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Convex Geometric View
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Alexandrov Problem

Alexandrov Problem

Given discrete points {x1, x2, · · · , xk} on the unit sphere S2, define a
discrete spherical function ρ : S2 → R+, ρ(x) =

∑k
i=1 ρiδ(x − xi ), the

radio graph of ρ is the convex hull

Sρ = conv({ρ1x1, ρ2x2, · · · , ρkxk}).

Given the discrete Gaussian curvature at the vertices of Sρ,
{ν1, ν2, · · · , νk}, satisfying Gauss-Bonnet theorem,

k∑
i=1

νi = 2πχ(S2) = 4π, νi > 0,

then find ρ and Sρ.
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Input Mesh

Figure: Input mesh M.
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Input Mesh

Figure: Spherical harmonic map to S2, (CCG homework 4).

The spherical harmonic map ϕ : M → S2, the image of all the vertices,
{ϕ(v1), ϕ(v2), · · · , ϕ(vk)} are treated as {xi}ki=1.
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Input Mesh

The total area of M is normalized to 4π. Each vertex vi ∈ M is adjacent
to faces f jk

i with vertices [vi , vj , vk ], then the Diract measure νi is defined

as the one third of the total areas of f jk
i ’s,

νi =
1

3

∑
j ,k

Area(f jk
i ).

David Gu (Stony Brook University) Spherical Optimal Transportation November 19, 2020 6 / 56



Supporting Planes
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Given a supporting plane with normal y ∈ S2, height is denoted as ρ∗(y),
then

ρ∗(y) = sup
x∈S2

ρ(x)〈y , x〉.
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Supporting Planes

By

ρ∗(y) = sup
x∈S2

ρ(x)〈y , x〉 ⇐⇒ 1

ρ∗(y)
= inf

x∈S2
1

ρ(x)

1

〈x , y〉

Denote η(y) := 1
ρ∗(y) , then we obtain

η(y) = inf
x∈S2

1

ρ(x)

1

〈x , y〉 , ρ(x)η(y) ≤ 1

〈x , y〉

Therefore ϕ(x) = log ρ(x), ψ(y) = log η(y),

ϕ(x) + ψ(y) ≤ − log〈x , y〉,

let c(x , y) be − log〈x , y〉, we obtain c-transform,

ϕc(y) := inf
x∈S2

c(x , y)− ϕ(x).
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Spherical Optimal Transportation

This gives the Kantorovich formulation of spherical optimal transportation!

sup

{∫
S2
ϕ(x)f (x)dx +

∫
S2
ψ(y)g(y)dy , ϕ(x) + ψ(y) ≤ c(x , y)

}
By c-transform,

ϕc(y) := inf
x∈S2

c(x , y)− ϕ(x).

we optimize the functional by finding {(ϕk , ψk)}, where

ψk = φck , φk+1 = ψc
k ,

(ϕk , ψk)’s are bounded, whose Lipschitz constant equals to the
sup∇c(x , y) on S2, the energy is monotonously increasing. This shows the
existence of the solution.
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Legendre Dual

ρ : S2 → R+ has a Legendre dual ρ∗ : RR+,

ρ∗(y) =
k

max
i=1

ρi 〈xi , y〉, ⇐⇒
1

ρ∗(y)
=

k
min
i=1

1

ρi

1

〈xi , y〉
,

The radial graph of 1/ρ ∗ (y) is the envelope of the planes

πiρ(y) =
1

ρi

1

〈xi , y〉
.

Sρ∗ is given by

Sρ∗ = Env{π1ρ, π2ρ, . . . , πkρ} = Γ

(
1

ρ∗

)
.
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Face Dual Point face dual point(CFace* pf)

Every face on the convex hull f = [ρixi , ρjxj , ρkxk ], is dual to a point
f ∗ = πi ∩ πj ∩ πk , where

πi (y) =
1

ρi 〈xi , y〉
, πj(y) =

1

ρi 〈xj , y〉
, πk(y) =

1

ρi 〈xk , y〉
,

Then f ∗ = λn, where n is the normal to the face, and

λ = πi (n) = πj(n) = πk(n).

