Modular Refinement of Hierarchic Reactive
Machines!

RAJEEV ALUR

Department of Computer and Information Science, University of Pennsylvania
and

RADU GROSU

Department of Computer Science, State University of New York at Stony Brook

Scalable formal analysis of reactive programs demands integration of modular reasoning techniques
with existing analysis tools. Modular reasoning principles such as abstraction, compositional re-
finement, and assume-guarantee reasoning are well understood for architectural hierarchy that
describes the communication structure between component processes, and have been shown to
be useful. In this paper, we develop the theory of modular reasoning for behavior hierarchy that
describes control structure using hierarchic modes. From STATECHARTS to UML, behavior hier-
archy has been an integral component of many software design languages, but only syntactically.
We present the hierarchic reactive modules language that retains powerful features such as nested
modes, mode reuse, exceptions, group transitions, history, and conjunctive modes, and yet has a
semantic notion of mode hierarchy. We present an observational trace semantics for modes that
provides the basis for mode refinement. We show the refinement to be compositional with respect
to the mode constructors, and develop an assume-guarantee reasoning principle.

Categories and Subject Descriptors: D.2.2 [Design Tools and Techniques|: State diagrams;
D.2.4 [Software/Program Verification]: Formal methods; D.2.1 [Requirements/Specifica-
tions]: Languages, Methodologies; F.3.1 [Specifying and Verifying and Reasoning about
Programs]|: Mechanical verification, Specification techniques

General Terms: Modeling languages, Formal verification

Additional Key Words and Phrases: Hierarchical state machines, Compositional semantics, Assume-
guarantee reasoning, Refinement

1. INTRODUCTION

The complexity and subtlety of programming reactive systems, such as telecommu-
nications and avionics software, demands increased design automation and effec-
tive debugging tools. Recent advances in formal verification have led to powerful

LA preliminary version of this paper appears in the Proceedings of the 27th Annual ACM
Symposium on Principles of Programming Languages, pp. 390-402, 2000.

Author’s address: R. Alur, Department of Computer and Information Science, University of
Pennsylvania, 200 South 33rd Street, Philadelphia, PA 19104. R. Grosu, Department of Computer
Science, State University of New York at Stony Brook, Stony Brook, NY 11794-4400, USA.
Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.

© 1999 ACM 0164-0925/99,/0100-0111 $00.75

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year, Pages 1-77.

2 . Rajeev Alur and Radu Grosu

design tools for hardware (see [Clarke and Kurshan 1996] for a survey), and subse-
quently, have brought a lot of hope of their application to reactive programming.
The most successful verification technique has been model checking [Clarke and
Emerson 1981]. In model checking, the system is described by a state-machine
model, and is analyzed by an algorithm that explores the reachable state-space of
the model. The state-of-the-art model checkers (e.g. SPIN [Holzmann 1997] and
SMv [McMillan 1993]) employ a variety of heuristics for efficient search, but are
typically unable to analyze models with more than hundred state variables. Conse-
quently, application of formal verification requires augmenting model checking with
modular reasoning that allows decomposition of the analysis problem into smaller
subproblems, or abstracting a component into a simpler one. Typically, such sim-
plification is done manually, and requires considerable expertise. Much of today’s
research in formal verification aims to develop techniques to automate modular
reasoning and abstraction techniques.

To be able to exploit the design structure effectively for modular reasoning, the
modeling language must support syntactically as well as semantically modular con-
structs. While modern programming languages offer a rich set of modular con-
structs (e.g. procedures, objects), the standard model checkers assume the model
to be a state-transition graph (or a Kripke structure) with no structure. Our
first attempt to enrich the modeling language resulted in the definition of reactive
modules [Alur and Henzinger 1999]. In this language, an atomic module is a state-
machine whose variables are explicitly partitioned into input, output, and private
variables. The operations of parallel composition, instantiation, and variable hiding
allow building complex modules from atomic ones. The denotational semantics of
each module consists of its input and output variables, together with the set of its
traces, which captures the observable interaction of a module with its environment.
The notion of refinement between two modules is based on inclusion of traces, and
provides the basis for abstraction. The refinement relation is compositional with
respect to the module operations. Thus, to show that the composite module P || P2
refines the module Q1]|@2, it suffices to establish that P; refines Q1 and P; refines
Q2. While the compositional proof rule decomposes the verification task of proving
implementation between compound modules into subtasks, it may not always be
applicable. In particular, P; may not implement @ for all environments, but only
if the environment behaves like P», and vice versa. For such cases, we must employ
the assume-guarantee proof rule which asserts that in order to prove that Pj| P
implements Q1||Q2, it suffices to prove (1) P;||Q2 implements @1, and (2) Q1| P2
implements Q)2. The language of reactive modules, along with the assume-guarantee
refinement checker, is supported by the model checker MOCHA [Alur et al. 2001],
and the utility of the assume-guarantee reasoning has been demonstrated in anal-
ysis of a video-graphics image processor [Henzinger et al. 1998] and the network
protocol PPP [Alur and Wang 2001].

While the reactive modules language supports architectural hierarchy, it offers
little structure to express the behavior of individual modules. In this paper, we
present the language of hierarchic reactive modules that supports both architec-
tural and behavioral hierarchy, along with its compositional semantics and assume-
guarantee proof calculus. The notion of behavior hierarchy was popularized by the
introduction of STATECHARTS [Harel 1987], and exists in many related modeling

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Modular Refinement of Hierarchic Reactive Machines . 3

formalisms such as MODECHARTS [Jahanian and Mok 1987] and RsSML [Leveson
et al. 1994]. It is a central component of various object-oriented software develop-
ment methodologies developed in recent years, such as Roowm [Selic et al. 1994],
and the Unified Modeling Language (UML [Booch et al. 1997]).

The central component of the behavioral description in our language is a mode.
A mode consists of global variables used to share data with its environment, local
variables, well-defined entry and exit points, and submodes that are connected with
each other by transitions. The transitions are labeled with guarded commands that
access the variables according to the the natural scoping rules. Note that the tran-
sitions can connect to a mode only at its entry/exit points, as in RooMm, but unlike
STATECHARTS. This choice is important in viewing the mode as a black box whose
internal structure is not visible from outside. The mode has a default exit point,
and transitions leaving the default exit are applicable at all control points within
the mode and its submodes. The default exit retains the history, and the state upon
exit is automatically restored by transitions entering the default entry point. Thus,
a transition from default exit to entry models a group transition applicable to all
control points inside. While defining the operational semantics of modes, we follow
the standard paradigm in which transitions are executed repeatedly as long as at
least one is enabled (has a true guard). Since the control can be simultaneously in
multiple nested modes, the order in which the transitions are tried for execution is
important. Unlike STATECHARTS, but as in ROOM, the operational semantics tries
the transitions inside out, that is, we give priority to the internal transitions over
the group transitions of the enclosing mode. This choice is also crucial for the clean
denotational semantics. Our language allows mode instantiation and thus, reuse.

Our denotational semantics of a mode consists of its global variables, entry /exit
points, and traces over global variables that capture a mode’s behavior. The key
step leading to such semantics involves a closure construction that adds transitions
connecting the default points. This construction makes the transfer of control
between a mode and its environment explicit. Consequently, the behavior of a
mode can be viewed as a game in which the environment transfers control to the
mode at one of its entry points, and the mode transfers the control back to the
environment at one of its exit points. The macro-transition from an entry point to
an exit point, thus, consists of multiple transitions, and can be constructed from
the macro-transitions of the submodes together with the transition relation of the
mode. The macro-transitions are then used to associate a set of executions and a
corresponding set of traces with a mode. We show that the traces of a mode can
be constructed from the traces of its submodes.

The denotational trace semantics naturally leads to a notion of refinement among
modes based on inclusion of traces, and provides the basis for mode abstraction and
substitution. We show that the constructors are compositional with respect to this
refinement relation, and this leads to compositional proof rules for refinement. In
particular, to establish that a mode M with a submode N refines a mode M’ with
submode N’, it suffices to prove that (1) mode N refines N’, and (2) mode M with
N substituted by a “free” mode that allows most general update, refines mode M’
with N/ made free. Thus, compositional rule allows us to decouple the reasoning
about a submode from the reasoning about its context. We also present a circular
assume-guarantee proof rule in which the specification context M’ can be assumed

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

4 . Rajeev Alur and Radu Grosu

while establishing the first sub-goal, and the specification submode N’ can be used
while establishing the second sub-goal.

Hierarchic languages such as STATECHARTS allow the notion of conjunctive (par-
allel) states. We argue that conjunction can be defined cleanly as a constructor
over submodes such that a step of the constructed mode consists of a sequence
of micro steps, one micro step for each submode. We establish that such a con-
junctive constructor is compositional with respect to refinement and that its trace
semantics is essentially the same as the trace semantics of the parallel composition
constructor over modules. This suggests a scheme for mixing modes and modules
interchangeably in system descriptions.

Related work

This paper develops compositional semantics for hierarchical reactive systems. As
discussed earlier, it builds upon the compositional language of reactive modules [Alur
and Henzinger 1999]. The notion of compositional refinement based on observable
behaviors is central to many other formal models such as CCS [Milner 1980], I/O au-
tomata [Lynch and Tuttle 1987], TLA [Lamport 1994]. Languages such as reactive
modules, I/O automata and TLA are concerned only with concurrent composition,
and thus, only with the architectural hierarchy. In behavior hierarchy, modes at the
same level are composed sequentially, and modes at different levels can be active
concurrently. Consequently, a language with behavior hierarchy cannot be given a
natural and compositional semantics in models that support only concurrent com-
position.

