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Abstract. This paper presents a formal framework, experimental in-
frastructure, and computational environment for modeling, analyzing
and regulating the behavior of cardiac tissues. Based on the theory of
hybrid automata, we aim at providing suitable tools to be used in de-
vising strategies for the pharmacological or other forms of treatment of
cardiac electrical disturbances.

1 Introduction

Atrial fibrillation (Afib) is an abnormal rhythm originating in the upper cham-
bers of the heart afflicting 2-3 million Americans and whose incidence rises with
increasing age. Due to the “graying” of our population, 12-16 million Americans
may be affected by 2050. Not only is its incidence of epidemic proportions, its
morbidity is also significant. Among possible sequelae of the disease are thrombi
in the fibrillating atria and emboli released to the pulmonic and systemic circula-
tions. Although its importance to public health cannot be questioned, therapies
remain problematic. Persistence of the abnormal rhythm results in electrical
remodeling of the atria reinforcing its existence. Drugs are frequently ineffec-
tive and because of their lack of selectivity can induce arrhythmias themselves.
Frequently, electrical cardioversion is tried which is not uniformly successful. Fi-
nally, for intractable Afib, the abnormal reentrant pathways are mapped and the
tissue is radiofrequency ablated, which may result in a non-functional atrium.
This is a humbling observation from an engineering point of view, highlight-
ing the complexity of the heart and the need for reliable analysis and prediction
in-silico tools for cardiac behavior. Such tools would be of great use in devising
rational strategies for pharmacological or other intervention in cardiac electri-
cal disturbances such as Afib. During the last two years, we have worked (see
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Figure [[l) towards a formal framework, experimental infrastructure, and com-
putational environment for modeling, analyzing and controlling the behavior of
excitable cells such as cardiac myocytes.

In this paper we provide a brief overview of the results obtained so far and dis-
cuss directions for future work. We start in Section2lby describing how we modeled
the behavior of excitable tissue using networks of hybrid automata (HA). With
respect to the classical approach which uses systems of non-linear ordinary dif-
ferential equations HA models, by combining discrete and continuous processes,
are able to successfully capture the morphology of the excitation event (action
potential) of cardiac cells [22]. In section Bl we show how this approach also en-
hances the analysis capabilities of this biological phenomena. In particular it ren-
ders possible large-scale simulation of cardiac-cell networks and the detection of
emergent behavior such as fibrillation [9]. Once such a behavior has been iden-
tified, one could use electrical therapy in order to restore normal physiological
function. This means that any time a critical behavior is predicted, depending on
the type of spatial pattern, the right repair strategy is performed either at low-
level, e.g. by introducing an artificial inhibitor or catalyst agent to regulate the
ion channels of cell membranes, or at higher-level, e.g. by resetting the behavior
of a group of myocytes forcing a global correct behavior. We are investigating so-
lutions from the area of the networks of dynamical elements, where distributed
synchronization is obtained by dividing the whole network into groups or regions
of fully synchronized elements [I8] while elements from different groups are not
necessarily synchronized and can be of entirely different dynamics [25]. Section [l
offers our concluding remarks and directions for future work.

2 Modeling Excitable Cells Using Hybrid Automata

An excitable cell has the ability to propagate an electrical signal, known at
the cellular level as the Action Potential (AP), to neighboring cells. An AP
corresponds to a difference in electrostatic potential between the inside and
outside of a cell, and is caused by the flow of ions across the cell membrane. The
major ion species involved in this process are sodium, potassium and calcium;
they flow through multiple voltage-gated ion channels as pore-forming proteins
in the cell membrane. Excitation disturbances can occur in the behavior of these
ion channels at the cell level, or in the propagation of the electrical waves at the
cell-network level.

Generally, an AP is an externally triggered event: a cell fires an action poten-
tial as an “all-or-nothing” response to a supra-threshold stimulus, and each AP
follows the same sequence of phases and maintains the same magnitude regard-
less of the applied stimulus. During an AP, generally no re-excitation can occur.
The early portion of an AP is known as “absolute refractory period” due to
its non-responsiveness to further stimulation. The “relative refractory period” is
the interval immediately following during which an altered secondary excitation
event is possible if the stimulation strength or duration is raised. Examples of
excitable cells are neurons, cardiac myocytes and skeletal muscle cells.
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Fig. 1. StonyCam Group from left to right: Ezio Bartocci, Flavio Corradini, Emanuela
Merelli, Scott Smolka, Oliviero Riganelli, Radu Grosu

Despite differences in AP duration, morphology and underlying ion currents,
the following major AP phases can be identified across different species of ex-
citable cells: resting, rapid upstroke, early repolarization phase, plateau and late
repolarization, and final repolarization (identical to the resting phase due to the
cyclic nature of an AP). The resting state features a constant transmembrane
potential (difference between the inside and outside potential of the cell) that is
about -80 mV for most species of cardiac cells; i.e. the membrane is polarized at
rest. During the AP upstroke, the transmembrane potential rapidly changes, from
negative to positive; i.e. the membrane depolarizes. This is followed by an early re-
polarization phase. A slower, plateau phase is present in most mammalian action
potentials, during which calcium influx facilitates muscle contraction. After this
phase, a faster final repolarization brings the potential back to the resting state.