Assume the intersection point is d , then

〈ρixi , d〉 = 〈ρjxj , d〉 = 〈ρkxk , d〉

hence
d ⊥ (ρixi − ρjxj) d ⊥ (ρjxj − ρkxk),

d is along the normal direction. f ∗ is recorded as face → dual point().
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Legendre Dual

Conv({ρixi}) Env({ρ(y) = 1
ρi

1
〈xi ,y〉})

Figure: Convex hull and envelope. For each vertex vi on the left convex hull, the
dual points (f jk

i )∗ of the surrounding faces f jk
i gives the dual face of the envelope

on the right side.
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Spherical Power Diagram

Each face of the envelope is recorded as vertex → dual cell3D(). The
central projection of the envelope to the sphere, induces a spherical power
diagram,

S =
k⋃

i=1

Wρ(i), Wρ(i) := {y ∈ S2|πiρ(y) ≤ πjρ(y)}.
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Spherical Power Diagram

Define hi = log ρi , suppose wi (h) is the spherical area of the cell Wρ(i),
the convex energy

E (h) :=

∫ ρ k∑
i=1

wi (h)dhi −
k∑

i=1

νihi .
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Optimization

The optimization is performed in the admissible space

H :=
{
h ∈ Rk : wi (h) > 0, ∀i

}⋂{
k∑

i=1

hi = 0

}
.
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Gradient

The gradient of the energy is given by

∇E (h) = (w1(h)− ν1,w2(h)− ν2, · · · ,wk(h)− νk).

Note that, all the power cells are convex spherical geodesic polygons. We
subdivide the polygon into geodesic triangles, according to Gauss-Bonnet
theorem, the area of the geodesic triangle is given by

A + B + C − π = Area(∆).

Suppose the edge lengths of the ∆ are {a, b, c}, inner angles {A,B,C},
the spherical cosine law is

cos c = cos a cos b + sin a sin b cos C .

The area of each spherical power cell is recorded as vertex → dual area().
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Face Power Center of face power center(CFace* pf)

Every face on the convex hull f = [ρixi , ρjxj , ρkxk ], the power center
of ∈ S2 satisfies

Rf = 〈ρixi , of 〉 = 〈ρjxj , of 〉 = 〈ρkxk , of 〉

hence of is the normal nf to the face f , Rf is the power of f . The face
power center of is recorded as face → spherical power center(), the face
power Rf is recorded as face → spherical power radius().
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Distance from power center to edge dl

halfedge spherical height()

dk
pi pj

pk

o

s

t

ol or

dl dr

q

The perpendicular foot q is the intersection of the plane through the
sphere center and s, t and the plane through the sphere center and the
power centers ol , or , hence

q =
(t × s)× (ol × or )

|(t × s)× (ol × or )| ,

Note that dl is an oriented distance, if ol is outside the left triangle, then
dl < 0, recorded as halfedge → spherical height().
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Spherical Edge Length γij edge spherical length()

dk
pi pj

pk

o

s

t

ol or

dl dr

q

The spherical edge length of [ρixi , ρjxj ],

γij = cos−1〈xi , xj〉,

γij is recorded as edge → spherical length().
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Edge weight wij edge interior weight(CEdge* pe)

wij =
∂wi

∂hj
=
∂wj

∂hi
= − 1

ρiρj sin γij

(
R2
l sin dl

cos2 dl
+

R2
k sin dk

cos2 dk

)
(1)

∂wi

∂hi
= −

∑
j 6=i

∂wi

∂hj
(2)

where hi = log ρi . wij is recorded as edge → weight().
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Computational Geometric Algorithms
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File Format

The source measure is the uniform distribution on the unit sphere S2.

The target measure is represented as a triangle mesh (obj or m
format), each vertex has both (x , y , z) coordinates and (u, v ,w)
parameters. Each vertex vi represents a sample xi = (ui , vi ,wi ),
(ui , vi ,wi ) specifying the spherical position in S2. The summation of
the areas of all triangular faces adjacent to vi is treated as νi , (after
normalization such that the total area is 4π).
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File IO

(a). source mesh (b). target mesh

Figure: Input files, source file specifies the vertex positions (x , y , z) ∈ R3 and ν,
the target file specifies the positions on the sphere (u, v ,w) ∈ S2.
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Data Structure & Algorithms

1 The combinatorial data structure to represent the convex hull and the
dual envelope is half-edge;

2 The linear numerical solver is Eigen library;

3 The geometric computation is based on adaptive arithmetic method.

4 The convex hull is based on Lawson’s edge flip algorithm.

5 The optimization of Alexandrov energy is based on damping
algorithm.
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Edge Local convex

Given an edge e in the triangulation T , find the two neighboring faces,
suppose vertex vi is represented as ϕi := ρixi , compute the volume of the
tetrahedron [ϕ0, ϕ1, ϕ2, ϕ3]. If the volume is positive, then e is locally
convex, if the volume is negative, then e is non-locally-convex.