Process algebras such as CCS allow both sequential and concurrent composition,
and thus, both architectural and behavioral hierarchies. Compared to process alge-
bras, our formalism differs in the following ways. First, it allows explicit modeling
of hierarchy and group transitions that is similar to many visual software design lan-
guages. Second, while communication in process algebras uses events (or actions),
we use shared variables. Third, the notion of equivalence for process algebras such
as CCS is based on bisimulation, while our semantics uses the weaker notion of
traces. Another focus of our compositionality is assume-guarantee reasoning. Since
assume-guarantee reasoning allows modeling of assumptions about the interface of
a component, it promises to be more relevant in decomposing proofs. Due to the
inherent circularity, assume-guarantee reasoning [Stark 1985; Abadi and Lamport
1995; Alur and Henzinger 1999; McMillan 1997] is valid only when the interaction
of a module with its environment is non-blocking, and is not valid for frameworks
such as CCS.

The concept of behavioral hierarchy in state-machine-based formalisms can be
traced to STATECHARTS [Harel 1987]. Such hierarchic specifications have many
powerful primitives such as exceptions, group transitions, and history, which lead
to complex semantics [Harel et al. 1987; Pnueli and Shalev 1991; Harel and Naamad
1996; Huber et al. 1996; Grosu et al. 1998; Liittgen et al. 2000]. There have been
several attempts to define a rigorous semantics of STATECHARTS alone. Typically
the semantics is defined operationally by considering the global state of the system.
In fact, multiple papers offer a compositional semantics that is congruent with the
language constructs [Uselton and Smolka 1994]. However, the notion of semantic
equivalence used in all these papers is structural isomorphism of underlying state-

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Modular Refinement of Hierarchic Reactive Machines . 5

transition graphs (or bisimilarity but with most of the structure visible), rather
than conventional observational equivalences. Also there have been attempts to
exploit the hierarchic states for efficient reachability analysis [Chan et al. 1998; Alur
and Yannakakis 1998; Behrmann et al. 1999]. However, there is no observational
semantics that allows defining a refinement preorder on hierarchic states.

Thus, the main contribution of this paper is a modular semantics for hierarchical
specifications with a supporting trace-based refinement calculus. We hope that it
will provide insights for incorporating hierarchical constructs in modeling languages
so that the hierarchy is semantic, and will also provide a basis for restricting or
adapting popular languages such as STATECHARTS so that modularity principles
such as assume-guarantee reasoning can be applied to their formal analyses.

QOutline

The rest of the paper is organized as follows. In Section 2 we review reactive
modules: their syntax, semantics and refinement rules. In Section 3 we follow
a similar pattern for modes. We first introduce their syntax and then we define
their semantics and refinement rules. Section 4 is devoted to conjunctive modes.
First we define conjunction as a particular mode constructor. Then we show that
conjunction is compositional with respect to refinement and relate it to module
composition. Finally in Section 5 we draw some conclusions. During the entire
paper, we use the specification of a small village telephone system, inspired from
[Bhargavan et al. 1998], as a working example to illustrate definitions.

Notation

Given a set V of typed variables, a state over V is a function mapping variables
to their values. The set of states over V is denoted Q. Given a state s over V'
and a subset W of V| s.W denotes the state over W obtained by restricting s to
the variables in W. The projection operator extends to sequences of states also.
Given two sets V' and W of variables, an action from V to W is a binary relation
between the states over V and the states over W. An action « from V to W is
said to be enabled at a state s over V if (s,t) € « for some state t. An action «
from V to W is said to be non-blocking if it is enabled at every state over V. The
domain and range of an action can be expanded implicitly in a natural way: if «
is an action from V to W, s is a state over V/ D V and ¢ is a state over W’ D W,
then define (s,t) € a if (s.V,t.W) € o and t.v = s.v for v € (V' N W')\ W. This
implicit coercion is quite common and allows one to assume that the variables not
explicitly occurring in a transition remain unchanged.

2. MODULES
2.1 Syntax

A module is defined by the set of its variables, rules for initializing the variables,
and rules for updating the variables.

The variables of a module P are partitioned into three classes: private variables
that cannot be read or written by other modules, interface variables that are written
only by P, but can be read by other modules, and external variables that can only
be read by P, and are written by other modules. Thus, interface and external

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

6 . Rajeev Alur and Radu Grosu

¢4 cl hl h4

UserSpec ;"1 "'* *__l l p
) o e 0T comt [coma | [seiparm][4

SystemSpec D [L ‘ ’ ‘ ‘ ’ ‘D
e [ee]

Fig. 1. Architecture diagrams for the VT'S

variables are used for communication, and are called observable variables. The
private and interface variables are written by the module, and are called controlled
variables.

The execution of a module proceeds in a sequence of rounds. The initialization
specifies initial controlled states. The subsequent rounds are update rounds deter-
mined by the transition relation which specifies how to change the controlled state
as a function of the current state. In each round, the external variables are assigned
arbitrary values.

Definition 1. (Modules) A module P consists of

Variables. A finite set V of typed variables that is partitioned into private
variables Vy, interface variables V; and external variables V.. The variables in
Ve =V, UV are called controlled variables, and the variables in V, = V; UV, are
called observable variables.

Initial states. A non-empty subset I of states over V.

Update relation. A non-blocking action U from V to V. a

Ezample 1. (Village telephone system) Consider a simple village telephone sys-
tem that is able to establish a point-to-point connection between any two telephone
lines that are disconnected and off hook. For simplicity, assume that the system
has only four lines. The block (architecture) diagram for the system and and the
users is shown in Figure 1, left.

To define and analyze the behavior of the village telephone system, we associate
each block in the diagram to a reactive module with the interface shown in the
diagram. A high level definition of the environment is the UserSpec module given
below.

type hookType is {on, off}

module UserSpec is
interface hl, h2, h3, h4 : hookType;
init
[J] true -> hl := on; h2 := on; h3 := on; h4 := on;
update
[J h1 = on -> hl := off;
[J hl = off -> hl := on;
[l h2 = on -> h2 := off;

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Modular Refinement of Hierarchic Reactive Machines . 7

[l h2 = off -> h2 := on;
[h3 = on -> h3 := off;
[1] h3 = off -> h3 := on;
[J] h4 = on -> hd := off;
[l h4 = off -> h4 := on;
[1 true > ;

The module has four variables, all of which are interface variables. In this example,
the initialization and the update relation is presented using guarded commands. In
each update round it may toggle one of the four lines between on and off. The
choice is nondeterministic. Due to the last clause, it is also allowed to idle in a
round, and thus, to arbitrarily delay toggling.]

As the above example shows, reactive modules offer little support for factoring out
common (sequential) behavior. The introduction of modes in Section 3 allows more
structuring.

2.2 Semantics

For a module P, we use the notation P.V}, to refer to the private variables of P,
P.U to refer to the update action of P, etc. The semantics of a module is captured
by defining its executions and traces:

Definition 2. (Traces) An execution of a module P is a sequence sg$i -+ Sp of
states over P.V such that sg.(P.V,) € P.I and (s;, $;4+1.(P.V;)) € P.U for 0 <i < n.
If o is an execution of P, then the corresponding sequence o.V,, of observable states
is called a trace of P. The set of all traces of P is called the trace-language of P,
and is denoted Lp. O

The denotational semantics of the module P is captured by its interface variables,
external variables, and trace language. The requirement that I is non-empty and
U is non-blocking ensures that the module can always take a step, and the trace-set
L p is infinite.

Remark 1. (Awaits dependencies and sub-rounds) In our definition, the initial
values of the controlled variables cannot depend on each other and in each update
step, the new values of the controlled variables cannot depend on the new values
of the external and controlled variables. Thus, modules are like Moore machines.
The definition of reactive modules [Alur and Henzinger 1999] allows specification of
a partial order — called awaits dependencies, over variables such that if a variable
x is greater than a variable y in this ordering, then the initial value of x can refer
to the initial value of y and the update rule for z can refer to the updated value
of y. This allows more complex forms of interaction between a module and its
environment by splitting each update round into a fixed number of sub-rounds. In
this paper, we want to focus on the hierarchical specification of the update relation,
so we have chosen a simpler form of interaction with no awaits dependencies for
the sake of clarity of presentation. o

Remark 2. (Fairness) By labeling subsets of the update relation as strongly or
weakly fair one obtains fair modules [Alur and Henzinger 1999]. Fairness is however
not the main focus of this paper and it is therefore not further pursued. o

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

8 . Rajeev Alur and Radu Grosu

2.3 Hierarchy

Operators on modules include instantiation, hiding of interface variables, and par-
allel composition. We first discuss the parallel composition operator that allows to
combine two modules into a single one.

Definition 3. (Parallel Composition) The modules P and @ are composable if
PV.NQ.V, is empty. The composition R of composable modules P and @, denoted
P||Q, is the module with:

Variables. The sets of interface, external and private variables:
RV, =PV;UQ.V;,, RV,=(PV,UQ.V.)\RYV;, R.V,=PV,UQ.V,

Initial states. The set R.I = P.I x Q.1.
Update relation. The relation R.U such that:

(s,t) € RU iff (s.(PV),t.(PV.) € PU A (s.(Q.V),t.(QV.) € QU O

Note that the denotational semantics of P||Q can be completely constructed from
the denotational semantics of P and (). This is because a sequence ¢ belongs to the
trace language Lp|q iff its corresponding projections belong to the trace languages
Lp and Lg [Alur and Henzinger 1999].

The hiding operation makes an interface variable a private one, and thus, allows
us to construct module abstractions of varying degrees of detail.

