Assignment Four: Geometric Algorithm for Spherical Optimal Transportation Map

David Gu
Yau Mathematics Science Center
Tsinghua University
Computer Science Department
Stony Brook University
gu@cs.stonybrook.edu

November 19, 2020

Convex Geometric View

Alexandrov Problem

Alexandrov Problem

Given discrete points $\left\{x_{1}, x_{2}, \cdots, x_{k}\right\}$ on the unit sphere \mathbb{S}^{2}, define a discrete spherical function $\rho: \mathbb{S}^{2} \rightarrow \mathbb{R}^{+}, \rho(x)=\sum_{i=1}^{k} \rho_{i} \delta\left(x-x_{i}\right)$, the radio graph of ρ is the convex hull

$$
S_{\rho}=\operatorname{conv}\left(\left\{\rho_{1} x_{1}, \rho_{2} x_{2}, \cdots, \rho_{k} x_{k}\right\}\right)
$$

Given the discrete Gaussian curvature at the vertices of S_{ρ}, $\left\{\nu_{1}, \nu_{2}, \cdots, \nu_{k}\right\}$, satisfying Gauss-Bonnet theorem,

$$
\sum_{i=1}^{k} \nu_{i}=2 \pi \chi\left(\mathbb{S}^{2}\right)=4 \pi, \quad \nu_{i}>0
$$

then find ρ and S_{ρ}.

Input Mesh

Figure: Input mesh M.

Input Mesh

Figure: Spherical harmonic map to \mathbb{S}^{2}, (CCG homework 4).

The spherical harmonic map $\varphi: M \rightarrow \mathbb{S}^{2}$, the image of all the vertices, $\left\{\varphi\left(v_{1}\right), \varphi\left(v_{2}\right), \cdots, \varphi\left(v_{k}\right)\right\}$ are treated as $\left\{x_{i}\right\}_{i=1}^{k}$.

Input Mesh

The total area of M is normalized to 4π. Each vertex $v_{i} \in M$ is adjacent to faces $f_{i}^{j k}$ with vertices $\left[v_{i}, v_{j}, v_{k}\right]$, then the Diract measure ν_{i} is defined as the one third of the total areas of $f_{i}^{j k}$'s,

$$
\nu_{i}=\frac{1}{3} \sum_{j, k} \operatorname{Area}\left(f_{i}^{j k}\right) .
$$

Supporting Planes

Given a supporting plane with normal $y \in \mathbb{S}^{2}$, height is denoted as $\rho^{*}(y)$, then

$$
\rho^{*}(y)=\sup _{x \in \mathbb{S}^{2}} \rho(x)\langle y, x\rangle .
$$

Supporting Planes

By

$$
\rho^{*}(y)=\sup _{x \in \mathbb{S}^{2}} \rho(x)\langle y, x\rangle \Longleftrightarrow \frac{1}{\rho^{*}(y)}=\inf _{x \in \mathbb{S}^{2}} \frac{1}{\rho(x)} \frac{1}{\langle x, y\rangle}
$$

Denote $\eta(y):=\frac{1}{\rho^{*}(y)}$, then we obtain

$$
\eta(y)=\inf _{x \in \mathbb{S}^{2}} \frac{1}{\rho(x)} \frac{1}{\langle x, y\rangle}, \quad \rho(x) \eta(y) \leq \frac{1}{\langle x, y\rangle}
$$

Therefore $\varphi(x)=\log \rho(x), \psi(y)=\log \eta(y)$,

$$
\varphi(x)+\psi(y) \leq-\log \langle x, y\rangle,
$$

let $c(x, y)$ be $-\log \langle x, y\rangle$, we obtain c-transform,

$$
\varphi^{c}(y):=\inf _{x \in \mathbb{S}^{2}} c(x, y)-\varphi(x)
$$

Spherical Optimal Transportation

This gives the Kantorovich formulation of spherical optimal transportation!