ϕ0

ϕ1ϕ2

ϕ3
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Edge Flippable

Given an edge e = [v0, v1] in the triangulation T , if [v2, v3] is connected by
another edge ē, then the edge is not flippable.

v0 v1

v2

v3

e ē
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Lawson Edge Flip Algorithm

Input is a set of points S in R3, the output is the convex hull of S .

1 Construct an initial triangulation of the point set S ;

2 Push all non-locally convex edges of T on stack and mark them;
3 While the stack is non-empty do

1 e ← pop();
2 unmark e;
3 if e is locally convex then continue;
4 if e can’t be flipped then continue;
5 flip edge e;
6 push other four edges of the two triangles adjacent to e into the stack

if unmarked;

4 If there is an edge e, which is not locally convex, then there is some
point pi that is not on the convex hull of S .
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Lawson Edge Flip for Convex Hull

Figure: Construct convex hull of {ρixi}, using Lawson Edge Flip algorithm.
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Legendre Dual

Given a convex hull, which is the radial graph of a convex function ρ, we
compute its Legendre dual 1/ρ∗. Each point ρixi on the convex hull
represents a plane πi ,

πi (y) =
1

ρi

1

〈xi , y〉
.

Each face [ρixi , ρjxj , ρkxk ] is dual to a point f ∗ satisfying the linear
equation group,

〈ρixi , f ∗〉 = 〈ρjxj , f ∗〉 = 〈ρkxk , f
∗〉
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Envelope

Given the convex hull {ρixi}, each face fα is dual to a point f ∗α ; each
vertex vi is dual to a supporting plane v∗i .

Figure: Legendre dual of the convex hull is the envelope.
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Sutherland–Hodgman algorithm

Given a subject polygon S and a convex clipping polygon C , we use C to
clip S . Each time, we use one edge e of C to cut off a corner of S .
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Sutherland–Hodgman algorithm

foreach Edge clipEdge in clipPolygon do
List inputList ← outputList;

outputList.clear();
foreach Edge [pk−1, pk ] in inputList do

Point q ← ComputeIntersection(pk−1, pk , clipEdge);
if pk inside clipEdge then

if pk−1 not inside clipEdge then

outputList.add(q);

end

outputList.add(pk);

end
else if pk−1 inside clipEdge then

outputList.add(q)
end

end
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Spherical Power Diagram Algorithm

1 Compute the convex hull using Lawson edge flipping;

2 Compute the envelope using Legendre dual algorithm and project the
envelope to the spherical power diagram D;

3 Clip the power cells using Sutherland-Hodgman algorithm, if
necessary;

David Gu (Stony Brook University) Spherical Optimal Transportation November 19, 2020 33 / 56



Damping Algorithm

1 Initialize the step length λ;

2 ϕi ← ϕie
λdi ;

3 Compute the convex hull using Lawson edge flipping;

4 If the convex hull misses any vertex, then λ← 1
2λ, repeat step 2 and

step 3;

5 Compute the upper envelope using Legendre dual algorithm, project
to the power diagram D ;

6 If necessary, clip the power cells using Sutherland-Hodgman algorithm;

7 If any power cell is empty, then λ← 1
2λ, repeat step 5 and step 6;
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Newton’s Method

Input: {x1, x2, . . . , xk} ⊂ S2, {ν1, ν2, . . . , νk},
∑k

i=1 νi = 4π, νi > 0;
Output: Conv{ρ1x1, ρ2x2, . . . , ρkxk} realizing discrete curvature νi ’s.