Definition 4. (Hiding) Given a module P and an interface variable € P.V;, the
module hide x in P has the set P.V, U{z} of private variables, the set P.V;\ {x}
of interface variables, the set P.V, of external variables, the set P.I of initial states,
and the action P.U as the update relation. O

Starting with atomic modules, the operations of parallel composition and hiding
allow us to describe complex modules in a hierarchical way.

Ezample 2. (Village telephone system) A possible hierarchic decomposition of
the module SystemSpec is obtained by introducing for each telephone line i a
connection module Conni. An additional module SelPartn is used to guide the
selection of the communication partner. This defines the architecture shown by the
block diagram in Figure 1, right. The blocks marked with a thick arrow represent
registers. They separate the current state from the next state. The specification of
the module SelPartn is trivial. It nondeterministically chooses one of the selection
modes.

type matchingType is {"1-2/3-4","1-3/2-4","1-4/2-3"}
module SelPartn is
interface p:matchingType;
init update true -> p := nondet;
The specification of the connection module Connl is as follows. If the module is
disconnected and its line is off hook, then it chooses a partner connection module

as specified by the value of p, provided this partner module is also disconnected and
its line is off hook. In this case it becomes connected. If the current communication

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Modular Refinement of Hierarchic Reactive Machines . 9

partner goes on hook then the module goes in the drooping state. Finally, if its
own line goes on hook, then it becomes disconnected.

type connectionType is {disconnected, 1, 2, 3, 4, drooping}

module Connl is

interface cl: connType;
external c2,c3,c4: connType; hl,h2,h3,h4: hookType; p:matchingType;

init
[J] true -> c1 := disconnected;
update
[J h1 = on -> c1 := disconnected;
[l c1 =2 & h2 = on -> cl := drooping;
[l c1 =3 & h3 =on -> cl := drooping;
[J] c1 =4&h4 =on ->cl := drooping;
[J c1 = disconnected & hl = off & c2 = disconnected & h2 = off &
p = "1-2/3-4" -> cl := 2;
[1 c1 = disconnected & hl = off & c3 = disconnected & h3 = off &
p = "1-3/2-4" -> c1 := 3;

[J] c1 = disconnected & hi off & c4 = disconnected & h4 = off &

p = "1-4/2-3" -> cl := 4;

The other connection modules are specified in a similar way. Composing the above
modules gives the specification of the entire system, as shown below.

module SystemSpec is hide p in (Connl ||..|| Conn4 | SelPartn)
module Spec is UserSpec || SystemSpec a

2.4 Refinement

The notion of refinement between successive levels of abstraction is formalized by
the definition of the implementation preorder:

Definition 5. (Implementation) A module P implements a module @, written
P <@, if P and @ have identical interface variables, identical external variables,
and Lp C Lg. O

Intuitively, P < @ holds if every observable behavior of P is also a possible behavior
of @), and thus, if the implementation P is more constrained than the specification
Q. We have required both the modules to have identical observable variables, but
this can be generalized in a straightforward way to allow the implementation to
have more interface and external variables such that the external variables of the
specification are a subset of the external and interface variables of the implemen-
tation. Hence, the implementation is allowed to constrain some of the external
variables of the specification.

A key property of the implementation relation is compositionality which en-
sures that the refinement preorder is congruent with respect to the module op-
erations [Alur and Henzinger 1999].

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

10 . Rajeev Alur and Radu Grosu

ProPOSITION 1. (Compositionality) If P < @ then P||R < Q||R.

By applying the compositionality rule twice and using the transitivity of refine-
ment it follows that, in order to prove that a complex compound module P | P
(with a large state space) implements a simpler compound module Q1 ||Q2 (with
a small state space), it suffices to prove (1) P, implements @1 and (2) P, imple-
ments Q2. We call this the compositional proof rule for reactive modules. It is valid,
because parallel composition and implementation behave like language intersection
and language containment, respectively.

While the compositional proof rule decomposes the verification task of proving
implementation between compound modules into subtasks, it may not always be
applicable. In particular, P; may not implement Q1 for all environments, but only
if the environment behaves like P», and vice versa. For such cases, an assume-
guarantee proof rule is needed [Stark 1985; Griimberg and Long 1994; Abadi and
Lamport 1995; Alur and Henzinger 1999]. The assume-guarantee proof rule for
reactive modules asserts that in order to prove that P;||P, implements (Q1]|Q2, it
suffices to prove (1) P;||Q2 implements @1, and (2) Q1| P> implements Q2 [Alur
and Henzinger 1999]. Both proof obligations (1) and (2) typically involve smaller
state spaces than the original proof obligation, because the complex compound
module P, || P, usually has the largest state space involved. The assume-guarantee
proof rule is circular; unlike the compositional proof rule, it does not simply follow
from the fact that parallel composition and implementation behave like language
intersection and language containment. Rather the proof of the validity of the
assume-guarantee proof rule proceeds by induction on the length of traces. For
this, it is crucial that every trace of a module can be extended.

PROPOSITION 2. (Assume-Guarantee) If Pi||Q2 < Q1]||Q2 and Q1] P2 = Q1]|Q2,
then Pi|| P2 < Q1]|Q2.

The language of reactive modules, along with the assume-guarantee refinement
checker, is supported by the model checker MoCHA [Alur et al. 2001], and the
utility of the assume-guarantee reasoning has been demonstrated in analysis of a
video-graphics image processor [Henzinger et al. 1998] and the network protocol
PPP [Alur and Wang 2001].

3. MODES

The architectural hierarchy of a system can be formally captured by modules. In
this section, we introduce modes to describe the behavior of atomic modules in a
structured and hierarchical manner.

3.1 Syntax

3.1.1 Hierarchy. A mode has a refined control structure given by a hierarchical
state machine. It basically consists of a set of submode instances SM connected by
transitions T such that at each moment of time only one of the submode instances
is active. A subset I,, C SM designates the initial submode instances (visually
marked with an arrowhead). A submode instance has an associated mode definition.
Different instances can be associated with the same definition, but we require that

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Modular Refinement of Hierarchic Reactive Machines . 11

< ,\W

read write z, local u

)

Fig. 2. Scoping rules and transition types

x1 X2 x3

the modes form an acyclic graph with respect to this association?. For example,

the mode M in Figure 2 contains two submode instances, m and n pointing to the
mode N; m is the initial submode instance.

By distinguishing between modes and instances we may control the degree of
sharing of submodes. For example, the submode instances m and n in Figure 2
share the same mode N. Note that a mode resembles an or state in STATECHARTS.

3.1.2 Variables. A mode may have global as well as local variables. The set
of global variables V, is used to share data with the mode’s environment. The
variables in Vj are classified into a set V, of read variables and a set V,, of write
variables. Hence, V; = V;.UV,,. The set of local variables V; of a mode is accessible
only by its transitions and submodes. The variables in V, = V,, UV} are called
controlled variables. Each mode has associated a set of initial states Iy over V,
(each controlled variable has to be initialized when first declared).

The scoping rules for variables are as in standard structured programming lan-
guages. For example, the mode M in Figure 2 has the global read variable x, the
global write variable y and the local read-write variable z. Similarly, the mode N
has the global read-write variable z and the local read-write variable u.

The transitions of a mode may refer only to the declared global and local vari-
ables of that mode and only according to the declared read/write permission. For
example, the transitions a,b,c,d,e,f,g,h,i,jand k of the mode M may refer only
to the variables x, y and z. Moreover, they may read only x and z and write y
and z.

The global and local variables of a mode may be shared between submode in-
stances if the associated submodes declare them as global (the set of global variables
of a submode has to be included in the set of global and local variables of its parent
mode). For example, the value of the variable z in Figure 2 is shared between the
submode instances m and n. However, the value of the local variable u is not shared
between m and n.

3.1.3 Entry/exit points. To obtain a modular language, we require the modes
to have well defined control points classified into entry points (marked as white
bullets) and exit points (marked as black bullets). For example, the mode M in
Figure 2 has the entry points el,e2, e3 and the exit points x1,x2,x3. Similarly,
the mode N has the entry points el,e2 and the exit points x1,x2.

2Removing this restriction one obtains recursive state machines.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

12 . Rajeev Alur and Radu Grosu

The transitions connect the control points of a mode and of its submode instances
to each other. For example, in Figure 2 the transition a connects the entry point
e2 of the mode M with the entry point m.el of the submode instance m.

According to the points they connect, the transitions of a mode may be classified
into entry, internal and exit transitions. For example, in Figure 2, a,d are entry
transitions, h,i,k are exit transitions, b is an entry/ezit transition and c,e,f,g, j
are internal transitions. Exit transitions implicitly reinitialize (forget) the value of
the local variables.

3.1.4 Preemption. To model preemption each mode (instance) has a special,
default exit point dx, represented visually as the border of the mode. A transition
starting at dz is called a preempting or group transition of the corresponding mode.
It may be taken whenever the control is inside the mode and no internal transition
is enabled. For example, in Figure 2 left, the transition f is a group transition for
the submode n.

To achieve the preempting behavior we add for each internal exit point a default
exit transition (from this point to dz) that is enabled when all other transitions
starting in this point are disabled. These transitions are not explicitly drawn. They
are implicit in the semantics of a mode.

For example, if the current control point is q inside the submode instance n
and neither the transition b nor the transition f is enabled, then the control is
transferred to the default exit point dx. If one of e or f is enabled and taken then
it acts as a preemption for n.

Thus, the inner transitions have a higher priority than the group transitions, that
is, we use weak preemption (like the weak kill in Unix, versus the strong kill -9).
This priority scheme facilitates a modular semantics.

