Assignment Four: Geometric Algorithm for Spherical Optimal Transportation Map

David Gu

Yau Mathematics Science Center Tsinghua University Computer Science Department Stony Brook University

gu@cs.stonybrook.edu

November 19, 2020

David Gu (Stony Brook University)

Spherical Optimal Transportation

November 19, 2020 1 / 56

Convex Geometric View

Alexandrov Problem

Given discrete points $\{x_1, x_2, \dots, x_k\}$ on the unit sphere \mathbb{S}^2 , define a discrete spherical function $\rho : \mathbb{S}^2 \to \mathbb{R}^+$, $\rho(x) = \sum_{i=1}^k \rho_i \delta(x - x_i)$, the radio graph of ρ is the convex hull

$$S_{
ho} = \operatorname{conv}(\{
ho_1 x_1,
ho_2 x_2, \cdots,
ho_k x_k\}).$$

Given the discrete Gaussian curvature at the vertices of S_{ρ} , $\{\nu_1, \nu_2, \cdots, \nu_k\}$, satisfying Gauss-Bonnet theorem,

$$\sum_{i=1}^{k} \nu_i = 2\pi \chi(\mathbb{S}^2) = 4\pi, \quad \nu_i > 0,$$

then find ρ and S_{ρ} .

Figure: Input mesh *M*.

< 17 ▶

Input Mesh

Figure: Spherical harmonic map to \mathbb{S}^2 , (CCG homework 4).

The spherical harmonic map $\varphi : M \to \mathbb{S}^2$, the image of all the vertices, $\{\varphi(v_1), \varphi(v_2), \cdots, \varphi(v_k)\}$ are treated as $\{x_i\}_{i=1}^k$.

David Gu (Stony Brook University)

Input Mesh

The total area of M is normalized to 4π . Each vertex $v_i \in M$ is adjacent to faces f_i^{jk} with vertices $[v_i, v_j, v_k]$, then the Diract measure ν_i is defined as the one third of the total areas of f_i^{jk} 's,

$$u_i = rac{1}{3} \sum_{j,k} \operatorname{Area}(f_i^{jk}).$$

Supporting Planes

Given a supporting plane with normal $y \in \mathbb{S}^2$, height is denoted as $\rho^*(y)$, then

$$\rho^*(y) = \sup_{x \in \mathbb{S}^2} \rho(x) \langle y, x \rangle.$$

By

$$ho^*(y) = \sup_{x\in\mathbb{S}^2}
ho(x)\langle y,x
angle \iff rac{1}{
ho^*(y)} = \inf_{x\in\mathbb{S}^2}rac{1}{
ho(x)}rac{1}{\langle x,y
angle}$$

Denote $\eta(y) := \frac{1}{\rho^*(y)}$, then we obtain

$$\eta(y) = \inf_{x\in\mathbb{S}^2}rac{1}{
ho(x)}rac{1}{\langle x,y
angle}, \quad
ho(x)\eta(y) \leq rac{1}{\langle x,y
angle}$$

Therefore $\varphi(x) = \log \rho(x)$, $\psi(y) = \log \eta(y)$,

$$\varphi(x) + \psi(y) \leq -\log\langle x, y \rangle,$$

let c(x, y) be $-\log\langle x, y \rangle$, we obtain c-transform,

$$\varphi^{c}(y) := \inf_{x \in \mathbb{S}^{2}} c(x, y) - \varphi(x).$$

3

→ < ∃ →</p>

< A > <

This gives the Kantorovich formulation of spherical optimal transportation!

$$\sup\left\{\int_{\mathbb{S}^2}\varphi(x)f(x)dx+\int_{\mathbb{S}^2}\psi(y)g(y)dy,\varphi(x)+\psi(y)\leq c(x,y)\right\}$$

By c-transform,

$$\varphi^{c}(y) := \inf_{x \in \mathbb{S}^{2}} c(x, y) - \varphi(x).$$

we optimize the functional by finding $\{(\varphi_k, \psi_k)\}$, where

$$\psi_k = \phi_k^c, \quad \phi_{k+1} = \psi_k^c,$$

 (φ_k, ψ_k) 's are bounded, whose Lipschitz constant equals to the sup $\nabla c(x, y)$ on \mathbb{S}^2 , the energy is monotonously increasing. This shows the existence of the solution.