$$
\sup \left\{\int_{\mathbb{S}^{2}} \varphi(x) f(x) d x+\int_{\mathbb{S}^{2}} \psi(y) g(y) d y, \varphi(x)+\psi(y) \leq c(x, y)\right\}
$$

By c-transform,

$$
\varphi^{c}(y):=\inf _{x \in \mathbb{S}^{2}} c(x, y)-\varphi(x)
$$

we optimize the functional by finding $\left\{\left(\varphi_{k}, \psi_{k}\right)\right\}$, where

$$
\psi_{k}=\phi_{k}^{c}, \quad \phi_{k+1}=\psi_{k}^{c},
$$

(φ_{k}, ψ_{k})'s are bounded, whose Lipschitz constant equals to the $\sup \nabla c(x, y)$ on \mathbb{S}^{2}, the energy is monotonously increasing. This shows the existence of the solution.

Legendre Dual

$\rho: \mathbb{S}^{2} \rightarrow \mathbb{R}^{+}$has a Legendre dual $\rho^{*}: \mathbb{R}^{\mathbb{R}+}$,

$$
\rho^{*}(y)=\max _{i=1}^{k} \rho_{i}\left\langle x_{i}, y\right\rangle, \Longleftrightarrow \frac{1}{\rho^{*}(y)}=\min _{i=1}^{k} \frac{1}{\rho_{i}} \frac{1}{\left\langle x_{i}, y\right\rangle},
$$

The radial graph of $1 / \rho *(y)$ is the envelope of the planes

$$
\pi_{\rho}^{i}(y)=\frac{1}{\rho_{i}} \frac{1}{\left\langle x_{i}, y\right\rangle}
$$

$S_{\rho^{*}}$ is given by

$$
S_{\rho^{*}}=\operatorname{Env}\left\{\pi_{\rho}^{1}, \pi_{\rho}^{2}, \ldots, \pi_{\rho}^{k}\right\}=\Gamma\left(\frac{1}{\rho^{*}}\right) .
$$

Face Dual Point __face_dual_point(CFace* pf)

Every face on the convex hull $f=\left[\rho_{i} x_{i}, \rho_{j} x_{j}, \rho_{k} x_{k}\right]$, is dual to a point $f^{*}=\pi_{i} \cap \pi_{j} \cap \pi_{k}$, where

$$
\pi_{i}(y)=\frac{1}{\rho_{i}\left\langle x_{i}, y\right\rangle}, \pi_{j}(y)=\frac{1}{\rho_{i}\left\langle x_{j}, y\right\rangle}, \pi_{k}(y)=\frac{1}{\rho_{i}\left\langle x_{k}, y\right\rangle},
$$

Then $f^{*}=\lambda n$, where n is the normal to the face, and

$$
\lambda=\pi_{i}(n)=\pi_{j}(n)=\pi_{k}(n)
$$

Assume the intersection point is d, then

$$
\left\langle\rho_{i} x_{i}, d\right\rangle=\left\langle\rho_{j} x_{j}, d\right\rangle=\left\langle\rho_{k} x_{k}, d\right\rangle
$$

hence

$$
d \perp\left(\rho_{i} x_{i}-\rho_{j} x_{j}\right) \quad d \perp\left(\rho_{j} x_{j}-\rho_{k} x_{k}\right)
$$

d is along the normal direction. f^{*} is recorded as face \rightarrow dual_point () .

Legendre Dual

$\operatorname{Conv}\left(\left\{\rho_{i} x_{i}\right\}\right)$
$\operatorname{Env}\left(\left\{\rho(y)=\frac{1}{\rho_{i}} \frac{1}{\langle x, y\rangle}\right\}\right)$
Figure: Convex hull and envelope. For each vertex v_{i} on the left convex hull, the dual points $\left(f_{i}^{j k}\right)^{*}$ of the surrounding faces $f_{i}^{j k}$ gives the dual face of the envelope on the right side.