3.1.5 History. To allow history retention, we use a special default entry point
de, represented visually also as the border of the mode. A transition entering the
default entry point of a mode restores the values of all local variables along with the
position of the control (if the mode was most recently left along one of its explicit
exit points then all local variables are reinitialized and control is passed to one of
the initial submodes).

For example, both transitions e and g in Figure 2, enter the default entry point
de of n. The transition e is called a self group transition. A self group transition
like e or more generally a self loop like f£,p,g may be understood as an interrupt
handling routine. While a self loop may be arbitrarily complex, a self transition
may do simple things like counting the number of occurrences of an event.

To achieve the above behavior we semantically add default entry transitions from
the default entry point de of a mode m to its internal points. The default exit
transitions save the current point in a local history variable m.h and the default
entry transitions restore the current control point from this variable. The initial
value of m.h is the default entry point of an initial submode. A mode enriched with
default entry and exit transitions is said to be closed.

Remark 3. (History free modes) The closure construction is not necessary for
modes that have at least one transition enabled at each control point, including de.
We call these modes history free. Their set of initial submodes has to be empty. O

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Modular Refinement of Hierarchic Reactive Machines . 13

read-write h read-write h1,...,h4

on2off - —*{ togglel
off2on . —(toggles

T fewe | [Useswee]

Fig. 3. UserSpec for VTS

Remark 4. (Mode instantiation) A mode can be viewed as an encapsulation op-
erator over its submodes. Thus, modes are constructed from leaf-modes using
encapsulation repeatedly in a non-recursive manner. Mode instantiation allows
reuse and sharing by permitting both to refer to the same mode and to rename
a (subset of) entry points, exit points, read variables, and write variables. With
mode instantiation, the mode structure is a directed acyclic graph and it can be
exploited in an efficient way for model checking [Alur and Yannakakis 1998; Alur
et al. 2000]. To simplify the formal definitions in the following we assume a tree like
structure obtained by replacing each instance by its corresponding mode. Moreover,
we assume that there are no name conflicts regarding local variables and entry /exit
points across modes.]

Now we are ready to present a formal definition of modes.
Definition 6. (Mode) A mode consists of

Control points. A finite set E of entry points, and a finite set X of exit points.
We also assume an additional default entry point de, and a default exit point dz,
and define dE = E'U{de}, and dX = X U {dz}.

Variables. A finite set V,. of read variables, a finite set V,, of write variables,
and a finite set V; of local variables. The variables V;, =V, UV,, and V, =V, UV]
are called global and controlled variables, respectively. We assume that the sets V
and V; are disjoint (but the sets V;. and V;, need not be).

Submodes. A finite set SM of submodes. If N is a submode in SM, then it is
required that N.V,. C V., UV; and N.V,, CV, UV,.

Transitions. A finite set T of transitions of the form (e, a,x), where e is in
dEUSM.dX, xisin dX USM.dFE, and « is an action from V., UV to V,, if z € X
and from V,. UV to V,, U V| otherwise. We require that for each e € F, the union
Ua such that (e,a, z) € T for some z, is a non-blocking action.

Initial states. A non-empty subset I of states over V.

Initial submodes. A possibly empty subset I, C SM of initial submodes. If
I,, is empty, we require that for each e € {de}USM.dX, the union Ua such that
(e,,x) € T for some z, is a non-blocking action (the mode is history free). Col-
lectively we refer to Iy and I,,, by I. |

The interface of a mode is the tuple (V,., Vi, E, X). A leaf mode is a mode with
no submodes and no local variables. A most general mode G(V,,V,,E, X) is a
mode that has the interface (V;., V,,, E, X) and imposes no restriction on the update
relation (it acts similarly to the environment).

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

14 . Rajeev Alur and Radu Grosu

» N write c1
read-write c1 _on off2 2 ron2 read h2, h3, h4

read c2, c3, c4 -
read h, h2, h3, h4 off2 " . ron droonin
read p disconnected | off3" | connected of3 ping
off4 off4 rond
Connl connected

=x

Fig. 4. The mode Connl

Ezample 3. (Village telephone system) By using modes, the specification of the
module UserSpec may be given by the history free modes UserSpec and toggle
as shown in Figure 3. The modes togglel to toggled are obtained from mode
toggle by renaming variable h with h1 to h4 respectively. The unmarked transition
connecting de to dx is the identity transition expressing idling. The initial state
and the other transitions are defined as follows.

read-write h1,h2,h3,h4: hookType := on

on20ff ¥ h =on ->h := off
def

off2on = h = off -> h := on

The connection module Connl may be restated as a hierarchic mode as shown in
Figure 4 where initially c1 = disconnected. The transitions are defined as follows.

on def hl = on -> c1 := disconnected

off2 % 11 = off & h2 = off & c2 = disconnected &
p = "1-2/3-4" -> c1 := 2

off3 def hl = off & h3 = off & c3 = disconnected &
p = "1-3/2-4" -> c1 := 3

off4d def hl = off & h4 = off & c4 = disconnected &
p = "1-4/2-3" -> cl1 := 4

def .

ron2 = h2 = on -> cl := drooping

ron3 % n3=on ->c1 := drooping

rond ¥ h4 = on ->cl := drooping O

Note that by distinguishing between control and data, mode diagrams are often
more comprehensible than module specifications given by guarded commands. This
may have an important impact if the control structure is quite involved and this
is the reason why hierarchic state transition diagrams are so popular in software
engineering methods.

When defining the behavior of a mode in the next section, we regard a mode
as a black box, i.e., its submodes and (micro)transitions are hidden. However,
in the compositionality proofs for modes, it is sometimes necessary to observe the
behavior of a specific submode. Making explicit which submodes are to be observed
motivates the introduction of generic modes.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Modular Refinement of Hierarchic Reactive Machines . 15

Definition 7. (Generic mode) A generic mode (or mode context) MMy, ..., My]
consists of a mode M along with a set of visible submodes My, ..., M. O

The visible submodes can also be viewed as the formal parameters of the generic
mode. They can be substituted by other, compatible submodes. To simplify the
presentation we consider only one visible submode. However, all results apply to
the general case.

Definition 8. (Compatible modes) A mode M and a mode N are said to be
compatible if M.V, = N.V,, M.V, = N.V,y,, M.E = N.E and M.X = N.X. O

If M[P] is a generic mode, and the submode P is compatible with a mode @ then
M|[Q] is the generic mode obtained by substituting P by Q; M[P] is the non-generic
mode obtained by hiding P. Hence M[P] = M. However, M # M[Q)] because they
contain different submodes and M # M|[P] because P is hidden in M and visible
in M[P).

Remark 5. (Choice of the language) Our goal is to show how behavior hierarchy
can be handled semantically; a design language to be used by practicing software
engineers would require many enhancements (such as parametric modes, rich set of
data types and expressions). We had to make many choices to make the definition
of hierarchy concrete. We discuss these choices by comparing them with the popular
language STATECHARTS. As in STATECHARTS, multiple nested modes at different
levels of hierarchy can be active simultaneously. Modes at the same level of hierar-
chy are composed only sequentially (that is, only one mode is active at any point
in time). STATECHARTS, on the other hand, allows both sequential and concurrent
composition of modes at the same level, and later we will illustrate how concur-
rent modes can be modeled in our language. In STATECHARTS, communication is
by instantaneous broadcast of events. Events issued by one mode are available to
all modes, and consequently, there can be no truly modular semantics of STATE-
CHARTS. We have chosen shared-variables based communication, and the standard
scoping rules are essential to our modular semantics. Entry and exit points in our
language are inspired by the modeling language supported by UML-RT. Semanti-
cally, the critical entry/exit points are the default ones. These default points are
used in the closure construction, to be discussed in the next section, which allows
us to express transfer of control between a mode and its environment in a modular
fashion. Transitions starting from default exit points allow modeling of exceptions
and group transitions. This powerful feature is present in STATECHARTS as well as
UML-RT, and our modular treatment of this feature is an important contribution.
We allow both interleaving and synchronous semantics for top-level modes (that
is, modules), and when a mode is chosen, it executes transitions until the control
reaches one of its exit points (or no more enabled transitions are available). Alter-
native choices are possible. However, the choice for assigning higher priority to the
inside transitions than the outside group transitions is necessary for modularity. O

3.2 Operational Semantics

We introduce some additional notation to formally define the set of executions of a
mode. For a (generic) mode M we use O to denote the set dE U dX of observable
control points and C' to denote the set dE U dX U SM.dE U SM.dX of all control

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

16 . Rajeev Alur and Radu Grosu

P C
& g € d

x1 X2

Fig. 5. Closed behavior diagrams

points. Pairs of the form (¢, s), where ¢ is a control point and s is a state are called
configurations. For notational convenience, we view the set T of transitions also
as a binary relation over configurations: if (e,a,z) € T and (s,t) € «, we write

((67 8)7 (il,',t)) cT.

3.2.1 The priority among transitions. In Figure 5, the execution of a mode, say
n, starts when the environment transfers the control to one of its entry points el
or e2. The execution of n terminates either by transferring the control back to the
environment along the exit points x1 or x2 or by “getting stuck” in q or r as all
transitions starting from these leaf modes are disabled.

In this case the control is implicitly transferred to M along the default exit point
n.dx. Then, if the transitions e and f are enabled, one of them is nondeterminis-
tically chosen and the execution continues with n and respectively with p. If both
transitions are disabled the execution of M terminates by passing the control im-
plicitly to its environment at the default exit M.dx. Thus, the transitions within
a mode have a higher priority compared to the group transitions of the enclosing
modes.