$$\rho: \mathbb{S}^2 \to \mathbb{R}^+ \text{ has a Legendre dual } \rho^*: \mathbb{R}^{\mathbb{R}+},$$
$$\rho^*(y) = \max_{i=1}^k \rho_i \langle x_i, y \rangle, \iff \frac{1}{\rho^*(y)} = \min_{i=1}^k \frac{1}{\rho_i} \frac{1}{\langle x_i, y \rangle},$$

The radial graph of $1/\rho*(y)$ is the envelope of the planes

$$\pi^i_
ho(y) = rac{1}{
ho_i} rac{1}{\langle x_i, y
angle}$$

 $S_{
ho^*}$ is given by

$$\mathcal{S}_{
ho^*} = \mathsf{Env}\{\pi^1_
ho,\pi^2_
ho,\ldots,\pi^k_
ho\} = \Gamma\left(rac{1}{
ho^*}
ight).$$

< A

3

Face Dual Point __face_dual_point(CFace* pf)

Every face on the convex hull $f = [\rho_i x_i, \rho_j x_j, \rho_k x_k]$, is dual to a point $f^* = \pi_i \cap \pi_j \cap \pi_k$, where

$$\pi_i(y) = \frac{1}{\rho_i\langle x_i, y \rangle}, \pi_j(y) = \frac{1}{\rho_i\langle x_j, y \rangle}, \pi_k(y) = \frac{1}{\rho_i\langle x_k, y \rangle},$$

Then $f^* = \lambda n$, where *n* is the normal to the face, and

$$\lambda = \pi_i(n) = \pi_j(n) = \pi_k(n).$$

Assume the intersection point is d, then

$$\langle \rho_i x_i, d \rangle = \langle \rho_j x_j, d \rangle = \langle \rho_k x_k, d \rangle$$

hence

$$d \perp (\rho_i x_i - \rho_j x_j) \quad d \perp (\rho_j x_j - \rho_k x_k),$$

d is along the normal direction. f^* is recorded as $face \rightarrow dual_point()$.

11/56

Legendre Dual

$\mathsf{Conv}(\{\rho_i x_i\}) \qquad \qquad \mathsf{Env}(\{\rho(y) = \frac{1}{\rho_i} \frac{1}{\langle x_i, y \rangle}\})$

Figure: Convex hull and envelope. For each vertex v_i on the left convex hull, the dual points $(f_i^{jk})^*$ of the surrounding faces f_i^{jk} gives the dual face of the envelope on the right side.

David Gu (Stony Brook University)

Spherical Power Diagram

Each face of the envelope is recorded as $vertex \rightarrow dual_cell3D()$. The central projection of the envelope to the sphere, induces a spherical power diagram,

$$\mathbb{S}=igcup_{i=1}^k W_
ho(i), \quad W_
ho(i):=\{y\in \mathbb{S}^2|\pi^i_
ho(y)\leq \pi^j_
ho(y)\}.$$

Spherical Power Diagram

Define $h_i = \log \rho_i$, suppose $w_i(\mathbf{h})$ is the spherical area of the cell $W_{\rho}(i)$, the convex energy

$$E(\mathbf{h}) := \int_{i=1}^{\rho} \sum_{i=1}^{k} w_i(\mathbf{h}) dh_i - \sum_{i=1}^{k} \nu_i h_i.$$

Optimization

The optimization is performed in the admissible space

$$\mathcal{H} := \left\{ \mathbf{h} \in \mathbb{R}^k : w_i(\mathbf{h}) > 0, \forall i \right\} \bigcap \left\{ \sum_{i=1}^k h_i = 0 \right\}.$$

Gradient

The gradient of the energy is given by

$$\nabla E(\mathbf{h}) = (w_1(\mathbf{h}) - \nu_1, w_2(\mathbf{h}) - \nu_2, \cdots, w_k(\mathbf{h}) - \nu_k).$$

Note that, all the power cells are convex spherical geodesic polygons. We subdivide the polygon into geodesic triangles, according to Gauss-Bonnet theorem, the area of the geodesic triangle is given by

$$A + B + C - \pi = \operatorname{Area}(\Delta).$$

Suppose the edge lengths of the Δ are $\{a, b, c\}$, inner angles $\{A, B, C\}$, the spherical cosine law is

$$\cos c = \cos a \cos b + \sin a \sin b \cos C.$$

The area of each spherical power cell is recorded as $vertex \rightarrow dual_area()$.