Spherical Power Diagram

Each face of the envelope is recorded as vertex \rightarrow dual_cell3D(). The central projection of the envelope to the sphere, induces a spherical power diagram,

$$
\mathbb{S}=\bigcup_{i=1}^{k} W_{\rho}(i), \quad W_{\rho}(i):=\left\{y \in \mathbb{S}^{2} \mid \pi_{\rho}^{i}(y) \leq \pi_{\rho}^{j}(y)\right\}
$$

Spherical Power Diagram

Define $h_{i}=\log \rho_{i}$, suppose $w_{i}(\mathbf{h})$ is the spherical area of the cell $W_{\rho}(i)$, the convex energy

$$
E(\mathbf{h}):=\int^{\rho} \sum_{i=1}^{k} w_{i}(\mathbf{h}) d h_{i}-\sum_{i=1}^{k} \nu_{i} h_{i} .
$$

Optimization

The optimization is performed in the admissible space

$$
\mathcal{H}:=\left\{\mathbf{h} \in \mathbb{R}^{k}: w_{i}(\mathbf{h})>0, \forall i\right\} \bigcap\left\{\sum_{i=1}^{k} h_{i}=0\right\}
$$

Gradient

The gradient of the energy is given by

$$
\nabla E(\mathbf{h})=\left(w_{1}(\mathbf{h})-\nu_{1}, w_{2}(\mathbf{h})-\nu_{2}, \cdots, w_{k}(\mathbf{h})-\nu_{k}\right) .
$$

Note that, all the power cells are convex spherical geodesic polygons. We subdivide the polygon into geodesic triangles, according to Gauss-Bonnet theorem, the area of the geodesic triangle is given by

$$
A+B+C-\pi=\operatorname{Area}(\Delta)
$$

Suppose the edge lengths of the Δ are $\{a, b, c\}$, inner angles $\{A, B, C\}$, the spherical cosine law is

$$
\cos c=\cos a \cos b+\sin a \sin b \cos C
$$

The area of each spherical power cell is recorded as vertex \rightarrow dual_area().

Face Power Center of __face_power_center(CFace* pf)

Every face on the convex hull $f=\left[\rho_{i} x_{i}, \rho_{j} x_{j}, \rho_{k} x_{k}\right]$, the power center $o_{f} \in \mathbb{S}^{2}$ satisfies

$$
R_{f}=\left\langle\rho_{i} x_{i}, o_{f}\right\rangle=\left\langle\rho_{j} x_{j}, o_{f}\right\rangle=\left\langle\rho_{k} x_{k}, o_{f}\right\rangle
$$

hence o_{f} is the normal n_{f} to the face f, R_{f} is the power of f. The face power center o_{f} is recorded as face \rightarrow spherical_power_center(), the face power R_{f} is recorded as face \rightarrow spherical_power_radius().

Distance from power center to edge d_{l} _halfedge_spherical_height()

The perpendicular foot q is the intersection of the plane through the sphere center and s, t and the plane through the sphere center and the power centers o_{l}, o_{r}, hence

$$
q=\frac{(t \times s) \times\left(o_{l} \times o_{r}\right)}{\left|(t \times s) \times\left(o_{l} \times o_{r}\right)\right|},
$$

Note that d_{l} is an oriented distance, if o_{l} is outside the left triangle, then $d_{l}<0$, recorded as halfedge \rightarrow spherical_height ().

Spherical Edge Length $\gamma_{i j}$ _-edge_spherical_length()

The spherical edge length of $\left[\rho_{i} x_{i}, \rho_{j} x_{j}\right]$,

$$
\gamma_{i j}=\cos ^{-1}\left\langle x_{i}, x_{j}\right\rangle,
$$

$\gamma_{i j}$ is recorded as edge \rightarrow spherical_length () .