The classical mathematical model [4IT4ITI] of excitable cell involve complex
systems of nonlinear differential equations. Such models not only impair formal
analysis but also impose high computational demands on simulations, especially
in large-scale 2D and 3D cell networks. To address this state of affairs, we have
developed Cycle-Linear Hybrid Automata (CLHA) models (see Figure 2]). The
CLHA formalism was designed to be both abstract enough to admit formal analy-
sis and efficient simulation and expressive enough to capture the AP morphology
and restitution properties exhibited by classical non linear excitable-cell models.
The basic idea behind the CLHA model is the observation that, during an AP, an
excitable cell cycles through four basic modes of operations - resting, stimulated,
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Fig.2. CLHA and the corresponding Action Potential

upstroke, early repolarization, plateau final repolarization - and the dynamics of
each mode is essentially linear and time-invariant. To capture possible non linear,
frequency-dependent properties such as restitution, the CLHA model is equipped
with one-cycle memory of the cells voltage and per-mode parameters of the
current cycle’s linear time invariant system of differential equations are updated
according to this voltage. Consequently, the models behavior is linear in any one
cycle but appropriately non linear overall. For more details on CLHA, we refer
the reader to [22]. A CLHA approximates AP and other bio-electrical properties
of several representative excitable-cell types, with reasonable accuracy [21122J10].
This derivation was first performed manually [21I22]. In [I0], we showed that it
is possible to automatically learn a much simpler cycle-linear hybrid automaton
for cardiac myocytes, which describes their action potential up to a specified
error margin. Moreover, as we have shown in [2/3], one can use a variant of
this model [2T12023I24122] to efficiently (up to an order of magnitude faster)
and accurately simulate the behavior of myocyte networks, and, in particular,
induce spirals and fibrillation. The term Cycle-Linear is used to highlight the
cyclic structure of CLHA, and the fact that while in each cycle they exhibit
linear dynamics, the coefficients of the corresponding linear equations and mode-
transition guards may vary in interesting ways from cycle to cycle. These CLHA
models were found to capture essential cell features, are amenable to formal
analysis, and exhibit, respect to the classical models, a nearly ten-fold speedup
in a simulation of 400x400 cell network.

3 Simulation and Analysis of Networks of Cardiac
Myocytes

3.1 Simulation

In order to simulate the emergent behavior of cardiac tissue, we have developed
CeLLExCITE [3], a CLHA-based simulation environment for excitable-cell net-
works. CELLEXCITE allows the user to sketch a tissue of excitable cells, plan the
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Fig. 3. Simulation of continuous and discrete behavior of CLHA network

stimuli to be applied during simulation, and customize the arrangement of cells
by selecting the appropriate lattice. Figure[3 presents our simulation results for a
400 x 400 CLHA network. The network was stimulated twice during simulation,
at different regions. The results we obtain demonstrate the feasibility of using
CLHA networks to capture and mimic different spatiotemporal behavior of wave
propagation in 2D isotropic cardiac tissue, including normal wave propagation
(1-150 ms); the creation of spirals, a precursor to fibrillation (200-250 ms); and
the break-up of such spirals into more complex spatiotemporal patterns, signal-
ing the transition to ventricular fibrillation (250-400 ms).

As can be clearly seen in Figure Bl a particular form of discrete abstraction,
in which the action potential value of each CLHA in the network is discretely ab-
stracted to its corresponding mode, faithfully preserves the network’s waveform
and other spatial characteristics. Hence, for the purpose of learning and detect-
ing spirals within CLHA networks, we can exploit discrete mode-abstraction to
dramatically reduce the system state space.

3.2 Detecting Emergent Behavior

One of the most important and intriguing questions in systems biology is how
to formally specify emergent behavior in biological tissue, and how to efficiently
predict and detect its onset. A prominent example of such behavior is electrical
spiral waves in spatial networks of cardiac myocytes (heart cells). Spiral waves
of this kind are a precursor to a variety of cardiac disturbances, including atrial
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Fig.4. Overview of our method for learning and detecting the onset of spiral waves

fibrillation, an abnormal rhythm originating in the upper chambers of the heart.
Moreover, the likelihood of developing atrial fibrillation increases with age.

In [9], we addressed this question by proposing a simple and efficient method
for learning and automatically detecting the onset of spiral waves in cardiac tis-
sue (see Figure ). Underlying our method is a linear spatial-superposition logic
(LSSL), which we have developed for specifying properties of spatial networks.
LSSL is discussed in greater detail below. Our method also builds upon hybrid-
automata, image-processing, machine-learning and model-checking techniques to
first learn an LSSL formula (LSSLF) that characterizes such spirals. The result-
ing LSSLF is then automatically checked against a quadtree representation [I7] of
the scalar electric (SE) field, produced by simulating a hybrid automata network
modeling the myocytes, at each discrete time step. The quadtree representation
is obtained via hybrid abstraction [19] and hierarchical superposition of the ele-
mentary units within the field.