Every face on the convex hull $f = [\rho_i x_i, \rho_j x_j, \rho_k x_k]$, the power center $o_f \in \mathbb{S}^2$ satisfies

$$R_{f} = \langle \rho_{i} x_{i}, o_{f} \rangle = \langle \rho_{j} x_{j}, o_{f} \rangle = \langle \rho_{k} x_{k}, o_{f} \rangle$$

hence o_f is the normal n_f to the face f, R_f is the power of f. The face power center o_f is recorded as face \rightarrow spherical_power_center(), the face power R_f is recorded as face \rightarrow spherical_power_radius().

Distance from power center to edge *d*_{*l*} __halfedge_spherical_height()

The perpendicular foot q is the intersection of the plane through the sphere center and s, t and the plane through the sphere center and the power centers o_l, o_r , hence

$$q = rac{(t imes s) imes (o_l imes o_r)}{|(t imes s) imes (o_l imes o_r)|},$$

Note that d_l is an oriented distance, if o_l is outside the left triangle, then $d_l < 0$, recorded as *halfedge* \rightarrow *spherical_height*().

David Gu (Stony Brook University)

Spherical Edge Length γ_{ij} __edge_spherical_length()

The spherical edge length of $[\rho_i x_i, \rho_j x_j]$,

$$\gamma_{ij}=\cos^{-1}\langle x_i,x_j\rangle,$$

 γ_{ij} is recorded as $edge \rightarrow spherical_length()$.

Edge weight w_{ij} _edge_interior_weight(CEdge* pe)

$$w_{ij} = \frac{\partial w_i}{\partial h_j} = \frac{\partial w_j}{\partial h_i} = -\frac{1}{\rho_i \rho_j \sin \gamma_{ij}} \left(\frac{R_l^2 \sin d_l}{\cos^2 d_l} + \frac{R_k^2 \sin d_k}{\cos^2 d_k} \right)$$
(1)
$$\frac{\partial w_i}{\partial h_i} = -\sum_{j \neq i} \frac{\partial w_i}{\partial h_j}$$
(2)

where $h_i = \log \rho_i$. w_{ij} is recorded as $edge \rightarrow weight()$.

Computational Geometric Algorithms

- The source measure is the uniform distribution on the unit sphere \mathbb{S}^2 .
- The target measure is represented as a triangle mesh (obj or m format), each vertex has both (x, y, z) coordinates and (u, v, w) parameters. Each vertex v_i represents a sample x_i = (u_i, v_i, w_i), (u_i, v_i, w_i) specifying the spherical position in S². The summation of the areas of all triangular faces adjacent to v_i is treated as ν_i, (after normalization such that the total area is 4π).

File IO

Figure: Input files, source file specifies the vertex positions $(x, y, z) \in \mathbb{R}^3$ and ν , the target file specifies the positions on the sphere $(u, v, w) \in \mathbb{S}^2$.

- The combinatorial data structure to represent the convex hull and the dual envelope is half-edge;
- On the linear numerical solver is Eigen library;
- The geometric computation is based on adaptive arithmetic method.
- The convex hull is based on Lawson's edge flip algorithm.
- The optimization of Alexandrov energy is based on damping algorithm.

Edge Local convex

Given an edge e in the triangulation \mathcal{T} , find the two neighboring faces, suppose vertex v_i is represented as $\varphi_i := \rho_i x_i$, compute the volume of the tetrahedron $[\varphi_0, \varphi_1, \varphi_2, \varphi_3]$. If the volume is positive, then e is locally convex, if the volume is negative, then e is non-locally-convex.

Given an edge $e = [v_0, v_1]$ in the triangulation \mathcal{T} , if $[v_2, v_3]$ is connected by another edge \bar{e} , then the edge is not flippable.

Input is a set of points S in \mathbb{R}^3 , the output is the convex hull of S.

- Construct an initial triangulation of the point set S;
- ② Push all non-locally convex edges of ${\mathcal T}$ on stack and mark them;
- While the stack is non-empty do
 - $e \leftarrow pop();$
 - unmark e;
 - if e is locally convex then continue;
 - If e can't be flipped then continue;
 - Ilip edge e;
 - push other four edges of the two triangles adjacent to e into the stack if unmarked;
- If there is an edge e, which is not locally convex, then there is some point p_i that is not on the convex hull of S.