Edge weight $w_{i j}$ _edge_interior_weight(CEdge* pe)

$$
\begin{gather*}
w_{i j}=\frac{\partial w_{i}}{\partial h_{j}}=\frac{\partial w_{j}}{\partial h_{i}}=-\frac{1}{\rho_{i} \rho_{j} \sin \gamma_{i j}}\left(\frac{R_{l}^{2} \sin d_{l}}{\cos ^{2} d_{l}}+\frac{R_{k}^{2} \sin d_{k}}{\cos ^{2} d_{k}}\right) \tag{1}\\
\frac{\partial w_{i}}{\partial h_{i}}=-\sum_{j \neq i} \frac{\partial w_{i}}{\partial h_{j}} \tag{2}
\end{gather*}
$$

where $h_{i}=\log \rho_{i} . w_{i j}$ is recorded as edge \rightarrow weight () .

Computational Geometric Algorithms

File Format

- The source measure is the uniform distribution on the unit sphere \mathbb{S}^{2}.
- The target measure is represented as a triangle mesh (obj or m format), each vertex has both (x, y, z) coordinates and (u, v, w) parameters. Each vertex v_{i} represents a sample $x_{i}=\left(u_{i}, v_{i}, w_{i}\right)$, $\left(u_{i}, v_{i}, w_{i}\right)$ specifying the spherical position in \mathbb{S}^{2}. The summation of the areas of all triangular faces adjacent to v_{i} is treated as ν_{i}, (after normalization such that the total area is 4π).

File IO

(a). source mesh

(b). target mesh

Figure: Input files, source file specifies the vertex positions $(x, y, z) \in \mathbb{R}^{3}$ and ν, the target file specifies the positions on the sphere $(u, v, w) \in \mathbb{S}^{2}$.

Data Structure \& Algorithms

(1) The combinatorial data structure to represent the convex hull and the dual envelope is half-edge;
(2) The linear numerical solver is Eigen library;
(3) The geometric computation is based on adaptive arithmetic method.
(9) The convex hull is based on Lawson's edge flip algorithm.
(5) The optimization of Alexandrov energy is based on damping algorithm.

Edge Local convex

Given an edge e in the triangulation \mathcal{T}, find the two neighboring faces, suppose vertex v_{i} is represented as $\varphi_{i}:=\rho_{i} x_{i}$, compute the volume of the tetrahedron $\left[\varphi_{0}, \varphi_{1}, \varphi_{2}, \varphi_{3}\right.$]. If the volume is positive, then e is locally convex, if the volume is negative, then e is non-locally-convex.

Edge Flippable

Given an edge $e=\left[v_{0}, v_{1}\right]$ in the triangulation \mathcal{T}, if $\left[v_{2}, v_{3}\right]$ is connected by another edge \bar{e}, then the edge is not flippable.

Lawson Edge Flip Algorithm

Input is a set of points S in \mathbb{R}^{3}, the output is the convex hull of S.
(1) Construct an initial triangulation of the point set S;
(2) Push all non-locally convex edges of \mathcal{T} on stack and mark them;
(3) While the stack is non-empty do
(1) $e \leftarrow \operatorname{pop}()$;
(2) unmark e;
(3) if e is locally convex then continue;
(4) if e can't be flipped then continue;
(5) flip edge e;
(0) push other four edges of the two triangles adjacent to e into the stack if unmarked;
(9) If there is an edge e, which is not locally convex, then there is some point p_{i} that is not on the convex hull of S.

Lawson Edge Flip for Convex Hull

Figure: Construct convex hull of $\left\{\rho_{i} x_{i}\right\}$, using Lawson Edge Flip algorithm.

Legendre Dual

Given a convex hull, which is the radial graph of a convex function ρ, we compute its Legendre dual $1 / \rho^{*}$. Each point $\rho_{i} x_{i}$ on the convex hull represents a plane π_{i},

$$
\pi_{i}(y)=\frac{1}{\rho_{i}} \frac{1}{\left\langle x_{i}, y\right\rangle}
$$

Each face $\left[\rho_{i} x_{i}, \rho_{j} x_{j}, \rho_{k} x_{k}\right]$ is dual to a point f^{*} satisfying the linear equation group,

$$
\left\langle\rho_{i} x_{i}, f^{*}\right\rangle=\left\langle\rho_{j} x_{j}, f^{*}\right\rangle=\left\langle\rho_{k} x_{k}, f^{*}\right\rangle
$$

Envelope

Given the convex hull $\left\{\rho_{i} x_{i}\right\}$, each face f_{α} is dual to a point f_{α}^{*}; each vertex v_{i} is dual to a supporting plane v_{i}^{*}.