3.2.2 Default exit transitions. In any mode, some transition leaving an entry
point is guaranteed to be enabled, so execution can get stuck only at an exit point
of a submode. In Figure 5 these points are explicitly drawn as black bullets. To
make the transfer of control explicit, we add default exit transitions as follows. From
an exit point z of a submode of M, we add a transition to the default exit point dz
that is enabled if and only if all the explicit outgoing transitions from z are disabled.
If the actions are given by guarded commands, and if g1, ...,g, are the guards of
the explicit transitions, the guard of the default transition is =(g1V ... Vg,). For
example, in Figure 5, the default exit transitions starting in q and r have the
guards —(gp V g¢) and —(ge V gq) respectively, where gy, gd, ge, g5 are the guards of
the transitions b,d, e, f, respectively. Similarly, the default exit transition starting
in n.dx has the guard —(g. V gy) and the default exit transition starting in p has
the guard —gy. Each default exit transition saves the local state which is restored
upon the subsequent entry to the default entry point. To remember the location
of control, we add a new local variable h to a mode M and an action body to each
default exit transition (from an exit point x to dx) that saves x in this history
variable h.

3.2.3 Default entry transitions. The transitions entering the default entry point
of a mode M restore the local state. Again, we introduce explicit default entry

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Modular Refinement of Hierarchic Reactive Machines . 17

transitions to restore the location of control. For each default exit transition from
an exit x of a submode of M, there is a default entry transition from de to x that
is taken when the value of the local history variable h coincides with x. If = was
a default exit point n.dr of a submode n then, as shown in Figure 5, the default
entry transition is directed to n.de. The reason is that in this case, the control was
blocked somewhere inside of n and default entry transitions originating in n.de will
restore this control.

The closure of the mode M of Figure 2 is shown in Figure 5, where each gray
bidirectional arrow represents two unidirectional arrows. The closure construction
is defined formally below.

Definition 9. (Closure) Let M = (E, X, V,,V,, Vi, SM, T, I)be amode. The clo-
sure ¢(M) of M is defined to be: (1) M if SM is empty, (2) (E, X, V;, Vi, Vi, ¢(SM),
T,1I)if M is history free, and (3) (E, X, V;, Vi, ViU {h}, c(SM),dT, dI) otherwise.
c(SM) is the set of closed submodes where ¢(SM) = {c(m) | m € SM}. dI is the
set of initial states and modes extending I, with an initial value for A in I,,.de. dT
is a set of transitions obtained from T by adding reinitialization of local variables
to the exit transitions and by adding, for each exit z € SM.dX, the transitions
(x, oy, dz) and (de, 85, x), where

—for x € SM.X,"x = z, and for z = N.dz,”z = N.de,

—for states s and t, (s,t) € «y iff t.h = z, t.y = s.y for y # h, and for every
transition (z, o, z’) in T, a is disabled at s,
—for states s, (s,5) € B, iff s.h = x.]

Now we proceed to define the operational semantics. Intuitively, a round of the
machine associated to a mode starts when the environment passes the updated state
along a mode’s entry point and ends when the state is passed to the environment
along a mode’s exit point. All the internal steps (the micro steps) are hidden. We
call a round also a macro step. Note that the macro step of a mode is obtained by
alternating its closed transitions and the macro steps of the submodes.

Definition 10. (Macro transitions of modes) The set V), of private variables of a
mode M = (E, X,V,;,V,,,V;, SM, T, I) is defined to be the set V; USM.V,,. The set
mT of macro-transitions consists of transitions of the form (e, o, x) with e € dE,
x € dX, and «a is the action from from V. UV}, to Vi, UV}, defined as follows. Given
the macro-transitions of the submodes of M, a micro-execution of M is a sequence
of the form (eg, s9) — (e1,81) — -+ — (en, $n) of control points e; € C' and states
s; over V; UV, such that

—for even i, the transition ((e;, s;), (€i41, Si+1)) is in the closure dT of T,
—for odd ¢, the transition ((e;, $;), (€i+1, Sit1)) is in SM.mT.

Given such an execution for an entry point ey and an exit point e, of M, the
macro-transition relation mT contains ((eq, So), (€n, Sn))- O

In the above definition of micro-executions of a mode, the states s; are valuations
to the variables V; UV}, but only a subset of these influence each step. The other
remain unchanged. The operational semantics of a mode M consists of its control
points, global variables, private variables, and its macro-transitions.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

18 . Rajeev Alur and Radu Grosu

E M[N]

N.dX N.dE
(mt mT N.mT mT env mT
B L — e B —

N.dE N.dX

dX

Fig. 6. The traces of M[N]

Remark 6. (Consistency of modes) To ensure consistency we assume the closed
transition relation contains no cycles. In the finite state case, checking for cycles is
easy. In the infinite state case, one can check for sufficient conditions. For example,
one can check for the occurrence of a predefined “wait” mode within each cycle.
This mode contains two explicit points e and z and two identity transitions: one
from e to dx and one from de to x. o

A top-level mode is a mode M with default entry/exit points only. Such a mode can
be viewed as a module with private variables V,,, interface variables V,,, external
variables V,. \ V,, initialization specified by the initial states and update specified
by macro-transitions from de to dx. For example, mode Conn1 is a top-level mode.

The operational semantics of a mode context M[N] is defined the same way as
that of a mode, except that the submode N and the transfer of control between the
mode M and the submode N is visible. Thus, a macro step of M[N] starts either
at an entry point of M or at an exit point of NV, and terminates at an exit point of
M or at an entry point of N.

Definition 11. (Macro transitions of generic modes) For a generic mode M[N],
the macro-transition relation mT contains the pair ((e, s), (¢’,s')) if e € M.dE U
N.dX, e € M.dX UN.dE, s and s’ are states over M.V, U M.V, and there is a
micro-execution of M from (e, s) to (', s'). O

The operational semantics of a generic mode M[N], consists of the visible control
points M.OUN.O, global variables M.V,, private variables M.V, macro-transition
relation of M[N], and the operational semantics of the submode N.

3.2.4 Trace Semantics. The execution of a mode may be best understood as a
game, i.e., as an alternation of moves, between the mode and its environment. In a
mode move, the mode gets the state from the environment along its entry points. It
then keeps executing until it gives the state back to the environment along one of its
exit points. In an environment move, the environment gets the state along one of
the mode’s exit points. Then it may update any variable except the mode’s private
ones. Finally, it gives the state back to the mode along one of its entry points. An
execution of a mode is obtained by repeating the mode and environment moves,
and a trace is obtained from an execution by retaining only the global states.

Definition 12. (Denotational semantics of modes) An execution of a mode M is
a sequence

(€0, s0) = (xo,t0) — (e1,51) = (21,t1) = -+ — (zp, tn)

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Modular Refinement of Hierarchic Reactive Machines . 19

of control points e; € dE, x; € dX with eg in E, s¢.V. in I and states s; and t;
over V; UV, such that for all 4, ((es, s:), (zs,t:)) € mT and s,11.V, =t;.V,. Given
such an execution, the corresponding trace of M is obtained by projecting each
state to the set V; of global variables. The set of traces of M is denoted Lj;. The
denotational semantics of a mode M consists of its observable points O, global
variables Vj, and the set Ljs of traces. O

Note that, for a top level mode, the environment is another reactive module. For a
lower level mode, the environment may be a regular or a group transition.

The execution of a generic mode M[N] can be defined similarly as alternation of
moves of three kinds. The context mode M gets the state at an entry point or at an
exit point of its submode N. It keeps executing until it gives the state back to the
environment along one of its exit points or to the submode N at one of the entry
points of V. The environment gets the state along one of the exit points of M. It
possibly updates the global variables of M, and returns the state to the context
M along one of the entry points of M. The submode N gets the state at one of
its entry points. It executes one of its macro transitions, and returns the state to
M at one of the exit points of N. To obtain a trace from an execution, we retain,
at each control point, the values of the variables global at that point. For a mode
context M[N], for a control point ¢ € M.dX U M.dE, let c¢.Vy be M.V,, and for a
control point ¢ € N.dX UN.dE, let c.V; be N.V,.

Definition 13. (Denotational semantics of generic modes) An executions of a
generic mode M[N] is a sequence

(€0, 80) — (xo,t0) — (e1,81) — (x1,t1) — -+ — (Tn, tn)

of control points e; € M.dEUN.dX, z; € M.dX UN.dE, and states s; and t; over
M.V, U M.V, such that

—the execution starts at eg € M.dE with so.(M.V,) € M.I,

—for all 4, ((es, 8;), (x4, ¢:)) is a macro-transition of M[N],

—for all 4, if x; € N.dE then e;41 € N.dX, and

—for all 4, the pair ((x;,t;), (€i+1,Si+1)) is in NomT if ©; € N.dE and s;41.V, =
t;.V, otherwise.

Given such an execution, a trace of M[N] is obtained by projecting each state
associated with a point ¢ to the set ¢.V,. The set of traces of M[N] is denoted as
before by Lyn). The denotational semantics of a generic mode M[N] consists of
the observable points and global variables of M, the observable points and global
variables of N and the set of traces Lpsni- m]

In order to show that our trace semantics is compositional, we need to be able
to define the semantics of a mode M only in terms of the trace semantics of its
submodes. This is the same as being able to compute the set of traces of the
generic mode M [N] in terms of the traces of N. Recall that an execution of a generic
mode is obtained by alternating between its macro-transitions, its visible submodes
macrotransitions and environment transitions (see Figure 6). To formalize the
notion of compositionality, we need to define a projection operation for trace-like
sequences.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

20 . Rajeev Alur and Radu Grosu

Definition 14. (Trace extraction) Given a sequence o = (eq, So)(e1,51) - - - (€n, Sn)
of control points and states, and a mode N, the restriction o f N is the sequence
obtained from o by replacing each s; by s;.(N.V,) and by deleting pairs (e;, s;) if
e; ¢ N.dFE UN.dX. Similarly, TN is the sequence obtained from ¢ by replacing
each s; by s;.(N.V) and by deleting pairs (e;, s;) if e; € N.dE'U N.dX. O

Recall that G(V;., V., E, X) denotes the most general mode with the given set of
read/write variables and control points. For a generic mode M[N], we will use
M]G] to denote the generic mode obtained by replacing N with the most general
mode G(N.V,, N.Vy,, N.E, N.X). The next lemma captures the essence of compo-
sitionality of trace semantics for the encapsulation.

