Assignment Three: Geometric Algorithm for Optimal Transportation Map

David Gu

Yau Mathematics Science Center Tsinghua University Computer Science Department Stony Brook University

gu@cs.stonybrook.edu

November 6, 2020

Convex Geometric View

Monge Problem

Monge Problem

Given planar domains with probability measures (Ω,μ) and (Ω^*,ν) , Ω is convex, total measures are equal $\mu(\Omega)=\nu(\Omega^*)$, the density functions are bounded $d\mu=f(x)dx$ and $d\nu=g(y)dy$, the transportation cost function is $c(x,y)=\frac{1}{2}|x-y|$, the Monge problem aims at finding the optimal transportation map,

$$\min_{T_{\#}\mu=\nu}\int_{\Omega}c(x,y)d\mu(x).$$

Brenier Theorem

Theorem (Brenier)

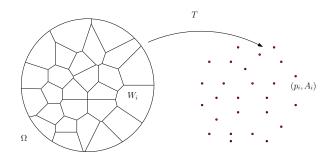
Given the above conditions, assume the density functions satisfy appropriate regularity conditions, $f,g \in L^1(\mathbb{R}^d,\Omega,\Omega^*)$ are compact, then the optimal transportation map exists and is unique, it is the gradient of a convex function $u:\Omega\to\mathbb{R}$, $T=\nabla u$, where u is the Brenier potential function.

The Brenier potential satisfies the Monge-Ampere equation,

$$\det(D^2u) = \frac{f(x)}{g \circ \nabla u(x)}$$

with boundary condition $\nabla u(\Omega) = \Omega^*$.

Semi-Discrete Optimal Transportation Problem

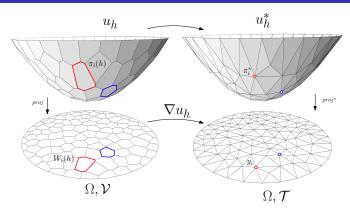


Problem (Semi-discrete OT)

Given a compact convex domain Ω in \mathbb{R}^d , and y_1, y_2, \dots, y_k and weights $\nu_1, \nu_2, \dots, \nu_k > 0$, find a transport map $T: \Omega \to \{y_1, \dots, y_k\}$, such that $vol(T^{-1}(p_i)) = \nu_i$, so that T minimizes the transportation cost:

$$C(T) := \frac{1}{2} \int_{\Omega} |x - T(x)|^2 dx$$

Semi-Discrete Optimal Transportation Map

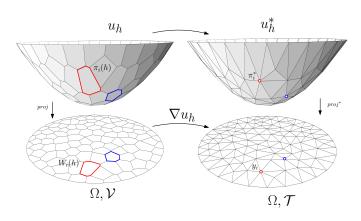


 (Ω^*, ν) is discretized as $\{(y_i, \nu_i)\}_{i=1}^k$. Each sample y_i corresponds to a plane $\pi_i(x) = \langle x, y_i \rangle - h_i$, the Brenier potential is

$$u_h(x) := \max_{i=1}^k \{\langle x, y_i \rangle - h_i \},\,$$

where the height vector $h=(h_1,h_2,\cdots,h_k)$. u_h^* is the Legendre dual of

Semi-Discrete Optimal Transportation Map



 u_h is the upper envelope of plane π_i 's; u_h^* is the convex hull of points $\{(y_i,h_i)\}_{i=1}^k$; the projection of u_h^* is a power Delaunay triangulation of $\{y_i\}_{i=1}^k$; the projection of u_h is the dual power diagram of Ω .

Variational Proof

Theorem (Gu-Luo-Sun-Yau 2013)

 Ω is a compact convex domain in \mathbb{R}^n , y_1, \dots, y_k distinct in \mathbb{R}^n , μ a positive continuous measure on Ω . For any $\nu_1, \dots, \nu_k > 0$ with $\sum \nu_i = \mu(\Omega)$, there exists a vector (h_1, \dots, h_k) so that

$$u(\mathbf{x}) = \max\{\langle \mathbf{x}, \mathbf{p}_i \rangle + h_i\}$$

satisfies $\mu(W_i \cap \Omega) = \nu_i$, where $W_i = \{\mathbf{x} | \nabla f(\mathbf{x}) = \mathbf{p}_i\}$. Furthermore, **h** is the maximum point of the concave function

$$E(\mathbf{h}) = \sum_{i=1}^k \nu_i h_i - \int_0^{\mathbf{h}} \sum_{i=1}^k w_i(\eta) d\eta_i,$$

where $w_i(\eta) = \mu(W_i(\eta) \cap \Omega)$ is the μ -volume of the cell.