Figure: Legendre dual of the convex hull is the envelope.

Sutherland-Hodgman algorithm

Given a subject polygon S and a convex clipping polygon C, we use C to clip S. Each time, we use one edge e of C to cut off a corner of S.

Sutherland-Hodgman algorithm

foreach Edge clipEdge in clipPolygon do

List inputList \leftarrow outputList;
outputList.clear();
foreach Edge $\left[p_{k-1}, p_{k}\right.$] in inputList do
Point $\mathrm{q} \leftarrow$ Computelntersection $\left(p_{k-1}, p_{k}\right.$, clipEdge);
if p_{k} inside clipEdge then
if p_{k-1} not inside clipEdge then outputList.add(q);
end
outputList.add $\left(p_{k}\right)$;
end
else if p_{k-1} inside clipEdge then
outputList.add(q)
end
end

Spherical Power Diagram Algorithm

(1) Compute the convex hull using Lawson edge flipping;
(2) Compute the envelope using Legendre dual algorithm and project the envelope to the spherical power diagram \mathcal{D};
(3) Clip the power cells using Sutherland-Hodgman algorithm, if necessary;

Damping Algorithm

(1) Initialize the step length λ;
(2) $\varphi_{i} \leftarrow \varphi_{i} e^{\lambda d_{i}}$;
(3) Compute the convex hull using Lawson edge flipping;
(4) If the convex hull misses any vertex, then $\lambda \leftarrow \frac{1}{2} \lambda$, repeat step 2 and step 3;
(5) Compute the upper envelope using Legendre dual algorithm, project to the power diagram \mathcal{D};
(0) If necessary, clip the power cells using Sutherland-Hodgman algorithm;
(1) If any power cell is empty, then $\lambda \leftarrow \frac{1}{2} \lambda$, repeat step 5 and step 6 ;

Newton's Method

Input: $\left\{x_{1}, x_{2}, \ldots, x_{k}\right\} \subset \mathbb{S}^{2},\left\{\nu_{1}, \nu_{2}, \ldots, \nu_{k}\right\}, \sum_{i=1}^{k} \nu_{i}=4 \pi, \nu_{i}>0$; Output: $\operatorname{Conv}\left\{\rho_{1} x_{1}, \rho_{2} x_{2}, \ldots, \rho_{k} x_{k}\right\}$ realizing discrete curvature ν_{i} 's.
(1) Initialize φ as $\varphi_{i} \leftarrow x_{i}$;
(2) Call the spherical power diagram algorithm;
(3) Compute the gradient ∇E, the target area minus the current power cell area;
(9) Compute the Hessian matrix H, using the power diagram edge length;
(3) Compute the update direction $H d=\nabla E$;
(0) Call the damping algorithm, set $\varphi \leftarrow \varphi e^{\lambda d}$, such that φ is admissible;
((Repeat step 2 through step 6 , until the gradient is close to 0 .

Computational Examples

Figure: Input brain mesh.

Computational Examples

Figure: Initial harmonic map.

Computational Examples

Figure: Final convex hull S_{ρ}.

Computational Examples

Figure: Final envelope $S_{\rho^{*}}$.

Computational Examples

Figure: Input source and target meshes.

Computational Examples

Figure: Final convex hull S_{ρ}.

Computational Examples

Figure: Final envelope $S_{\rho^{*}}$.

Computational Examples

Figure: Input meshes.

Computational Examples

Figure: Initial harmonic maps.

Computational Examples

Figure: Final convex hull S_{ρ}.

Computational Examples

Figure: Final convex hull S_{ρ}.