LEMMA 1. (Trace construction) Let M[N] be a generic mode, and let T be a
sequence of the form (co,s0) — (c1,t1) — (c2,82) — (c3,83) — - — (Cn, Sn) Such
that each c; is in M.dEUN.dEUM.dX UN.dX, and each s; is a state over c;.Vy.
Then 7 is a trace of M[N] iff T is a trace of M[G] and T\ N is a trace of N.

PRrROOF. Consider a sequence 7 of the form (cg,s9) — (c1,t1) — (c2,82) —
(c3,83) — -+ — (Cn, Sn) such that each ¢; is in M.dEUN.dEUM.dX UN.dX, and
each s; is a state over ¢;.V,.

Suppose 7 is a trace of M[N], and let « be the corresponding execution. Then
alN is an execution of IV, and hence, 7} N is a trace of N. From «, if we project
out the private variables of N, then, by definition of the most general mode, we get
an execution of M|[G], and thus, 7 is a trace of M[G].

Suppose 7 is a trace of M[G] and 71t N is a trace of N. Let a be an execution
of M[G] corresponding to 7 and 8 be an execution of N corresponding to 7+ N.
Then a and S must have the form

(CO;UO) - (Claul) - (027u2) - (C?nu?)) — e (Cn;un)
(i, vi) = (Ciy1,viq1) — (¢5,v5) — (€41, Vj41) - — (Cm, VUm)

and agree on the global variables, i.e., for each ¢; in 8, u;.(N.Vy) = v;.(N.Vj).
Construct a new sequence vy from a by replacing u;.(N.V,) with v;.(N.V,) at points
¢; in B and repeating the last values v;.(N.V,) at the intermediate points. By
construction, the N-transitions of «y are in N.mT. Moreover, since the environment
cannot observe the private variables of NV, the M-transitions of v are in mT. Hence
«v is an execution of M[N]. As a consequence, T is a trace of M[N]. O

The above lemma is used to prove the following theorem which says that to
compute the set of traces of a mode M, only the set of traces of its submode, and
not the internal structure of the submode, is needed.

THEOREM 1. Trace construction For a generic mode M[N], the set of traces of

M can be computed from the set of traces of the submode N and the set of traces
of M[G].

PRrROOF. The set of traces of M[N] is computed as in Lemma 1. Then, the traces
in Ly are the sequences o ff M where o € Ly ;. O

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Modular Refinement of Hierarchic Reactive Machines . 21

e (B® S-S E(E

Nl @ [

M M M M’ M M’

{@}

Fig. 7. Compositional and assume/guarantee rules

3.3 Refinement

The trace semantics leads to a natural notion of refinement between modes: a mode

M refines a mode N if they are compatible and every trace of M is a possible trace
of N.

Definition 15. (Refinement) A mode M refines a mode N, written as M < N,
if M is compatible with N and Ly; C Ly. A generic mode M[N] refines a generic
mode M'[N'], if M is compatible with M’, N is compatible with N, and L) €
LM/ [N7]- O

A most general mode G(V;., V,,, E, X) is most general for a given data and control
interface: verify that every mode mode M refines G(M.V,., M.V,,, M.E, M.X). The
refinement operator is compositional with respect to hiding of submodes:

THEOREM 2. (Compositionality of hiding) Suppose that M[P] <= N[Q]. Then
M[P] = N[Q].

PROOF. Let t € LW' Then by definition traces, there is a trace u € L p),
such that ¢ = u{ M. By hypothesis © € N[Q] holds, and by compatibility of M
and N, t = u{ N[Q]. Again by definition of traces of modes ¢ € Lm. O

The next theorem states that refinement is also compositional with respect to sub-
modes.

THEOREM 3. (Mode compositionality) Given a generic mode M[Q] and a mode
P such that P < Q. Then M[P] < M[Q].

PROOF. Let t € M[P]. Then by Lemma 1, tff P € Lp. By compatibility and
refinement hypothesis it follows that ¢ } Q € Lg. Hence, by Lemma 1, ¢ € P[Q]. O

The refinement rule is shown in a visual way in Figure 7, left. By applying Theorems
2 and 3 one immediately obtains that M[P] < M[Q)] provided that P < Q. Hence,
refinement is compositional with mode encapsulation too.

Ezample 4. (Village telephone system) A refinement of the mode toggle is the
mode ctoggle shown in Figure 8, left. While in toggle, the switch to on is
enabled whenever h is off, in ctoggle the switch to on is enabled whenever c
is disconnected. The transitions of ctoggle are given below.

on20ff % h =on ->h := off
coff2on def c != disconnected -> h := on

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

22 . Rajeev Alur and Radu Grosu

read-write h read-write h1,...,h4
read ¢ read cl,...,c4

on2off

- > ctogglel
coff2on

- —* ctoggle4

Fig. 8. An implementation of UserSpec

Fig. 9. Context refinement counter example

To prove refinement, the additional read variable ¢ may be added to the mode
toggle without any harm because it is not read by this mode. In a more general
setting, the refinement rules would take additional variables into account.

Since ctoggle = toggle we obtain by compositionality and the fact that renam-
ing does not change refinement that UserImp < UserSpec. a

The refinement operation is also compositional with respect to mode contexts, i.e.,
with respect to generic modes construction.

THEOREM 4. (Context Compositionality) Suppose that M[Q] < M'[Q] and P <
Q. Then M[P] < M'[P].

PRrROOF. Let ¢t € Ly p). Then by the second hypothesis and Theorem 3, ¢ €
Lsiq)- Using now the first hypothesis it follows that ¢ € Ly (q). Since tff P € Lp
we conclude by Lemma 1 that ¢t € Lypp). O

To see how this theorem can be used, consider the middle picture of Figure 7.
Here, the submode N is reused in two different contexts M and M’. The rule says
that the refinement M[N] < M’[N] can be established by replacing N by the most
general mode G (or any mode that N refines), thereby simplifying the system.

Similarly to the mode compositionality rule where the interaction of the sub-
modes with their environment is observable in the rule’s hypothesis, the interaction
between the mode context and its submodes has to be observable in the hypoth-
esis of the context compositionality rule too. In general, from M[G] < M'[G]
we cannot conclude that M[P] <= M’[P]. For example, consider the modes M|[G]
and M'[G] defined as in Figure 9, where the set of states @ = {a,b,c} is the
same for all modes. Define the macro transition relations as follows: G.mT.a =
Q x Q, AmT.a = {(a,b),(b,¢),(c,a)}, BmT.a = {(a,c),(b,a),(c,b)}. Tt is easy
to observe that M[G] = M'[G] = G. Now consider the identity relation I with
I.mT.a = {(a,a),(b,b),(c,c)}. Clearly, M[I]| = A Z M'[I] = B.

The compositionality rules allow us to decompose the proof obligation into re-
finement of submodes in the most general context, and refinement of contexts under

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Modular Refinement of Hierarchic Reactive Machines . 23

the most general submode. Can we allow circular assume-guarantee reasoning in
the style of Proposition 27 The answer is yes, if we can observe the interaction
between the context M and submode N.

THEOREM 5. (Assume Guarantee) Let M[N] and M'[N’] be compatible generic
modes. If both M[N'] < M'[N'] and M'[N] < M'[N’] then M[N] < M'[N’].

PROOF. The proof is by induction over the length of traces t € Lysn)-

Base case: Suppose t is the empty trace. This is a trace both of Ly and of
LM/[N’]'

Induction step: Suppose t is of length n + 1 of the form ¢ = t'(¢p41, Snt1). By
induction hypothesis, ¢ is a trace of both M[N] and M’[N’]. Let a be an execution
of M[N] corresponding to ¢, and let 3 be an execution of M'[N’] corresponding to
t’. Now we do a case analysis for the last transition in .

Case: Environment transition. An environment transition only updates the global
variables. Let s’ be a state that agrees with the last state in 3 on all private variables
of M'[N’], and agrees with s,41 on the global variables of M’. Then 5(cp41,$’) is
an execution of M'[N’'], and hence, t is a trace of M'[N’].

Case: Transition of M. Observe that «, with private variables of N projected
out, is an execution of M[G], and hence, ¢ is a trace of M[G]. We will establish
that ¢ N” is a trace of N’, and then, by lemma 1, ¢ € L. Since ¢’ is trace of
M'[N’], by lemma 1, ¢’ N’ is a trace of N’. If ¢;41 is not a control point of N,
then ¢{p N’ is the same as '} N'. Suppose c¢;+1 is an entry point of N. Consider
the execution v of N’ that corresponds to the trace ¢’ N’. Let s’ be a state that
agrees with the last state in v on all private variables of N’, and agrees with s,11
on the global variables of N’. Then ~(¢p+1,8’) is an execution of N’ and hence,
tf N’ is a trace of N'.

Thus, ¢t € Lyn,. Since M[N'] = M'[N'], t must be in Ly nn.