Lawson Edge Flip for Convex Hull

Figure: Construct convex hull of $\{\rho_i x_i\}$, using Lawson Edge Flip algorithm.

David Gu (Stony Brook University)

Given a convex hull, which is the radial graph of a convex function ρ , we compute its Legendre dual $1/\rho^*$. Each point $\rho_i x_i$ on the convex hull represents a plane π_i ,

$$\pi_i(y) = rac{1}{
ho_i} rac{1}{\langle x_i, y
angle}.$$

Each face $[\rho_i x_i, \rho_j x_j, \rho_k x_k]$ is dual to a point f^* satisfying the linear equation group,

$$\langle \rho_i x_i, f^* \rangle = \langle \rho_j x_j, f^* \rangle = \langle \rho_k x_k, f^* \rangle$$

Envelope

Given the convex hull $\{\rho_i x_i\}$, each face f_{α} is dual to a point f_{α}^* ; each vertex v_i is dual to a supporting plane v_i^* .

Figure: Legendre dual of the convex hull is the envelope.

David Gu (Stony Brook University)

Spherical Optimal Transportation

November 19, 2020

30 / 56

Given a subject polygon S and a convex clipping polygon C, we use C to clip S. Each time, we use one edge e of C to cut off a corner of S.

Sutherland–Hodgman algorithm

```
foreach Edge clipEdge in clipPolygon do
    List inputList \leftarrow outputList;
   outputList.clear();
   foreach Edge [p_{k-1}, p_k] in inputList do
        Point q \leftarrow ComputeIntersection(p_{k-1}, p_k, clipEdge);
       if p_k inside clipEdge then
           if p_{k-1} not inside clipEdge then
               outputList.add(a):
           end
           outputList.add(p_k);
       end
       else if p_{k-1} inside clipEdge then
           outputList.add(q)
        end
   end
```

- Ompute the convex hull using Lawson edge flipping;
- Output the envelope using Legendre dual algorithm and project the envelope to the spherical power diagram D;
- Clip the power cells using Sutherland-Hodgman algorithm, if necessary;

- Initialize the step length λ ;
- Sompute the convex hull using Lawson edge flipping;
- If the convex hull misses any vertex, then λ ← ¹/₂λ, repeat step 2 and step 3;
- Compute the upper envelope using Legendre dual algorithm, project to the power diagram D;
- If necessary, clip the power cells using Sutherland-Hodgman algorithm;
- If any power cell is empty, then $\lambda \leftarrow \frac{1}{2}\lambda$, repeat step 5 and step 6;

Input: $\{x_1, x_2, \ldots, x_k\} \subset \mathbb{S}^2$, $\{\nu_1, \nu_2, \ldots, \nu_k\}$, $\sum_{i=1}^k \nu_i = 4\pi$, $\nu_i > 0$; Output: Conv $\{\rho_1 x_1, \rho_2 x_2, \ldots, \rho_k x_k\}$ realizing discrete curvature ν_i 's.

- **1** Initialize φ as $\varphi_i \leftarrow x_i$;
- ② Call the spherical power diagram algorithm;
- Ompute the gradient ∇E, the target area minus the current power cell area;
- Sompute the Hessian matrix *H*, using the power diagram edge length;
- Sompute the update direction $Hd = \nabla E$;
- **(**) Call the damping algorithm, set $\varphi \leftarrow \varphi e^{\lambda d}$, such that φ is admissible;
- **O** Repeat step 2 through step 6, until the gradient is close to 0.

Figure: Input brain mesh.

David Gu (Stony Brook University)

Spherical Optimal Transportation

November 19, 2020

36 / 56

Figure: Initial harmonic map.

David Gu (Stony Brook University)

Spherical Optimal Transportation

November 19, 2020 37 / 56

Figure: Final convex hull S_{ρ} .

David Gu (Stony Brook University)

Spherical Optimal Transportation

November 19, 2020 38 / 56

< (T) >

Figure: Final envelope S_{ρ^*} .

David Gu (Stony Brook University)

Spherical Optimal Transportation

November 19, 2020

39 / 56

Figure: Input source and target meshes.