The energy $E(\mathbf{h})$ is called the Alexandrov's energy.

Admissible Height Space

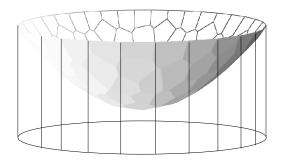
Definition (Admissible Height Space)

The admissible height space is defined as

$$\mathcal{H}(Y) := \left\{\mathbf{h} \in \mathbb{R}^k : w_i(h) > 0, i = 1, 2, \dots, k\right\} \bigcap \left\{\sum_{i=1}^k h_i = 1\right\}.$$

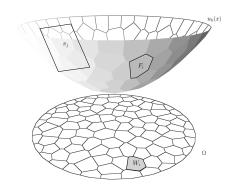
The admissible height space is a non-empty convex space. The optimization is to maximize the energy $E(\mathbf{h})$ in the admissible height space \mathcal{H} , using Newton's method.

Geometric Interpretation



One can define a cylinder through $\partial\Omega$, the cylinder is truncated by the xy-plane and the convex polyhedron. The energy term $\int^{\mathbf{h}} \sum w_i(\eta) d\eta_i$ equals to the volume of the truncated cylinder.

Computational Algorithm

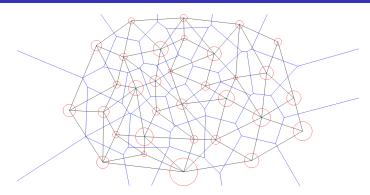


Definition (Alexandrov Potential)

The concave energy is

$$E(h_1, h_2, \dots, h_k) = \sum_{i=1}^k \nu_i h_i - \int_0^h \sum_{j=1}^k w_j(\eta) d\eta_j,$$

Semi-Discrete Optimal Transportation Map

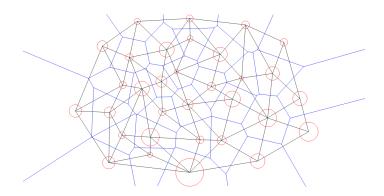


The gradient is $\nabla u_h = (\nu_i - w_i(\mathbf{h}))$; the element of the Hessian matrix is the ratio between the power voronoi edge length and the power Delaunay edge length,

$$a_{ij} = -\frac{1}{|y_i - y_j|} \int_{W_i \cap W_j} f(x) dx$$

and the diagonal element equals $a_{ii} = -\sum_{j \neq i} a_{ij}$.

Computational Algorithm



The Hessian of the energy is the length ratios of edge and dual edges,

$$\frac{\partial w_i}{\partial h_j} = -\frac{|\mathbf{e}_{ij}|}{|\bar{\mathbf{e}}_{ij}|}$$

Optimal Transport Map

Input: A set of distinct points $Y = \{y_1, y_2, \cdots, y_k\}$, and the weights $\{\nu_1, \nu_2, \cdots, \nu_k\}$; A convex domain Ω , $\sum \nu_j = \text{Vol}(\Omega)$; Output: The optimal transport map $T : \Omega \to Y$

- Scale and translate Y, such that $Y \subset \Omega$;
- **2** Initialize $\mathbf{h}^0 \leftarrow \frac{1}{2}(|y_1|^2, |y_2|^2, \cdots, |y_k|^2)^T$;
- **3** Compute the Brenier potential $u(\mathbf{h}^k)$ (envelope of π_i 's) and its Legendre dual $u^*(\mathbf{h}^k)$ (convex hull of π_i^* 's);
- **9** Project the Brenier potential and Legendre dual to obtain weighted Delaunay triangulation $\mathcal{T}(\mathbf{h}^k)$ and power diagram $\mathcal{D}(\mathbf{h}^k)$;

Optimal Transport Map

Compute the gradient of the energy

$$\nabla E(\mathbf{h}) = (\nu_1 - w_1(\mathbf{h}), \nu_2 - w_2(\mathbf{h}), \cdots, \nu_k - w_k(\mathbf{h}))^T.$$

