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Convex Geometric View J
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Alexandrov Problem

Alexandrov Problem

Given discrete points {x1,xo, - , Xk} on the unit sphere S?, define a
discrete spherical function p : S — RT, p(x) = S5 ; pid(x — x;), the
radio graph of p is the convex hull

Sp = conv({p1x1, paxa,- -+, PrXk}).

Given the discrete Gaussian curvature at the vertices of S,
{vi,v2, -+ , vk}, satisfying Gauss-Bonnet theorem,

k
Z Vi = 27rx(82) =47, v; >0,
i=1

then find p and S,,.
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Input Mesh

Figure: Spherical harmonic map to S?, (CCG homework 4).

The spherical harmonic map ¢ : M — S?, the image of all the vertices,
{o(v1),(v2), -+, p(vi)} are treated as {x;}/;.
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to faces f,-jk with vertices [v;, vj, vk], then the D
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Supporting Planes

p(x)(z,y)

: h(y
sup, p(z)(z,9) infy &

Given a supporting plane with normal y € S?, height is denoted as p*(y),
then

p*(y) = sup P(x)(y, x).
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Supporting Planes

By
“(y) = sup p(x){y, %) <= —— = inf —— 1
y)=su X))y, X = inf —
P e’ p*(y)  xes? p(x) (x,y)
Denote 7n(y) := p*%y), then we obtain
11 1
= inf ———, X <
n(y) o 00 ey p(x)n(y) )

Therefore ¢(x) = log p(x), ¥(y) = logn(y),
SO(X) + ¢(Y) < - |0g<X,y>,

let c(x,y) be —log(x,y), we obtain c-transform,

Pe(y) = inf, c(x,y) = @(x).

David Gu (Stony Brook University) Spherical Optimal Transportation November 19, 2020



Spherical Optimal Transportation

This gives the Kantorovich formulation of spherical optimal transportation!

sup{ [ eftax+ [ )y o0+ 01) < clxn) |

By c-transform,
©°(y) == inf c(x,y) — o(x).

xeS?

we optimize the functional by finding {(¢«, ¥k)}, where

1/1k = qbia ¢k+1 = T/JE,

(¢k,®k)'s are bounded, whose Lipschitz constant equals to the
sup Vc(x, y) on S?, the energy is monotonously increasing. This shows the
existence of the solution.
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Legendre Dual

p:S? = RT has a Legendre dual p* : RE*,

“y) k (xir ) 1 k1 1
= maXx p;{Xj, s < =mn———,
SR = p(y) =L pi(xiy)

The radial graph of 1/p x (y) is the envelope of the planes

. 1 1
T (y)=— .
o) pi (xi,y)

Sy« is given by

1
Spr = Env{wé,w%, e ,77:,(} =T <*> .
p
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Face Dual Point __face_dual_point(CFace* pf)

Every face on the convex hull f = [p;x;, pjx;, pkx«], is dual to a point
f* = m Nm Ny, where

mi(y) = Maﬂj(y) = M,Wk(y) -
Then f* = An, where n is the normal to the face, and
X = mi(n) = wj(n) = mi(n).
Assume the intersection point is d, then
(pixi, d) = (pjx;, d) = (prxx, d)

hence
d L (pixi — pjxj) d L (pjxj — pixi),

d is along the normal direction. f* is recorded as face — dual_point().
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Legendre Dual
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Figure: Convex hull and envelope. For each vertex v; on the left convex hull, the

dual points (f,.jk)* of the surrounding faces f,.jk gives the dual face of the envelope
on the right side.
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Spherical Power Diagram

Each face of the envelope is recorded as vertex — dual_cell3D(). The
central projection of the envelope to the sphere, induces a spherical power

diagram,
s=JWo(i), W,(i):={y € Slmi(y) < m(y)}.

November 19, 2020 13 /56
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Spherical Power Diagram

Define h; = log pj, suppose w;(h) is the spherical area of the cell W,(i),
the convex energy
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Optimization

The optimization is performed in the admissible space

k
#Hi={h e R*: wi(h) > 0,vi} ) ;h,:
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The gradient of the energy is given by
VE(h) = (wi(h) — v1,wa(h) —vo, -+, wi(h) — vg).

Note that, all the power cells are convex spherical geodesic polygons. We
subdivide the polygon into geodesic triangles, according to Gauss-Bonnet
theorem, the area of the geodesic triangle is given by

A+ B+ C—7m = Area(A).

Suppose the edge lengths of the A are {a, b, c}, inner angles {A, B, C},
the spherical cosine law is

cosc = cosacos b+ sinasin bcos C.