David Gu (Stony Brook University)

Spherical Optimal Transportation

November 19, 2020

40 / 56

Figure: Final convex hull S_{ρ} .

David Gu (Stony Brook University)

Spherical Optimal Transportation

November 19, 2020 41 / 56

Figure: Final envelope S_{ρ^*} .

David Gu (Stony Brook University)

Spherical Optimal Transportation

November 19, 2020

42 / 56

Figure: Input meshes.

David Gu (Stony Brook University)

Spherical Optimal Transportation

November 19, 2020 43 / 56

Figure: Initial harmonic maps.

David Gu (Stony Brook University)

Spherical Optimal Transportation

November 19, 2020 44 / 56

Figure: Final convex hull S_{ρ} .

Figure: Final convex hull S_{ρ} .

David Gu (Stony Brook University)

Spherical Optimal Transportation

November 19, 2020

46 / 56

Instruction

æ

- 'MeshLib', a general purpose mesh library based on Dart data structure.
- 2 'Eigen', numerical solver.
- Ifreeglut', a free-software/open-source alternative to the OpenGL Utility Toolkit (GLUT) library.

- Command: -source mesh -target mesh.sphere.m
- '!': Newton's method
- 'L': Edit the lighting
- 'd': Show convex hull or upper envelope;
- 'g': Show original mesh, spherical image or the convex mesh;
- 'e': Show edges
- 'm': Compute the power cell centers;
- 'c': show the power cell centers;
- 'W': save to the output mesh;
- 'o': Take a snapshot
- '?': Help information

Compute the spherical Power Delaunay and Power Diagram.

- CPDMesh :: _Lawson_edge_swap Lawson edge swap algorithm to compute the convex hull S_ρ;
- CPDMesh :: _Legendre_transform Legendre dual transformation compute envelope S_{ρ*}, spherical power voronoi diagram;
- Oppose the power cellarea Compute the power cell area;
- OPDMesh :: __edge_local_convex verify whether the edge is local convex;
- OPDMesh :: __edge_flippable verify whether the edge is flippable;
- OPDMesh :: _edge_weight calculate the edge weight;

Compute the spherical Power Delaunay and Power Diagram.

- CPDMesh :: __edge_spherical_length() Compute the spherical edge lengths γ_{ij};
- OPDMesh :: __face_power_center() face power center o_f, and face power R_f;
- OPDMesh :: __halfedge_spherical_height() the distance from the power center to the edge;
- OPDMesh :: __edge_interior_weight() calculate the weight for each edge;

Compute the spherical Optimal Mass Transportation Map.

- CSOTDynamicMesh :: _calculate_gradient calculate the gradient of the Alexandrov energy;
- CSOTDynamicMesh :: _update_direction compute the update direction, based on Newton's method;
- OSOTDynamicMesh :: _calculate_hessian calculate the Hessian matrix of the Alexandrov energy;
- OSOTDynamicMesh :: _solve solve the linear system;
- Source CSOTDynamicMesh :: _error compute the relative and L² error;
- OT_Damping() damping algorithm;
- OT_Newton() Newton's method;
- **③** $OT_Initialize()$ set the target measure, the initial ρ_i 's to be one.

Compute the Optimal Mass Transportation Map.

- OPDMesh :: __edge_local_convex verify whether the edge is local convex;
- Opposition of the second se
- Oppose CPDMesh :: __edge_spherical_length() Compute the spherical edge lengths γ_{ij};
- OPDMesh :: __face_power_center() face power center o_f, and face power R_f;
- OPDMesh :: __halfedge_spherical_height() the distance from the power center to the edge d_l;
- OPDMesh :: __edge_interior_weight() calculate the weight for each edge w_{ij};

3

- 3rdparty/MeshLib, header files for mesh;
- OT/include, OT/src, the source files for optimal transportation map;
- CMakeLists.txt, CMake configuration file;

Before you start, read README.md carefully, then go three the following procedures, step by step.

- Install [CMake](https://cmake.org/download/).
- 2 Download the source code of the C++ framework.
- Sonfigure and generate the project for Visual Studio.
- Open the .sln using Visual Studio, and complie the solution.
- Finish your code in your IDE.
- O Run the executable program.

- open a command window
- 2 cd ot-homework4_skeleton
- Image: mkdir build
- Cd build
- o cmake ..
- open OTHomework.sln inside the build directory.