- **1** If $\|\nabla E(\mathbf{h}^k)\|$ is less than ε , then return $T = \nabla u(\mathbf{h}^k)$;
- Compute the Hessian matrix of the energy

$$\frac{\partial w_i(\mathbf{h})}{\partial h_j} = -\frac{|e_{ij}|}{|\bar{e}_{ij}|}, \quad \frac{\partial w_i}{\partial h_i} = -\sum_j \frac{\partial w_i(\mathbf{h})}{\partial h_j}.$$

Solve linear system

$$\nabla E(\mathbf{h}) = \mathsf{Hess}(\mathbf{h}^k)\mathbf{d};$$

Optimal Transport Map

Damping Algorithm

- **9** Set the step length $\lambda \leftarrow 1$;
- **©** Construct the convex hull Conv($\mathbf{h}^k + \lambda \mathbf{d}$);
- ① if there is any empty power cell, $\lambda \leftarrow \frac{1}{2}\lambda$, repeat step 3 and 4, until all power cells are non-empty;
- \bigcirc set $\mathbf{h}^{k+1} \leftarrow \mathbf{h}^k + \lambda \mathbf{d}$;
- Repeat step 9 through 12.

Optimal Transportation Map

Figure: Optimal transportation map.

Optimal Transportation Map

Figure: Optimal transportation map.

Computational Geometric Algorithms

File Format

- (Ω^*, ν) is represented as a triangle mesh (obj format), each vertex has both (x, y, z) coordinates and (u, v) parameters. Each vertex v_i represents a sample $y_i = (u_i, v_i)$, (u_i, v_i) specify the planar position in Ω^* . The summation of the areas of all triangular faces adjacent to v_i is treated as ν_i , (after normalization).
- (Ω, μ) is represented as another triangle mesh (obj format), its boundary gives the boundary of Ω . For current version, μ is the uniform distribution.

File IO

(a) Y and ν

(b) planar positions $\{y_i\}$

Figure: Input files.

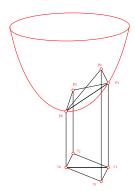
(c) convex Ω

Data Structure & Algorithms

- The combinatorial data structure to represent the Delaunay triangulation and the dual voronoi diagram is either half-edge or Dart data structure;
- The linear numerical solver is Eigen library;
- The geometric computation is based on adaptive arithmetic method.
- The power Delaunay is based on Lawson's edge flip algorithm.
- The polygon clipping is based on Sutherland–Hodgman algorithm.
- The optimization of Alexandrov energy is based on damping algorithm.

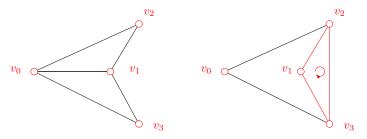
Edge Local Power Delaunay

Given an edge e in a planar triangulation \mathcal{T} , find the two neighboring faces, lift the four vertices to the convex hull φ , suppose vertex v_i is represented as $p_i(u_i, v_i, \varphi(u_i, v_i))$, compute the volume of the tetrahedron $[p_0, p_1, p_2, p_3]$. If the volume is positive, then e is locally powerd Delaunay, if the volume is negative, then e is non-locally-power-Delaunay.



Edge Flippable

Given an edge $e = [v_0, v_1]$ in a planar triangulation \mathcal{T} , if $[v_0, v_3, v_2]$ or $[v_1, v_2, v_3]$ is clockwise, then the edge is not flippable.



Lawson Edge Flip Algorithm

Input is a set of points S on the plane with the powers, the output is the power Delaunay triangulation.

- Construct an arbitrary triangulation of the point set S;
- Push all non-locally intrior edges of T on stack and mark them;
- While the stack is non-empty do
 - $e \leftarrow pop()$;
 - unmark e:
 - if e is locally power Delaunay then continue;
 - if e can't be flipped then continue;
 - flip edge e;
 - push other four edges of the two triangles adjacent to e into the stack if unmarked;
- **1** If there is an edge e, which is not local power Delaunay, then there is some point p_i that is not on the convex hull of all p_k 's.

Lawson Edge Flip for Convex Hull

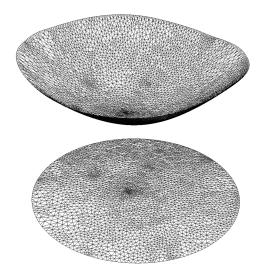


Figure: Construct convex hull of the graph of φ , using Lawson Edge Flip algorithm.