The area of each spherical power cell is recorded as vertex — dual_area().
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Face Power Center o __face_power_center(CFace* pf)

Every face on the convex hull f = [p;x;, pjX;, pkxk], the power center
of € S? satisfies

Re = (pixi, of) = <ijj7 of) = (pkXk, Of)

hence of is the normal nf to the face f, Ry is the power of f. The face
power center of is recorded as face — spherical_power _center(), the face
power Ry is recorded as face — spherical _power _radius().
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Distance from power center to

__halfedge spherical_height()

oL q Or
d; d,

S

The perpendicular foot g is the intersection of the plane through the
sphere center and s, t and the plane through the sphere center and the
power centers oy, o,, hence

(t xs)x (o X or)

|(t x s) x (o5 X o)
Note that d; is an oriented distance, if oy is outside the left triangle, then
d; < 0, recorded as halfedge — spherical_height().
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Spherical Edge Length 7;; __edge_spherical_length()

The spherical edge length of [p;x;, pjx;],
7 = cos™H{xi, xj),

7ij is recorded as edge — spherical_length().
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Edge weight wj; _edge_interior_weight(CEdge* pe)

Y aW,' _ 8WJ _ 1 Rlz sin d/ RI% sin dk (1)
Y7 0h; Ok pipjsinyj \ cos?d cos? dj
6W,‘ aW,'
_ 2
oh; Oh;j (2)

JF#i
where h; = log p;. wjj is recorded as edge — weight().
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Computational Geometric Algorithms )
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File Format

@ The source measure is the uniform distribution on the unit sphere S2.

@ The target measure is represented as a triangle mesh (obj or m
format), each vertex has both (x,y, z) coordinates and (u, v, w)
parameters. Each vertex v; represents a sample x; = (u;, vj, w;),

(u;, vi, w;) specifying the spherical position in S?. The summation of
the areas of all triangular faces adjacent to v; is treated as v;, (after
normalization such that the total area is 47).
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(a). source mesh

(b). target mesh

Figure: Input files, source file specifies the vertex positions (x,y,z) € R and v,
the target file specifies the positions on the sphere (u, v, w) € 2.
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Data Structure & Algorithms

The combinatorial data structure to represent the convex hull and the
dual envelope is half-edge;

The linear numerical solver is Eigen library;
The geometric computation is based on adaptive arithmetic method.

The convex hull is based on Lawson's edge flip algorithm.

© 000

The optimization of Alexandrov energy is based on damping
algorithm.
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Edge Local convex

Given an edge e in the triangulation 7T, find the two neighboring faces,
suppose vertex v; is represented as ; := p;x;, compute the volume of the
tetrahedron [po, ¥1, ¥2, ¢3]. If the volume is positive, then e is locally
convex, if the volume is negative, then e is non-locally-convex.

T
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Edge Flippable

Given an edge e = v, v1] in the triangulation T, if [v2, v3] is connected by
another edge &, then the edge is not flippable.

Vo
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Lawson Edge Flip Algorithm

Input is a set of points S in R3, the output is the convex hull of S.
© Construct an initial triangulation of the point set S;

@ Push all non-locally convex edges of 7 on stack and mark them;

© While the stack is non-empty do

e + pop();

unmark e;

if e is locally convex then continue;

if e can't be flipped then continue;

flip edge e;

push other four edges of the two triangles adjacent to e into the stack
if unmarked;

000000

Q |If there is an edge e, which is not locally convex, then there is some
point p; that is not on the convex hull of S.
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Legendre Dual

Given a convex hull, which is the radial graph of a convex function p, we
compute its Legendre dual 1/p*. Each point p;x; on the convex hull

represents a plane 7,
) 1 1
wi(y) = ———~.
: Pi <Xi7y>
Each face [pix;, pjX;j, pxxk] is dual to a point f* satisfying the linear
equation group,

(pixi, £°) = (pjx;, £*) = (prxu, F*)
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Envelope

Given the convex hull {p;x;}, each face f, is dual to a point f; each
vertex v; is dual to a supporting plane v;.

(L
A

Figure: Legendre dual of the convex hull is the envelope.
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Sutherland—Hodgman algorithm

Given a subject polygon S and a convex clipping polygon C, we use C to
clip S. Each time, we use one edge e of C to cut off a corner of S.
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Sutherland—Hodgman algorithm

foreach Edge clipEdge in clipPolygon do
List inputList < outputList;

outputList.clear();
foreach Edge [pk—1, pk] in inputList do

Point q +— Computelntersection(px_1, p, clipEdge);
if pi inside clipEdge then
if px_1 not inside clipEdge then

‘ outputList.add(q);
end

outputList.add(px);

end

else if p,_1 inside clipEdge then
outputList.add(q)

end

end
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Spherical Power Diagram Algorithm

@ Compute the convex hull using Lawson edge flipping;

@ Compute the envelope using Legendre dual algorithm and project the
envelope to the spherical power diagram D;

© Clip the power cells using Sutherland-Hodgman algorithm, if
necessary;
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Damping Algorithm

@ Initialize the step length X;

@ i+ pie’;

© Compute the convex hull using Lawson edge flipping;

@ If the convex hull misses any vertex, then \ + %)\, repeat step 2 and
step 3;

© Compute the upper envelope using Legendre dual algorithm, project

to the power diagram D ;
@ If necessary, clip the power cells using Sutherland-Hodgman algorithm;
@ If any power cell is empty, then \ + %)\, repeat step 5 and step 6;
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Newton's Method

k
Input: {x1,x0,...,xx} CS? {v1,v2,...,0k}, Yo vi=4nm, v >0;
Output: Conv{pix1, pax2, ..., pkxk} realizing discrete curvature v;'s.

