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Convex Geometric View
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Monge-Ampére Equation

Problem (Brenier)

Given (Ω, µ) and (Σ, ν) and the cost function c(x , y) = 1
2 |x − y |2, the

optimal transportation map T : Ω→ Σ is the gradient map of the Brenier
potential u : Ω→ R, which satisfies the Monge-Ampére equation,

det

(
∂2u(x)

∂xi∂xj

)
=

f (x)

g ◦ ∇u(x)
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Semi-Discrete Optimal Transportation Problem

Wi

Ω

T

(pi, Ai)

Problem (Semi-discrete OT)

Given a compact convex domain Ω in Rd , and p1, p2, · · · , pk and weights
w1,w2, · · · ,wk > 0, find a transport map T : Ω→ {p1, . . . , pk}, such that
vol(T−1(pi )) = wi , so that T minimizes the transportation cost:

C(T ) :=
1

2

∫
Ω
|x − T (x)|2dx
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Semi-Discrete Optimal Transportation Problem

uh u∗h

∇uh

Wi(h) yi

πi(h)
π∗i

Ω,V Ω, T

proj proj∗

According to Brenier theorem, there will be a piecewise linear convex
function u : Ω→ R, the gradient map gives the optimal transport map.
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Alexandrov Theorem

Theorem (Alexandrov 1950)

Given Ω compact convex domain in Rn,
p1, · · · , pk distinct in Rn, A1, · · · ,Ak > 0,
such that

∑
Ai = Vol(Ω), there exists PL

convex function

f (x) := max{〈x,pi 〉+ hi |i = 1, · · · , k}

unique up to translation such that

Vol(Wi ) = Vol({x|∇f (x) = pi}) = Ai .

Alexandrov’s proof is topological, not
variational. It has been open for years to
find a constructive proof.

Ω

Wi

Fi

πj

uh(x)
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Variational Proof

Theorem (Gu-Luo-Sun-Yau 2013)

Ω is a compact convex domain in Rn, y1, · · · , yk distinct in Rn, µ a
positive continuous measure on Ω. For any ν1, · · · , νk > 0 with∑
νi = µ(Ω), there exists a vector (h1, · · · , hk) so that

u(x) = max{〈x,pi 〉+ hi}

satisfies µ(Wi ∩ Ω) = νi , where Wi = {x|∇f (x) = pi}. Furthermore, h is
the maximum point of the concave function

E (h) =
k∑

i=1

νihi −
∫ h

0

k∑
i=1

wi (η)dηi ,

where wi (η) = µ(Wi (η) ∩ Ω) is the µ-volume of the cell.

David Gu (Stony Brook University) Computational Conformal Geometry August 15, 2020 10 / 36



Geometric Interpretation

One can define a cylinder through ∂Ω, the cylinder is truncated by the
xy-plane and the convex polyhedron. The energy term

∫ h∑
wi (η)dηi

equals to the volume of the truncated cylinder.

David Gu (Stony Brook University) Computational Conformal Geometry August 15, 2020 11 / 36



Computational Algorithm

Ω

Wi

Fi

πj

uh(x)

Definition (Alexandrov Potential)

The concave energy is

E (h1, h2, · · · , hk) =
k∑

i=1

νihi −
∫ h

0

k∑
j=1

wj(η)dηj ,

Geometrically, the energy is the volume beneath the parabola.
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Computational Algorithm

The Hessian of the energy is the length ratios of edge and dual edges,

∂wi

∂hj
= −|eij ||ēij |
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Optimal Transport Map

Input: A set of distinct points P = {p1, p2, · · · , pk}, and the weights
{A1,A2, · · · ,Ak};A convex domain Ω,

∑
Aj = Vol(Ω);

Output: The optimal transport map T : Ω→ P

1 Scale and translate P, such that P ⊂ Ω;

2 Initialize h0 ← 1
2 (|p1|2, |p2|2, · · · , |pk |2)T ;

3 Compute the Brenier potential u(hk) (envelope of πi ’s ) and its
Legendre dual u∗(hk) (convex hull of π∗i ’s);

4 Project the Brenier potential and Legendre dual to obtain weighted
Delaunay triangulation T (hk) and power diagram D(hk);
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Optimal Transport Map

5 Compute the gradient of the energy

∇E (h) = (A1 − w1(h),A2 − w2(h), · · · ,Ak − wk(h))T .