A key observation concerning our simulations (see Figure [B]) is that a par-
ticular form of hybrid abstraction, in which the action potential value of each
CLHA in the network is discretely abstracted to its corresponding mode, faith-
fully preserves a spiral’s topological characteristic; i.e. its shape. Hence, for the
purpose of learning and detecting the onset of spirals within CLHA networks, we
can exploit hybrid abstraction to dramatically reduce the system state space. A
similar hybrid abstraction is possible for voltage recordings in live cell networks,
but this is outside the scope of this paper.

The state space of a 400 x 400 CLHA network is still prohibitively large even
after applying the above-described hybrid abstraction: it contains 4160:990 states,
as each CLHA has four modes! To combat this state explosion, we use a spatial
abstraction inspired by [12]: we regard the state of each automaton as a probabil-
ity distribution and define the superposition of a set of states as the probability
that an arbitrary state in this set has a particular mode. By successively apply-
ing superposition to the network, we obtain a tree structure, the root of which is
the state-superposition of the entire CLHA network, and the leaves of which are
the states of the individual CLHA. The particular superposition tree structure
we employ, quadtrees, is inspired by image-processing techniques [I7]. We shall
refer to quadtrees obtained in this manner as superposition-quadtrees (SQT).

Our LSSL is an appropriate logic for reasoning about paths in superposition-
quadtrees, and the spatial properties of a CLHA network in which we are in-
terested, including spirals, can be cast in LSSL. For example, we have observed
that the presence of a spiral can be formulated in LSSL as follows: Given an
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SQT, is there a path from its root leading to the core of a spiral? Based on this
observation, we build a machine-learning classifier, the training-set records for
which correspond to the probability distributions of the nodes along such paths.
Each node distribution corresponds to an attribute of a training-set record, with
the number of attributes bounded by the depth of the SQT. An additional at-
tribute is used to classify the record as either spiral or non-spiral. For spiral-free
SQTs, we simply record the path of maximum distribution.

For training purposes, we use the CELLEXcITE simulator [23] to generate, upon
successive time steps, snapshots of a 400 x 400 CLHA networks and their hybrid
abstraction; see Figures @Bl Training data for the classifier is then generated by
converting the hybrid-abstracted snapshots into SQTs and selecting paths leading
to the core of a spiral (if present). The resulting table is input to the decision-tree
algorithm of the Weka machine-learning tool suite [8], which produces a classifier
in the form of a predicate over the node-distribution attributes.

The syntax of LSSL is similar to that of linear temporal logic, with LSSL’s
Next operator corresponding to concretization (anti-superposition). Moreover, a
(finite) sequence of LSSL Next operators corresponds to a path through an SQT.
The classifier produced by Weka can therefore be regarded as an LSSL formula.
The meaning of such a path is that of a magnifying glass, which starting from
the root, produces an increasingly detailed but more focused view of the image.
This effect is analogous to concept hierarchy in data mining [I3] and arguably
similar to the way the brain organizes knowledge: a human can recognize a word
or a picture without having to look at all of the characters in the word or all of
the details in the picture, respectively.

We are now in a position to view spiral detection as a bounded-model-checking
problem [5]: Given the SQT @ generated from the discrete scalar electric field
of a CLHA network and an LSSL formula ¢ learned through classification, is
there a finite path m€ @ satisfying the LSSL formula ¢, i.e. m=¢? We use
this observation to check in real time, i.e. at each discrete simulation time step,
whether or not a spiral has been created. More precisely, the LSSL formula we
use states that no spiral is present, and we thus obtain as a counterexample one
or all the paths leading to the core of a spiral. In the latter case, we can identify
the number of spirals in the scalar field and their actual position.

4 Conclusion

The StonyCam collaboration has been a highly fruitful one to date, resulting
in the development of HA-based models of complex networks of excitable cells,
the CeLLEXcCITE simulator for such networks, and techniques for learning and
detecting emergent behavior (spirals) in cardiac tissue. Much work remains to
be done, especially in the engineering of distributed coordination and control
algorithms for myocyte networks.

In other ongoing and future work, analyzing large-scale networks of cardiac
myocytes requires a flexible and powerful simulation environment. Along these
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lines, we are investigating the use of multiagent systems (MAS) and graphical
processing units (GPU). MASs would offer us increased flexibility while GPUs
would offer us increased computational power. A MAS is an autonomous software
entity able to perceive and react to the changes of the surrounding environment.
A MAS consists of a collection of interactive agents and a set of coordination
rules. It constitutes a suitable benchmark for simulating the actions and interac-
tions of autonomous real entities in a network to assess their effects on the system
as a whole. This programming paradigm allows to easily add new entities and
to modify the behavior of existing ones even in a zooming-in and zooming-out
approach [6]. Following [7UT], we would like to investigate a distributed coordi-
nation model based on simulation-time model checking for the online prediction
of critical behaviors in cardiac tissue.

Regarding GPUs, they implement a number of graphical primitive operations
in a very efficient manner. The use of graphics hardware has recently shown
promising results in massive simulations of complex behavioral models [15] and
in general-purpose stream computations [I6]. We would like to explore their
computational power as well in our simulation environment for cardiac tissue.
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