Case: Transition of N. Since t is a trace of M[N], by lemma 1, ¢{} N is a trace
of N. Let ' be the execution 3 with each state projected by deleting the private
variables of N’ and s’ be a state of M’[G] that agrees with s, 1 on global variables
of N and with the last state in 3’ on the rest of the variables. Now, 3(cp41,s') is
an execution of M'[G], and hence, ¢ is a trace of M’'[G]. By lemma 1, ¢ is also a
trace of M'[N]. Since M'[N] < M'[N'], t must be in Ly nq. O

A visual representation of this rule is shown in Figure 7, right. Intuitively, to
establish that M[N] refines M'[N’], we first prove that the generic mode M[N’|
refines the generic mode M’[N’], and then prove that M'[N] refines M'[N’]. Thus,
to establish that the implementation context M refines the specification context
M’, we assume the submode specification N’, and to prove that the implementation
submode N refines the specification submode N’, we assume that the context meets
the specification M’. In both cases, the interaction between the submode and its
context must be observable, and thus, we need to consider traces of the generic
mode.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

24 . Rajeev Alur and Radu Grosu

il i2

readil, i2 i

f1 f2 : i
write ol, 02
o XL d| [eE G0
f2 fl

ol 02

Fig. 10. Parallel composition by interleaving

4. CONJUNCTIVE MODES

In the model we have discussed so far the architectural hierarchy of the system is
described by parallel composition of modules, and the behavioral hierarchy within
atomic modules is described by sequential composition of modes. Languages such
as Statecharts allow mixed hierarchies where and (conjunctive or concurrent) and
or (disjunctive or sequential) modes can be arbitrarily nested. In this section,
we show that the semantics of modes presented in the previous sections is a very
expressive setting in which we can define various interesting parallel composition
operators found in the literature. Moreover, the user may define himself the desired
composition and can even mix different ways of compositions in the same setting.
The main characteristics of the semantics that allow us to do this are hierarchy,
control interfaces and the fact that closed modes never get “stuck” and take “no
time” to execute. In this setting, a module is a top mode that communicates with
its environment via shared variables. In the following subsections we discuss two
common forms of parallel composition.

4.1 Concurrency by interleaving.

In the interleaving semantics, a round (macrostep) of a composed mode is a round
of one of its submodes. The choice between the submodes is arbitrary. The set
of write variables of the composed mode is the union of the sets of write variables
of the submodes. The set of read variables of the composed mode is the union of
the sets of read variables of the submodes minus the sets of write variables of the
submodes. The set of initial states is the product of the sets of initial states of the
components. This semantics is easily accommodated in our framework as shown in
Figure 10 right.

Definition 16. (Interleaving composition) Given two top-level modes M and N,
the interleaving composition M|N of the modes M and N is a hierarchic mode
defined as follows.

Control points. The sets of entry/exit points dE = {de} and dX = {dz}.
Variables. The sets of write, read and local variables V,,, V,. and V}:
Vw=MV4,UNVy,, V,=(MV,UNV)\V,, V=0

Submodes. The set {M, N}.

Transitions. The set T = {(de, i, M.de), (de, i, N.de), (M.dz,i,dzx), (N.dx,i,dx)}
where 7 is the identity action.

Initial states and modes. The sets Iy = (M.I).Vy, x (N.I).V,, and I, =0. O

From the above definition it follows easily that M < M|N and that interleaving
composition is compositional with respect to refinement.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Modular Refinement of Hierarchic Reactive Machines . 25

il i2
readil, i2 s
fl f2 write 01, 02
[w XLu]| |
local 01,02’
f2 fl local 1’ f2 r
ol 02

Fig. 11. Lock-step parallel composition

THEOREM 6. If M1=<N; and M2=<Ns are top modes, then My|Ms < Ni|Na.

4.2 Lock-step parallel composition

In the lock-step composition, a round (macro step) of a composed mode consists of
a sequence of rounds of the submodes, one round for each submode. The order of
execution of the submodes is arbitrary and has no consequence on the trace seman-
tics of the composed mode. As a consequence, each linearization of the submodes
is a valid translation of the corresponding composed module. A linearization that
gives priority to the left mode is shown in Figure 11, right. The associated mod-
ule diagram is given in Figure 11, left. Note that the module diagram explicitly
shows the communication variables. To make sure that each mode in the sequence
accesses the same values of the variables, namely the values at the beginning of the
round, we have to latch the write variables. This is easily accomplished as follows.

First, we add for each write variable of a submode a local primed variable to the
composed mode. The primed variable is used to keep the current value, i.e., the
value computed by the submode in the current round. The entry transition s of the
composed mode initializes the primed variables with the value of the corresponding
unprimed variables. The exit transition r assigns the value of the primed variable
back to the unprimed one.

Second, since the submodes were defined in terms of unprimed variables, they
have to be renamed such that each occurrence of an unprimed write variable is
replaced by a primed variable. Note that only one submode is renamed with respect
to a write variable because composability assures that the two submodes write to
disjoint sets of variables. In Figure 11 the renamed modes are marked as primed.

Definition 17. (Lock-step composition) Given two top-level modes M and N such
that M.V, N N.V,, = 0. The lock-step composition M||N of the modes M and N
is defined as follows.

Control points. The sets dE = {de}, dX = {dz} of entry and exit points .

Variables. The sets V,,, V,. and V; of write, read and local variables:
Vw=MV,UNV,y, V,=(MV,UNV)\V,, Vi=MV,UN.V,.
Submodes. The set {M’, N'} where:
M' = M[M.V)/M.V,], N'=N[N.V/!/N.V,]

That is, M’ is obtained from M by replacing, for each variable z in M.V,,, every
reference to x in M by 2’

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

26 . Rajeev Alur and Radu Grosu

Transitions. The set T = {(de, s, M'.de), (M'.dx,i, N'.de), (N'.dz,r,dx)} where
1 is the identity action, s,r are defined by

def ,

= T]1=T1;...3T,1=Tn
def ,

= T1:=X};...3Tn =3,

and x1 ...x, are the variables in V.
Initial states and modes. The sets Iy = (M.I).Vy, x (N.I).V,, and I, =0. O

From the above definition it follows that parallel composition is compositional with
respect to refinement.

THEOREM 7. If M1 =< Ny and My = Ny are top modes, then M| My < Ny||Na.

PRrOOF. Let Q[M;, N1] be the mode corresponding to Mi||Ny. Since My < My
and N1 < N, Q[M7, N1] = Q[Ma, Na2]. But Q[Ma, No] is the mode corresponding
to M2||N2 O

Remark 7. (Await dependencies) In the above theorem we considered only Moore-
like modules and their translation to Moore-like modes. In general, reactive mod-
ules in MOCHA allow to define a partial order (await dependencies) between atomic
modules called atoms such that the values computed by an atom in a round may
influence the values computed by any atom greater in the partial order in the same
round. We can easily handle this in our setting by considering that each submode
in the composition has both an unprimed and a primed copy of each variable.
Similarly to the transitions of a parallel mode, the submodes may then use both
primed and unprimed variables in their transitions. The partial order, is nothing
but a constraint that has to be satisfied by the linearization of modes. Note that in
this setting, one may define events analogously to reactive modules. For example,
testing for the occurrence of an event e? is translated to e’ # e. Similarly, issuing
an event e! is translated to e’ := —e. |

The lock-step composition of two top-level modes is essentially the same as the
parallel composition of the modules defined by these modes. The only difference
is of technical nature: the modules assume that the environment is not writing
on their interface variables while the modes do not make this assumption for their
write variables. This mismatch can be easily handled by defining two operators:
mod2mdl and mdl2mod that convert top-level modes to modules and reciprocally
modules to modes.

The mod2mdl operation only adds the environment assumption. The mdi2mod
operation works recursively. First it replaces each submodule by a submode that
does not impose the environment assumption. Then it replaces the parallel compo-
sition of modules by the lock-step composition of modes. Since any atom in reactive
modules is also a mode, this gives an algorithm to completely convert any module
to a mode.

Ezample 5. (Village telephone system) The recursive conversion of the village
telephone system module to a mode is shown in Figure 12. |

Hence, a module diagram may be regarded as a convenient shorthand for a particu-
lar mode diagram. However, since a module diagram shows the observable variables

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Modular Refinement of Hierarchic Reactive Machines . 27

p
c4 cl hl h4
UserSpec
hi N ha " N p
’
SystemSpec i
cl c4

"Conn4 ‘ ‘SelPartn‘E

=

lus
3

S

-
LH Connl e Conn4 SelPartn
SystemSpec _ E E]
- v J l r

Fig. 12. Recursive translation of modules to modes

and their sharing among modes, a module diagram is more convenient for the rep-
resentation of parallel modes. The fact that a module diagram represents a mode
allows us to integrate module diagrams inside of mode diagrams and the other way
around. As a consequence, we can construct arbitrary and/or hierarchies of mixed
synchronous or asynchronous components.

The construction of such hierarchies is an important step towards modeling mod-
ern concepts like dynamical network reconfiguration or mobility. For example, cre-
ating a new process can be easily accomplished by a transition that takes a module
diagram into another module diagram that has an additional module. To model
mobility we also need to distinguish between location of computation modules and
software modules. It is important to note that this expressive power comes together
with a clean semantics that can be used successfully in analysis.