1 Initialize ϕ as ϕi ← xi ;

2 Call the spherical power diagram algorithm;

3 Compute the gradient ∇E , the target area minus the current power
cell area;

4 Compute the Hessian matrix H, using the power diagram edge length;

5 Compute the update direction Hd = ∇E ;

6 Call the damping algorithm, set ϕ← ϕeλd , such that ϕ is admissible;

7 Repeat step 2 through step 6, until the gradient is close to 0.
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Computational Examples

Figure: Input brain mesh.
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Computational Examples

Figure: Initial harmonic map.
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Computational Examples

Figure: Final convex hull Sρ.
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Computational Examples

Figure: Final envelope Sρ∗ .
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Computational Examples

Figure: Input source and target meshes.
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Computational Examples

Figure: Final convex hull Sρ.
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Computational Examples

Figure: Final envelope Sρ∗ .
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Computational Examples

Figure: Input meshes.
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Computational Examples

Figure: Initial harmonic maps.
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Computational Examples

Figure: Final convex hull Sρ.
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Computational Examples

Figure: Final convex hull Sρ.
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Instruction
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Dependencies

1 ’MeshLib’, a general purpose mesh library based on Dart data
structure.

2 ’Eigen’, numerical solver.

3 ‘freeglut‘, a free-software/open-source alternative to the OpenGL
Utility Toolkit (GLUT) library.
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Commands and Hot keys

Command: -source mesh -target mesh.sphere.m

’!’: Newton’s method

’L’: Edit the lighting

’d’: Show convex hull or upper envelope;

’g’: Show original mesh, spherical image or the convex mesh;

’e’: Show edges

’m’: Compute the power cell centers;

’c’: show the power cell centers;

’W’: save to the output mesh;

’o’: Take a snapshot

’?’: Help information
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SphericalPowerDiagramDynamicMesh class

Compute the spherical Power Delaunay and Power Diagram.

1 CPDMesh :: Lawson edge swap Lawson edge swap algorithm to
compute the convex hull Sρ;

2 CPDMesh :: Legendre transform Legendre dual transformation
compute envelope Sρ∗ , spherical power voronoi diagram;

3 CPDMesh :: power cellarea Compute the power cell area;

4 CPDMesh :: edge local convex verify whether the edge is local
convex;

5 CPDMesh :: edge flippable verify whether the edge is flippable;

6 CPDMesh :: edge weight calculate the edge weight;
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SphericalPowerDiagramDynamicMesh class

Compute the spherical Power Delaunay and Power Diagram.

1 CPDMesh :: edge spherical length() Compute the spherical edge
lengths γij ;

2 CPDMesh :: face power center() face power center of , and face
power Rf ;

3 CPDMesh :: halfedge spherical height() the distance from the
power center to the edge;

4 CPDMesh :: edge interior weight() calculate the weight for each
edge;
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CSOTDynamicMesh class

Compute the spherical Optimal Mass Transportation Map.

1 CSOTDynamicMesh :: calculate gradient calculate the gradient of
the Alexandrov energy;

2 CSOTDynamicMesh :: update direction compute the update
direction, based on Newton’s method;

3 CSOTDynamicMesh :: calculate hessian calculate the Hessian matrix
of the Alexandrov energy;

4 CSOTDynamicMesh :: solve solve the linear system;

5 CSOTDynamicMesh :: error compute the relative and L2 error;

6 OT Damping() damping algorithm;

7 OT Newton() Newton’s method;

8 OT Initialize() set the target measure, the initial ρi ’s to be one.
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Coding Assignment

Compute the Optimal Mass Transportation Map.

1 CPDMesh :: edge local convex verify whether the edge is local
convex;

2 CPDMesh :: edge flippable verify whether the edge is flippable;

3 CPDMesh :: edge spherical length() Compute the spherical edge
lengths γij ;

4 CPDMesh :: face power center() face power center of , and face
power Rf ;

5 CPDMesh :: halfedge spherical height() the distance from the
power center to the edge dl ;

6 CPDMesh :: edge interior weight() calculate the weight for each
edge wij ;
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Directory Structure

3rdparty/MeshLib, header files for mesh;

OT/include, OT/src, the source files for optimal transportation map;

CMakeLists.txt, CMake configuration file;
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Configuration

Before you start, read README.md carefully, then go three the following
procedures, step by step.

1 Install [CMake](https://cmake.org/download/).

2 Download the source code of the C++ framework.

3 Configure and generate the project for Visual Studio.

4 Open the .sln using Visual Studio, and complie the solution.

5 Finish your code in your IDE.

6 Run the executable program.
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Configure and generate the project

1 open a command window

2 cd ot-homework4 skeleton

3 mkdir build

4 cd build

5 cmake ..

6 open OTHomework.sln inside the build directory.
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