Instruction

Dependencies

(1) 'MeshLib', a general purpose mesh library based on Dart data structure.
(2) 'Eigen', numerical solver.
(3) 'freeglut', a free-software/open-source alternative to the OpenGL Utility Toolkit (GLUT) library.

Commands and Hot keys

- Command: -source mesh -target mesh.sphere.m
- '!': Newton's method
- 'L': Edit the lighting
- 'd': Show convex hull or upper envelope;
- ' g ': Show original mesh, spherical image or the convex mesh;
- 'e': Show edges
- 'm': Compute the power cell centers;
- 'c': show the power cell centers;
- 'W': save to the output mesh;
- 'o': Take a snapshot
- '?': Help information

SphericalPowerDiagramDynamicMesh class

Compute the spherical Power Delaunay and Power Diagram.
(1) CPDMesh :: _Lawson_edge_swap Lawson edge swap algorithm to compute the convex hull S_{ρ};
(2) CPDMesh :: _Legendre_transform Legendre dual transformation compute envelope $S_{\rho^{*}}$, spherical power voronoi diagram;
(3) CPDMesh :: _power_cella ${ }_{a}$ rea Compute the power cell area;
(9) CPDMesh :: __edge_local_convex verify whether the edge is local convex;
(3) CPDMesh :: __edge_flippable verify whether the edge is flippable;
(CPDMesh :: _edge_weight calculate the edge weight;

SphericalPowerDiagramDynamicMesh class

Compute the spherical Power Delaunay and Power Diagram.
(1) CPDMesh :: __edge_spherical_length() Compute the spherical edge lengths $\gamma_{i j}$;
(2) CPDMesh :: __face_power_center() face power center o_{f}, and face power R_{f};
(3) CPDMesh :: __halfedge_spherical_height() the distance from the power center to the edge;
(9) CPDMesh :: __edge_interior_weight() calculate the weight for each edge;

CSOTDynamicMesh class

Compute the spherical Optimal Mass Transportation Map.
(1) CSOTDynamicMesh :: _calculate_gradient calculate the gradient of the Alexandrov energy;
(2) CSOTDynamicMesh :: _update_direction compute the update direction, based on Newton's method;
(3) CSOTDynamicMesh :: _calculate_hessian calculate the Hessian matrix of the Alexandrov energy;
(9) CSOTDynamicMesh :: _solve solve the linear system;
(5) CSOTDynamicMesh :: _error compute the relative and L^{2} error;

- _OT_Damping() damping algorithm;
(1) OT_Newton() Newton's method;
(8) OT_Initialize() set the target measure, the initial ρ_{i} 's to be one.

Coding Assignment

Compute the Optimal Mass Transportation Map.
(1) CPDMesh :: __edge_local_convex verify whether the edge is local convex;
(2) CPDMesh :: __edge_flippable verify whether the edge is flippable;
(3) CPDMesh :: __edge_spherical_length() Compute the spherical edge lengths $\gamma_{i j}$;
(9) CPDMesh :: __face_power_center() face power center o_{f}, and face power R_{f};
(3) CPDMesh :: __halfedge_spherical_height() the distance from the power center to the edge d_{l};
(6) CPDMesh :: __edge_interior_weight() calculate the weight for each edge $w_{i j}$;

Directory Structure

- 3rdparty/MeshLib, header files for mesh;
- OT/include, OT/src, the source files for optimal transportation map;
- CMakeLists.txt, CMake configuration file;

Configuration

Before you start, read README.md carefully, then go three the following procedures, step by step.
(1) Install [CMake](https://cmake.org/download/).
(2) Download the source code of the C++ framework.
(3) Configure and generate the project for Visual Studio.
(9) Open the .sln using Visual Studio, and complie the solution.
(6) Finish your code in your IDE.
(6) Run the executable program.

Configure and generate the project

(1) open a command window
(2) cd ot-homework4_skeleton
(3) mkdir build
(9) cd build
(3) cmake ..
(6) open OTHomework.sIn inside the build directory.

