repeat step 3 through 14.

Optimal Transportation Map

Figure: Optimal transportation map.

David Gu (Stony Brook University)

Computational Conformal Geometry

August 15, 2020 17 / 36

Optimal Transportation Map

Figure: Optimal transportation map.

18/36

Instruction

э

- O 'detri2', a mesh generation library, written by Dr. Hang Si.
- (2) 'MeshLib', a mesh library based on halfedge data structure.
- 'freeglut', a free-software/open-source alternative to the OpenGL Utility Toolkit (GLUT) library.

- ot_2d/include, the header files for optimal transport;
- ot_2d/src, the source files for optimal transport.
- data,Some models.
- CMakeLists.txt, CMake configuration file.
- resources, Some resources needed.
- 3rdparty, MeshLib and freeglut libraries.

Before you start, read README.md carefully, then go three the following procedures, step by step.

- Install [CMake](https://cmake.org/download/).
- 2 Download the source code of the C++ framework.
- Sonfigure and generate the project for Visual Studio.
- Open the .sln using Visual Studio, and complie the solution.
- Finish your code in your IDE.
- O Run the executable program.

- open a command window
- cd Assignment_6_skeleton
- Image: mkdir build
- Cd build
- 💿 cmake ..
- open CCGHomework.sln inside the build directory.

- You need to modify the file: OT.cpp and CDomainOptimalTransport.cpp
- search for comments "insert your code here"
- Modify functions:
 - CDomainTransport::_newton(COMTMesh * plnput, COMTMesh * pOutput)
 - CBaseOT::_update_direction(COMTMesh* pMesh)
 - CBaseOT::_compute_hessian_matrix(COMTMesh& mesh,Eigen::SparseMatrix& hessian)

Dynamic Linking Libraries

Copy detri2.dll and detri2d.dll from 3rdparty/detri2/lib/windows to build/ot_2d/; Libraries and dlls for Linux and MAC are also available.

Command

Command line:

OT2d.exe girl.m

All the data files are in the data folder, all the texture images are in the textures folder.

Generative Model

How to eliminate mode collapse?

Figure: Geometric Generative Model.

David Gu (Stony Brook University)

Computational Conformal Geometry

August 15, 2020 27 / 36

э

Image: A matched by the second sec

Figure: Mnist latent code and decoder using UMap.

Figure: Target measure $\nu = \frac{1}{n} \sum_{i=1}^{n} \delta(y - y_i)$.

< □ > < 同 > < 回 > < 回 > < 回 >

э

Figure: Optimal transport map $T: \mu \rightarrow \nu, \mu$ is the uniform distribution.

Image: A matrix and a matrix

Figure: Optimal transport map $T: \mu \rightarrow \nu$, μ is the uniform distribution.

Figure: Optimal transport map $T: \mu \rightarrow \nu$, μ is the uniform distribution.

Figure: Brenier potential.

David Gu (Stony Brook University)

Computational Conformal Geometry

August 15, 2020 33 / 36

э

Figure: Brenier potential.

David Gu (Stony Brook University)

Computational Conformal Geometry

August 15, 2020 34 / 36

э

Figure: Brenier potential.

David Gu (Stony Brook University)

Computational Conformal Geometry

August 15, 2020 35 / 36

Figure: Brenier potential.

David Gu (Stony Brook University)

Computational Conformal Geometry

August 15, 2020 36 / 36