Ezample 6. (Hot-lines) A possible implementation of the module SystemSpec
is by hot lines, as shown in Figure 13, right. The mode definition of the module
Linel is shown in Figure 13, left. The initial state and the associated transitions
are given below. The definition of the module Line2 is similar.

write cl,c2: connType = disconnected;

def

hloff? = hl = off -> skip;

n2off? & h2 = off -> skip;

hion? % ni=on -> skip;

h2on? ' n2 = on -> skip;

conn?2 def h2 = off -> cl1 := 2; c2 := 1;

connl def hli = off -> cl1 := 2; c2 := 1;

dibr1 % h1 = on -> c1 := disconnected; c2 := drooping;

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

28 . Rajeev Alur and Radu Grosu

hl h2 ¢l c2

1§

‘ Linel ‘

\ Line2 \

il

h3 h4 3 c4 | Systemimp

Fig. 13. Hot lines implementation

aibr2 & h2 = on -> c2 := disconnected; cl := drooping;
c2disc def h2 = on -> c2 := disconnected;
cldisc def hl = on -> cl1 := disconnected;

We would like now to prove by assume/guarantee that UserImp || SystemImp <
UserSpec || SystemSpec. This can be done in a mixed module/modes setting or
solely in a modes setting by converting the above modules to modes. In this case,
we can use the assume/guarantee rule for modes.

Let SystemImpPar be the top level mode for the parallel composition together
with the mode for SystemImp and SystemSpecPar be the top level mode for the
parallel composition together with the mode for SystemSpec. Then we have to
prove that

SystemImpPar|[UserSpec| < SystemSpecPar|[UserSpec]
SystemSpecPar[UserImp] < SystemSpecPar|[UserSpec]

It is easy to see that in this case the assume/guarantee rule for modes is the same
as the one for modules. |

5. CONCLUSIONS

The notion of hierarchy is useful for structuring architecture of component con-
nections as well as for describing behavior of individual components. While ar-
chitectural hierarchy has been well understood in context of modular reasoning,
there has been no basis for modular reasoning about behavior hierarchy. Existing
languages for hierarchic state-machines have complex operational semantics and no
notion of observational refinement. We show that hierarchy can be preserved in
observational trace semantics even in presence of powerful features such as mode
hierarchy, exceptions, history retention, conjunctive modes, and mode reuse. Our
language has powerful rules for refinement of modes, and should provide a basis for
systematic development and formal analysis of hierarchic descriptions.

The current proposal builds on our previous work on the language of reactive
modules, the toolkit MOCHA that supports assume-guarantee refinement checks
and the relational semantics for hierarchic machines in [Grosu et al. 1998]. The op-
erations of building a mode by connecting submodes, scoping of local variables, and

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Modular Refinement of Hierarchic Reactive Machines . 29

mode instantiation, are direct analogs of parallel composition of modules, variable
hiding, and module instantiation, respectively. Indeed, the same graphical-user-
interface can be used for both the module diagrams and mode diagrams. In [Alur
et al. 2000] we report on the GUI and a model checker for hierarchic modes.

Acknowledgments

We thank Manfred Broy, Carl Gunter, Tom Henzinger, Michael McDougall, Amir
Pnueli, Bran Selic, Gheorghe Stefanescu and Mihalis Yannakakis for fruitful dis-
cussions and suggestions. We also wish to thank the anonymous reviewers for
useful comments. Rajeev Alur was partially supported by DARPA/NASA grant
NAG2-1214, NSF CARRER award CCR-9734115, SRC award 99-688, Sloan Faculty
Fellowship, DARPA ITO Mobies award F33615-00-C-1707, and Bell Laboratories.
Radu Grosu was partially supported by NSF CARRER award CCR-0133583.

REFERENCES

ABADI, M. AND LAMPORT, L. 1995. Conjoining specifications. ACM TOPLAS 17, 507-534.

ALUR, R., DE ALFARO, L., Grosu, R., HENZINGER, T., KaNG, M., MAJUMDAR, R., MANG, F.,
KirscH, C., AND WANG, B. 2001. MOCHA: A model checking tool that exploits design structure.
In Proceedings of 23rd International Conference on Software Engineering. 835-836.

ALUR, R., Grosu, R., AND McDougALL, M. 2000. Efficient reachability analysis of hierarchical
reactive machines. In Computer Aided Verification: 12th International Conference. LNCS 1855.
Springer, 280-295.

ALUR, R. AND HENZINGER, T. 1999. Reactive modules. Formal Methods in System Design 15, 1,
7-48. Invited submission to FLoC’96 special isuue. A preliminary version appears in Proc. 11th
LICS, 1996.

ALUR, R. AND WANG, B. 2001. Verifying network protocol implementations by symbolic refine-
ment checking. In Computer Aided Verification: 13th International Conference. LNCS 2102.
Springer, 169-181.

ALUR, R. AND YANNAKAKIS, M. 1998. Model checking of hierarchical state machines. In Proceed-
ings of the Sizth ACM Symposium on Foundations of Software Engineering. 175—188.

BEHRMANN, G., LARSEN, K., ANDERSEN, H., HULGAARD, H., AND LIND-NIELSEN, J. 1999. Verifica-
tion of hierarchical state/event systems using reusability and compositionality. In TACAS ’99:
Fifth International Conference on Tools and Algorithms for the Construction and Analysis of
Software. LNCS 1579. Springer, 163-177.

BHARGAVAN, K., GUNTER, C., GUNTER, E., JACKSON, M., OBRADOVIC, D., AND ZAVE, P. 1998.
The village telephone system: A case study in formal software engineering. In Theorem Proving
in Higher Order Logics: 11th International Conference. LNCS 1479. Springer, 49-66.

BoocH, G., JACOBSON, 1., AND RUMBAUGH, J. 1997. Unified Modeling Language User Guide.
Addison Wesley.

CHAN, W., ANDERSON, R., BEAME, P., BURNS, S., MoDUGNO, F., NOTKIN, D., AND REESE, J. 1998.
Model checking large software specifications. IEEE Transactions on Software Engineering 24, 7,
498-519.

CLARKE, E. AND EMERSON, E. 1981. Design and synthesis of synchronization skeletons using
branching time temporal logic. In Proc. Workshop on Logic of Programs. LNCS 131. Springer,
52-71.

CLARKE, E. AND KURSHAN, R. 1996. Computer-aided verification. IEEE Spectrum 33, 6, 61-67.

Grosu, R., STEFANEscU, G., AND Broy, M. 1998. Visual formalisms revisited. In CSD’98,
International Conference on Application of Concurrency to System Design. IEEE, 41-51.

GRUMBERG, O. AND LONG, D. 1994. Model checking and modular verification. ACM Transactions
on Programming Languages and Systems 16, 3, 843-871.

HAREL, D. 1987. Statecharts: A visual formalism for complex systems. Science of Computer
Programming 8, 231-274.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

30 . Rajeev Alur and Radu Grosu

HAREL, D. AND NAAMAD, A. 1996. The STATEMATE semantics of statecharts. ACM Trans. Software
Engin. Methods 5, 4, 293-333.

HAREL, D., PNUELI, A., SCHMIDT, J., AND SHERMAN, R. 1987. On the formal semantics of state-
charts. In Proc. 2nd IEEE Symposium on Logic in Computer Science. 54—64.

HENZINGER, T., QADEER, S., AND RAJAMANI, S. 1998. You assume, we guarantee: Methodology
and case studies. In CAV 98: Computer-aided Verification. LNCS 1427. Springer, 521-525.
HoLrzMmANN, G. 1997. The model checker SPIN. IEEE Trans. on Software Engineering 23, 5,

279-295.

HuBER, F., Scutz, B., ScumipT, A., AND SPIES, K. 1996. Autofocus - a tool for distributed
systems specification. In Proceedings FTRTFT’96 - Formal Techniques in Real-Time and
Fault-Tolerant Systems. Springer Verlag, LNCS 1135, 467-470.

JAHANIAN, F. AND MOK, A. 1987. A graph-theoretic approach for timing analysis and its imple-
mentation. IEEE Transactions on Computers C-36, 8, 961-975.

LAMPORT, L. 1994. The temporal logic of actions. ACM Transactions on Programming Languages
and Systems 16, 3, 872—923.

LEVESON, N., HEIMDAHL, M., HILDRETH, H., AND REESE, J. 1994. Requirements specification for
process control systems. IEEE Transactions on Software Engineering 20, 9, 684-707.

LUTTGEN, G., VAN DER BEECK, M., AND CLEAVELAND, R. 2000. A compositional approach to
Statecharts semantics. In Proceedings of the Eighth International Symposium on Foundations
of Software Engineering. 120-129.

LyncH, N. AND TUTTLE, M. 1987. Hierarchical correctness proofs for distributed algorithms. In
Proceedings of the Seventh ACM Symposium on Principles of Distributed Computing. 137-151.

McMILLAN, K. 1993. Symbolic model checking: an approach to the state explosion problem. Kluwer
Academic Publishers.

McMILLAN, K. 1997. A compositional rule for hardware design refinement. In CAV 97: Computer-
Aided Verification. LNCS 1254. 24-35.

MILNER, R. 1980. A Calculus of Communicating Systems. LNCS 92. Springer.

PNUELI, A. AND SHALEV, M. 1991. What is in a step: On the semantics of statecharts. In Proc.
Symposium on Theoretical Aspects of Computer Software. LNCS 526. Springer, 244—264.

SELIC, B., GULLEKSON, G., AND WARD, P. 1994. Real-time object oriented modeling and design.
J. Wiley.

STARK, E. 1985. A proof technique for rely-guarantee properties. In FST & TCS 85, Foundations
of Software Technology and Theoretical Computer Science. LNCS 206. Springer, 369-391.
USELTON, A. AND SMOLKA, S. 1994. A compositional semantics for statecharts using labeled
transition systems. In CONCUR’94: Concurrency Theory, Fifth International Conference.

LNCS 836. Springer, 2-17.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