6 If ‖E (hk)‖ is less than ε, then return T = ∇u(hk);

7 Compute the Hessian matrix of the energy

∂wi (h)

∂hj
= −|eij ||ēij |

,
∂wi

∂hi
= −

∑
j

∂wi (h)

∂hj
.

8 Solve linear system
∇E (h) = Hess(hk)d;
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Optimal Transport Map

9 Set the step length λ← 1;

10 Construct the convex hull Conv(hk + λd);

11 if there is any empty power cell, λ← 1
2λ, repeat step 3 and 4, until

all power cells are non-empty;

12 set hk+1 ← hk + λd;

13 Repeat step 3 through 14.
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Optimal Transportation Map

Figure: Optimal transportation map.
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Optimal Transportation Map

Figure: Optimal transportation map.
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Instruction
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Dependencies

1 ’detri2’, a mesh generation library, written by Dr. Hang Si.

2 ‘MeshLib‘, a mesh library based on halfedge data structure.

3 ‘freeglut‘, a free-software/open-source alternative to the OpenGL
Utility Toolkit (GLUT) library.
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Directory Structure

ot 2d/include, the header files for optimal transport;

ot 2d/src, the source files for optimal transport.

data,Some models.

CMakeLists.txt, CMake configuration file.

resources, Some resources needed.

3rdparty, MeshLib and freeglut libraries.
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Configuration

Before you start, read README.md carefully, then go three the following
procedures, step by step.

1 Install [CMake](https://cmake.org/download/).

2 Download the source code of the C++ framework.

3 Configure and generate the project for Visual Studio.

4 Open the .sln using Visual Studio, and complie the solution.

5 Finish your code in your IDE.

6 Run the executable program.
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3. Configure and generate the project

1 open a command window

2 cd Assignment 6 skeleton

3 mkdir build

4 cd build

5 cmake ..

6 open CCGHomework.sln inside the build directory.
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5. Finish your code in your IDE

You need to modify the file: OT.cpp and
CDomainOptimalTransport.cpp

search for comments “insert your code here”

Modify functions:
1 CDomainTransport:: newton(COMTMesh * pInput, COMTMesh *

pOutput)
2 CBaseOT:: update direction(COMTMesh* pMesh)
3 CBaseOT:: compute hessian matrix(COMTMesh&

mesh,Eigen::SparseMatrix& hessian)
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6. Run the executable program

Dynamic Linking Libraries

Copy detri2.dll and detri2d.dll from 3rdparty/detri2/lib/windows to
build/ot 2d/; Libraries and dlls for Linux and MAC are also available.

Command

Command line:
OT2d.exe girl.m

All the data files are in the data folder, all the texture images are in the
textures folder.
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Generative Model
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How to eliminate mode collapse?

encoder
decoder

OT Mapper

Training Data Generated SamplesLatent Distribution

white noise
Brenier Potential

Figure: Geometric Generative Model.
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AE-OT Model

Figure: Mnist latent code and decoder using UMap.
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AE-OT Model

Figure: Target measure ν = 1
n

∑n
i=1 δ(y − yi ).
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AE-OT Model

Figure: Optimal transport map T : µ→ ν, µ is the uniform distribution.
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AE-OT Model

Figure: Optimal transport map T : µ→ ν, µ is the uniform distribution.
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AE-OT Model

Figure: Optimal transport map T : µ→ ν, µ is the uniform distribution.
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AE-OT Model

Figure: Brenier potential.
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AE-OT Model

Figure: Brenier potential.
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AE-OT Model

Figure: Brenier potential.
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AE-OT Model

Figure: Brenier potential.
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