Legendre Dual

Given a convex hull, which is the graph of a convex function φ , we compute its Legendre dual φ^* . Each point $p_i = (a_i, b_i, c_i)$ on the convex hull represents a plane π_i ,

$$\pi(x,y)=a_ix+b_iy-c_i.$$

Each face $[p_i, p_j, p_k]$ is dual to a point (x, y, z) satisfying the linear equation group,

$$\left(\begin{array}{c}c_i\\c_j\\c_k\end{array}\right) = \left(\begin{array}{cc}a_i&b_i&-1\\a_j&b_j&-1\\a_k&b_k&-1\end{array}\right) \left(\begin{array}{c}x\\y\\z\end{array}\right)$$

Upper Envelope-Brenier Potential

Given the convex hull $\{p_1, p_2, \cdots, p_k\}$, where $p_i(u_i, v_i, \varphi(u_i, v_i))$, add one more point as infinity point (0, 0, -h), h is big enough to be above all other points. Each face f_{α} is dual to a point f_{α}^* ; each vertex v_i is dual to a supporting plane v_i^* .

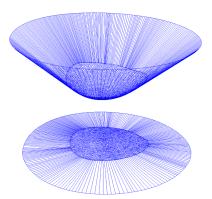
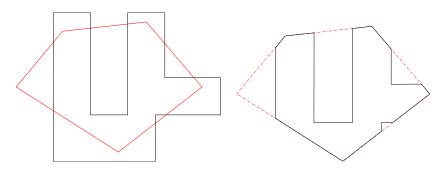


Figure: Legendre dual of the convex hull is the upper envelope.

28 / 49

Sutherland-Hodgman algorithm

Given a subject polygon S and a convex clipping polygon C, we use C to clip S. Each time, we use one edge e of C to cut off a corner of S.



Sutherland-Hodgman algorithm

```
foreach Edge clipEdge in clipPolygon do
 List inputList \leftarrow outputList;
outputList.clear();
foreach Edge[p_{k-1}, p_k] in inputList do
     Point q \leftarrow ComputeIntersection(p_{k-1}, p_k, clipEdge);
    if pk inside clipEdge then
        if p_{k-1} not inside clipEdge then
            outputList.add(a):
        end
        outputList.add(p_k);
    end
    else if p_{k-1} inside clipEdge then
        outputList.add(q)
     end
end
```

Upper Envelope - Brenier Potential

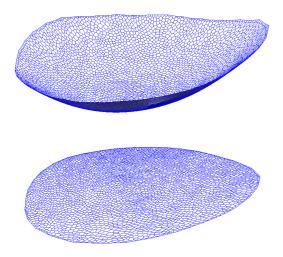


Figure: Brenier potential obtained by clipping the Legendre dual.

Cell Clipping

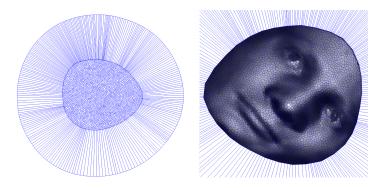


Figure: Boundary cell clipping.

Power Diagram Algorithm

- Compute the convex hull using Lawson edge flipping, add the infinity vertex (0,0,-h); project the convex hull to power Delaunay triangulation \mathcal{T} ;
- ② Compute the upper envelope using Legendre dualalgorithm and the, project to the power diagram \mathcal{D} ;
- Olip the power cells using Sutherland-Hodgman algorithm;

Damping Algorithm

- Initialize the step length λ;
- **3** Compute the convex hull using Lawson edge flipping, add the infinity vertex (0,0,-h); project the convex hull to power Delaunay triangulation \mathcal{T} ;
- If the convex hull misses any vertex, then $\lambda \leftarrow \frac{1}{2}\lambda$, repeat step 2 and step 3;
- ullet Compute the upper envelope using Legendre dual algorithm, project to the power diagram ${\cal D}$;
- Olip the power cells using Sutherland-Hodgman algorithm;
- **1** If any power cell is empty, then $\lambda \leftarrow \frac{1}{2}\lambda$, repeat step 5 and step 6;

Newton's Method

- 1 Initialize ϕ as $\phi(u, v) = \frac{1}{2}(u^2 + v^2)$;
- 2 Call the power diagram algorithm;
- **3** Compute the gradient ∇E , the target area minus the current power cell area;
- Compute the Hessian matrix H, using the power diagram edge length;
- **5** Compute the update direction $Hd = \nabla E$;
- **o** Call the damping algorithm, set $\phi \leftarrow \phi + \lambda d$, such that ϕ is admissible;
- Repeat step 2 through step 6, until the gradient is close to 0.