Q Initialize ¢ as ¢; + x;;
@ Call the spherical power diagram algorithm;
o

Compute the gradient VE, the target area minus the current power
cell area;

Compute the Hessian matrix H, using the power diagram edge length;
Compute the update direction Hd = VE;
Call the damping algorithm, set o < we*?, such that ¢ is admissible;

© 000

Repeat step 2 through step 6, until the gradient is close to 0.
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Figure: Final envelope S,-.
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Computational Examples

Figure: Initial harmonic maps.
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Computational Examples

Figure: Final convex hull S,,.
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Computational Examples

Figure: Final convex hull S,,.

David Gu (Stony Brook University) Spherical Optimal Transportation November 19, 2020



Instruction J
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© 'MeshLib’, a general purpose mesh library based on Dart data
structure.

@ 'Eigen’, numerical solver.

@ ‘freeglut’, a free-software/open-source alternative to the OpenGL
Utility Toolkit (GLUT) library.
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Commands and Hot keys

Command: -source mesh -target mesh.sphere.m

"I": Newton's method

'L": Edit the lighting

'd": Show convex hull or upper envelope;

'g": Show original mesh, spherical image or the convex mesh;

°
°

°

°

°

@ 'e": Show edges
@ 'm’: Compute the power cell centers;
@ 'c’: show the power cell centers;

@ 'W': save to the output mesh;

@ '0': Take a snapshot

°

"?": Help information
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SphericalPowerDiagramDynamicMesh class

Compute the spherical Power Delaunay and Power Diagram.

@ CPDMesh :: _Lawson_edge_swap Lawson edge swap algorithm to
compute the convex hull S,;

@ CPDMesh :: _Legendre_transform Legendre dual transformation
compute envelope S,«, spherical power voronoi diagram;

© CPDMesh :: _power_cell,rea Compute the power cell area;

@ CPDMesh :: __edge_local _convex verify whether the edge is local
convex;

©@ CPDMesh :: __edge_flippable verify whether the edge is flippable;
@ CPDMesh :: _edge_weight calculate the edge weight;
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SphericalPowerDiagramDynamicMesh class

Compute the spherical Power Delaunay and Power Diagram.
© CPDMesh :: __edge_spherical _length() Compute the spherical edge
lengths ~;j;

@ CPDMesh :: __face_power_center() face power center of, and face
power Ry;

© CPDMesh :: __halfedge_spherical _height() the distance from the
power center to the edge;

© CPDMesh :: __edge_interior_weight() calculate the weight for each
edge;
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CSOTDynamicMesh class

Compute the spherical Optimal Mass Transportation Map.

@ CSOTDynamicMesh :: _calculate_gradient calculate the gradient of
the Alexandrov energy;

@ CSOTDynamicMesh :: _update_direction compute the update
direction, based on Newton's method;

©

CSOTDynamicMesh :: _calculate_hessian calculate the Hessian matrix
of the Alexandrov energy;

CS0TDynamicMesh :: _solve solve the linear system;
CSOTDynamicMesh :: _error compute the relative and L2 error;
_OT _Damping() damping algorithm;

OT _Newton() Newton's method;

©0 0060

OT _Initialize() set the target measure, the initial p;'s to be one.
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Coding Assignment

Compute the Optimal Mass Transportation Map.

@ CPDMesh :: _edge_local_convex verify whether the edge is local
convex;

@ CPDMesh :: __edge_flippable verify whether the edge is flippable;

© CPDMesh :: __edge_spherical length() Compute the spherical edge
lengths ~j;

© CPDMesh :: __face_power_center() face power center or, and face
power Ry;

© CPDMesh :: __halfedge_spherical _height() the distance from the
power center to the edge dj;

@ CPDMesh :: __edge_interior _weight() calculate the weight for each
edge wjj;
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Directory Structure

@ 3rdparty/MeshLib, header files for mesh;
e OT/include, OT /src, the source files for optimal transportation map;
@ CMakelLists.txt, CMake configuration file;
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Before you start, read README.md carefully, then go three the following
procedures, step by step.

© Install [CMake](https://cmake.org/download/).

@ Download the source code of the C+-+ framework.

© Configure and generate the project for Visual Studio.

@ Open the .sIn using Visual Studio, and complie the solution.
© Finish your code in your IDE.

O Run the executable program.
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Configure and generate the project

open a command window
cd ot-homework4 _skeleton
mkdir build

cd build

cmake ..

©0 0000

open OTHomework.sIn inside the build directory.
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