Transportation Map

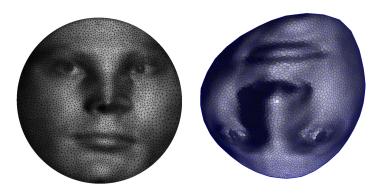


Figure: Transportation map.

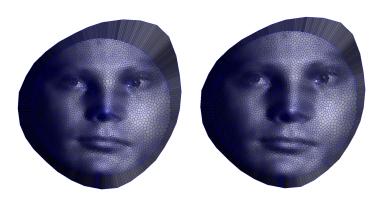


Figure: Optimal transportation map.

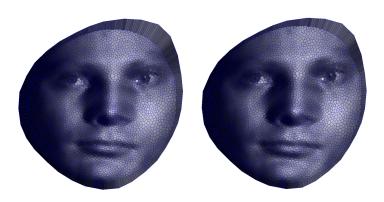


Figure: Optimal transportation map.

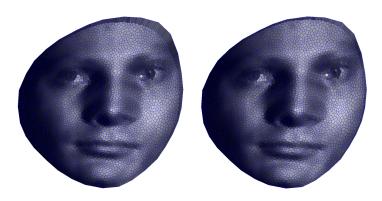


Figure: Optimal transportation map.

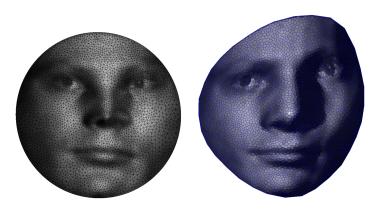


Figure: Optimal transportation map.

Instruction

Dependencies

- OartLib' or 'MeshLib', a general purpose mesh library based on Dart data structure.
- 'Eigen', numerical solver.
- 'freeglut', a free-software/open-source alternative to the OpenGL Utility Toolkit (GLUT) library.

Commands and Hot keys

- Command: -target target_mesh -source source_mesh
- '!': Newton's method
- 'm': Compute the mass center of power cells
- 'W': output the Legendre dual mesh and the optimal transportation map mesh
- 'L': Edit the lighting
- 'd': Show convex hull or upper envelope; power Delaunay or diagram
- 'g': Show 3D view or 2D view
- 'e': Show edges
- 'c': Show cell centers
- 'o': Take a snapshot
- '?': Help information

PowerDynamicMesh class

Compute the Power Delaunay and Power Diagram.

- **1** CPDMesh :: _Lawson_edge_swap Lawson edge swap algorithm to compute convex hull u_h^* , Power Delaunay triangulation;
- CPDMesh :: _Legendre_transform Legendre dual transformation compute upper envelope u_h, Power voronoi diagram;
- OPDMesh :: _power_cell_clip Clip power cells, based on Sutherland-Hodgman algorithm;

COMTDynamicMesh class

Compute the Optimal Mass Transportation Map.

- COMTMesh :: _update_direction compute the update direction, based on Newton's method;
- ② COMTMesh :: _calculate_gradient calculate the gradient of the Alexandrov energy;
- COMTMesh :: _calculate_hessian calculate the Hessian matrix of the Alexandrov energy;
- COMTMesh :: _edge_weight calculate the edge weight

Coding Assignment

Compute the Optimal Mass Transportation Map.

- Implement Lawson's edge flipping algorithm to compute weighted Delaunay triangulation, CPDMesh :: _Lawson_edge_swap;
- Implement Sutherland-Hodgman algorithm for convex polygon clipping, Polygon2D :: Sutherland_Hodgman;
- Implement Computing the Wasserstein distance.

Directory Structure

- 3rdparty/DartLib or 3rdparty/MeshLib, header files for mesh;
- MeshLib/algorithms/OMT, the header files for Power Diagram Mesh and Optimal Mass Transportation Map Mesh;
- OT/src, the source files for optimal transportation map;
- CMakeLists.txt, CMake configuration file;

Configuration

Before you start, read README.md carefully, then go three the following procedures, step by step.

- Install [CMake](https://cmake.org/download/).
- Oownload the source code of the C++ framework.
- Onfigure and generate the project for Visual Studio.
- Open the .sln using Visual Studio, and complie the solution.
- 5 Finish your code in your IDE.
- Run the executable program.

Configure and generate the project

- open a command window
- cd ot-homework3_skeleton
- mkdir build
- cd build
- o cmake ..
- open OTHomework.sln inside the build directory.